ABCC7 p.Ser737Ala

ClinVar: c.2210C>T , p.Ser737Phe ? , not provided
CF databases: c.2210C>T , p.Ser737Phe (CFTR1) ? , This nucleotide change was identified in two Italian patients.
Predicted by SNAP2: A: N (61%), C: D (59%), D: D (75%), E: D (66%), F: N (61%), G: N (66%), H: D (63%), I: N (57%), K: N (57%), L: N (53%), M: N (53%), N: N (72%), P: D (71%), Q: N (66%), R: D (66%), T: N (78%), V: N (61%), W: D (75%), Y: D (53%),
Predicted by PROVEAN: A: N, C: D, D: N, E: N, F: D, G: N, H: N, I: D, K: N, L: D, M: D, N: N, P: N, Q: N, R: N, T: N, V: D, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Baldursson O, Berger HA, Welsh MJ
Contribution of R domain phosphoserines to the function of CFTR studied in Fischer rat thyroid epithelia.
Am J Physiol Lung Cell Mol Physiol. 2000 Nov;279(5):L835-41., [PMID:11053017]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Ostedgaard LS, Baldursson O, Welsh MJ
Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by its R domain.
J Biol Chem. 2001 Mar 16;276(11):7689-92. Epub 2001 Jan 23., 2001-03-16 [PMID:11244086]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Ai T, Bompadre SG, Wang X, Hu S, Li M, Hwang TC
Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents.
Mol Pharmacol. 2004 Jun;65(6):1415-26., [PMID:15155835]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Csanady L, Seto-Young D, Chan KW, Cenciarelli C, Angel BB, Qin J, McLachlin DT, Krutchinsky AN, Chait BT, Nairn AC, Gadsby DC
Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
J Gen Physiol. 2005 Feb;125(2):171-86. Epub 2005 Jan 18., [PMID:15657296]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Quinton PM
Too much salt, too little soda: cystic fibrosis.
Sheng Li Xue Bao. 2007 Aug 25;59(4):397-415., 2007-08-25 [PMID:17700961]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Kongsuphol P, Cassidy D, Hieke B, Treharne KJ, Schreiber R, Mehta A, Kunzelmann K
Mechanistic insight into control of CFTR by AMPK.
J Biol Chem. 2009 Feb 27;284(9):5645-53. Epub 2008 Dec 18., 2009-02-27 [PMID:19095655]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang G
State-dependent regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gating by a high affinity Fe3+ bridge between the regulatory domain and cytoplasmic loop 3.
J Biol Chem. 2010 Dec 24;285(52):40438-47. Epub 2010 Oct 15., 2010-12-24 [PMID:20952391]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang G
The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2011 Jan 21;286(3):2171-82. Epub 2010 Nov 8., 2011-01-21 [PMID:21059651]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Siwiak M, Edelman A, Zielenkiewicz P
Structural models of CFTR-AMPK and CFTR-PKA interactions: R-domain flexibility is a key factor in CFTR regulation.
J Mol Model. 2011 Apr 1., 2011-04-01 [PMID:21455600]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Hegedus T, Aleksandrov A, Mengos A, Cui L, Jensen TJ, Riordan JR
Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A.
Biochim Biophys Acta. 2009 Jun;1788(6):1341-9. Epub 2009 Mar 26., [PMID:19328185]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Hegedus T, Serohijos AW, Dokholyan NV, He L, Riordan JR
Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR.
J Mol Biol. 2008 May 16;378(5):1052-63. Epub 2008 Mar 26., [PMID:18423665]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Winter MC, Welsh MJ
Stimulation of CFTR activity by its phosphorylated R domain.
Nature. 1997 Sep 18;389(6648):294-6., [PMID:9305845]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wilkinson DJ, Strong TV, Mansoura MK, Wood DL, Smith SS, Collins FS, Dawson DC
CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain.
Am J Physiol. 1997 Jul;273(1 Pt 1):L127-33., [PMID:9252549]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Rich DP, Berger HA, Cheng SH, Travis SM, Saxena M, Smith AE, Welsh MJ
Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain.
J Biol Chem. 1993 Sep 25;268(27):20259-67., [PMID:7690753]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Chang XB, Tabcharani JA, Hou YX, Jensen TJ, Kartner N, Alon N, Hanrahan JW, Riordan JR
Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites.
J Biol Chem. 1993 May 25;268(15):11304-11., [PMID:7684377]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Billet A, Luo Y, Balghi H, Hanrahan JW
Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR).
J Biol Chem. 2013 Jul 26;288(30):21815-23. doi: 10.1074/jbc.M113.479360. Epub 2013 Jun 11., [PMID:23760269]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Luz S, Cihil KM, Brautigan DL, Amaral MD, Farinha CM, Swiatecka-Urban A
LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.
J Biol Chem. 2014 May 23;289(21):15080-93. doi: 10.1074/jbc.M114.563742. Epub 2014 Apr 11., [PMID:24727471]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Malik FA, Meissner A, Semenkov I, Molinski S, Pasyk S, Ahmadi S, Bui HH, Bear CE, Lidington D, Bolz SS
Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity.
PLoS One. 2015 Jun 16;10(6):e0130313. doi: 10.1371/journal.pone.0130313. eCollection 2015., [PMID:26079370]

Abstract [show]
Comments [show]
Sentences [show]