ABCC7 p.Gly551Ser
Admin's notes: | Class III (gating defect) Veit et al. |
ClinVar: |
c.1651G>A
,
p.Gly551Ser
D
, Pathogenic
c.1652G>A , p.Gly551Asp D , Pathogenic |
CF databases: |
c.1652G>A
,
p.Gly551Asp
D
, CF-causing ; CFTR1: This mutation has been found in six Caucasian CF chromosomes out of 155 eamined for a frequency of 4 %. It has not been found on any Black CF chromosomes. This mutation appears to be associated with a particular ten site haplotype shown on the following pages. We have not detected this mutation on any normal Caucasian chromosomes with similar haplotypes or other haplotypes.
c.1651G>A , p.Gly551Ser D , CF-causing ; CFTR1: This mutation can be detected using ASOs: normal 5' GAGTGGAGGTCAACG 3', mutant 5' GAGTGGAAGTCAACG 3' with a final wash at 42 degrees celsius in 40 mM NaHPO4, 1 mM EDTA, 0.5 % SDS for 15 minutes. Two patients were found to be homozygous for this mutation. Their parents are second cousins and each carries the G551S mutation. These patients are remarkable in that they have a mild disease without elevated Na+ levels. One patient had decreased lung function, Pseudomonas infections, chronic pancreatitis, clubbing, and is currently 49 years old. This mutation was not found in 363 non-[delta]F508 CF chromosomes, nor in over 700[delta]F508 chromosomes, nor in a small number of normal chromosomes. |
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (71%), E: D (95%), F: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: N (61%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
[hide] Novel pharmacologic therapies for cystic fibrosis. J Clin Invest. 1999 Feb;103(4):447-52. Zeitlin PL
Novel pharmacologic therapies for cystic fibrosis.
J Clin Invest. 1999 Feb;103(4):447-52., [PMID:10021451]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
125 These mutants sustain a reduced response to ATP-examples include S1255P, G551S, G1244E, and G1349D.
X
ABCC7 p.Gly551Ser 10021451:125:73
status: NEW[hide] Pharmacologic restoration of delta F508 CFTR-media... Kidney Int. 2000 Mar;57(3):832-7. Zeitlin PL
Pharmacologic restoration of delta F508 CFTR-mediated chloride current.
Kidney Int. 2000 Mar;57(3):832-7., [PMID:10720936]
Abstract [show]
Cystic fibrosis (CF) is an autosomal inherited disorder caused by over 800 different mutations in the CFTR gene. The most common mutation, delta F508, causes a trafficking arrest in the endoplasmic reticulum and the CFTR protein is degraded. Restoration of CFTR trafficking in vitro restores cAMP-mediated chloride transport at the cell surface. The hypothesis of this discussion is that the short chain fatty acids, butyrate and 4-phenylbutyrate, up-regulate mature CFTR at the plasma membrane. Evidence that these compounds regulate CFTR production and maturation in part through effects on molecular chaperones in CF cells in culture is discussed. The oral drug, 4-phenylbutyrate, was tested in a Phase I clinical trial in CF subjects and further trials are underway. Other new therapeutic approaches directed at different classes of mutations in CFTR are also discussed. Chemical and pharmacologic agents that regulate endogenous gene expression at different steps in the biosynthetic processing pathway of a membrane glycoprotein will be needed to comprehensively treat a complex inherited disorder like cystic fibrosis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
98 These mutants sus- ment of CF cells with 4-phenylbutyrate or low tempera- tain a reduced response to adenosine 5Ј-triphosphate ture to induce ⌬F508 trafficking to the plasma mem- (ATP); examples include S1255P, G551S, G1244E, and brane, allowed genistein to activate chloride transport G1349D.
X
ABCC7 p.Gly551Ser 10720936:98:224
status: NEW[hide] Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-33. Zielenski J
Genotype and phenotype in cystic fibrosis.
Respiration. 2000;67(2):117-33., [PMID:10773783]
Abstract [show]
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene which encodes a protein expressed in the apical membrane of exocrine epithelial cells. CFTR functions principally as a cAMP-induced chloride channel and appears capable of regulating other ion channels. Besides the most common mutation, DeltaF508, accounting for about 70% of CF chromosomes worldwide, more than 850 mutant alleles have been reported to the CF Genetic Analysis Consortium. These mutations affect CFTR through a variety of molecular mechanisms which can produce little or no functional CFTR at the apical membrane. This genotypic variation provides a rationale for phenotypic effects of the specific mutations. The extent to which various CFTR alleles contribute to clinical variation in CF is evaluated by genotype-phenotype studies. These demonstrated that the degree of correlation between CFTR genotype and CF phenotype varies between its clinical components and is highest for the pancreatic status and lowest for pulmonary disease. The poor correlation between CFTR genotype and severity of lung disease strongly suggests an influence of environmental and secondary genetic factors (CF modifiers). Several candidate genes related to innate and adaptive immune response have been implicated as pulmonary CF modifiers. In addition, the presence of a genetic CF modifier for meconium ileus has been demonstrated on human chromosome 19q13.2. The phenotypic spectrum associated with mutations in the CFTR gene extends beyond the classically defined CF. Besides patients with atypical CF, there are large numbers of so-called monosymptomatic diseases such as various forms of obstructive azoospermia, idiopathic pancreatitis or disseminated bronchiectasis associated with CFTR mutations uncharacteristic for CF. The composition, frequency and type of CFTR mutations/variants parallel the spectrum of CFTR-associated phenotypes, from classic CF to mild monosymptomatic presentations. Expansion of the spectrum of disease associated with the CFTR mutant genes creates a need for revision of the diagnostic criteria for CF and a dilemma for setting nosologic boundaries between CF and other diseases with CFTR etiology.
Comments [show]
None has been submitted yet.
No. Sentence Comment
152 There may be other specific mutations consistently associated with a mild lung presentation, like the G551S allele, but the small number of patients analyzed do not allow for a definite conclusion [55, 58].
X
ABCC7 p.Gly551Ser 10773783:152:102
status: NEW[hide] Spectrum of CFTR mutations in Mexican cystic fibro... Hum Genet. 2000 Mar;106(3):360-5. Orozco L, Velazquez R, Zielenski J, Tsui LC, Chavez M, Lezana JL, Saldana Y, Hernandez E, Carnevale A
Spectrum of CFTR mutations in Mexican cystic fibrosis patients: identification of five novel mutations (W1098C, 846delT, P750L, 4160insGGGG and 297-1G-->A).
Hum Genet. 2000 Mar;106(3):360-5., [PMID:10798368]
Abstract [show]
We have analyzed 97 CF unrelated Mexican families for mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Our initial screening for 12 selected CFTR mutations led to mutation detection in 56.66% of the tested chromosomes. In patients with at least one unknown mutation after preliminary screening, an extensive analysis of the CFTR gene by single stranded conformation polymorphism (SSCP) or by multiplex heteroduplex (mHET) analysis was performed. A total of 34 different mutations representing 74.58% of the CF chromosomes were identified, including five novel CFTR mutations: W1098C, P750L, 846delT, 4160insGGGG and 297-1G-->A. The level of detection of the CF mutations in Mexico is still lower than that observed in other populations with a relatively low frequency of the deltaF508 mutation, mainly from southern Europe. The CFTR gene analysis described here clearly demonstrated the high heterogeneity of our CF population, which could be explained by the complex ethnic composition of the Mexican population, in particular by the strong impact of the genetic pool from southern European countries.
Comments [show]
None has been submitted yet.
No. Sentence Comment
69 First, we tested these patients for 12 mutations selected for the following reasons: five are the most common mutations worldwide (∆F508, G542X, N1303K, G551D and R553X; CFGAC 1994); 362 Table 1 Frequency of the CFTR gene mutations in 97 (194 chromosomes) Mexican patients Mutation Number of Frequency affected alleles (%) ∆F508 79 40.72 G542X 12 6.18 ∆I507 5 2.57 S549N 5 2.57 N1303K 4 2.06 R75X 3 1.54 406-1G→A 3 1.54 I148T 3 1.54 2055del9→A 2 1.03 935delA 2 1.03 I506T 2 1.03 3199del6 2 1.03 2183AA→G 2 1.03 G551D 1 0.51 R553X 1 0.51 1924del7 1 0.51 G551S 1 0.51 1078delT 1 0.51 Y1092X 1 0.51 R117H 1 0.51 G85E 1 0.51 3849+10KbC→T 1 0.51 1716G→A 1 0.51 W1204X 1 0.51 W1098Ca 1 0.51 846delTa 1 0.51 P750La 1 0.51 V754M 1 0.51 R75Q 1 0.51 W1069X 1 0.51 L558S 1 0.51 4160insGGGGa 1 0.51 297-1G→Aa 1 0.51 H199Y 1 0.51 2869insG 0 0 R1162X 0 0 3120+1G→A 0 0 Total 34 145 74.58% aNovel mutations detected in this study Fig.1 Sequencing ladders showing the CFTR novel mutations.
X
ABCC7 p.Gly551Ser 10798368:69:595
status: NEW[hide] Future pharmacological treatment of cystic fibrosi... Respiration. 2000;67(4):351-7. Zeitlin PL
Future pharmacological treatment of cystic fibrosis.
Respiration. 2000;67(4):351-7., [PMID:10940786]
Abstract [show]
Cystic fibrosis (CF) is an autosomal recessive disorder that is caused by over 850 different mutations in the CF gene. It is useful to group these mutations according to the defect that results in the CFTR mRNA or protein. New pharmacological treatments targeted towards specific mutations that are relatively common are being developed. Class I mutations do not produce CFTR protein because of a premature stop signal in the CFTR DNA. These null mutations can be corrected by certain aminoglycosides which cause the aberrant stop signal to be skipped. Mutations leading to a CFTR protein that attains an unstable structure shortly after translation in the endoplasmic reticulum form class II. Class II mutations can be restored to the protein trafficking pathway by manipulation of chaperone protein/CFTR interactions with chemical chaperones or drugs that affect gene regulation such as the butyrates. Production of a CFTR with reduced Cl(-) transport on the basis of abnormal regulation of the chloride channel is the basis of class III. Genistein can overcome this block in regulation. Mutations that partially reduce chloride conductance through CFTR (class IV) can be stimulated with milrinone, which is a phosphodiesterase inhibitor. Finally, mutations that lead to a severe reduction in normal CFTR protein form class V. Increased levels of CFTR could be generated with the butyrates or supplemented with gene therapy. Although most of the reported mutations in CFTR are rare and unclassified, it may be possible to use genotype-phenotype correlations to determine the best approach.
Comments [show]
None has been submitted yet.
No. Sentence Comment
22 Examples of CFTR mutations organized by classification of the defect in CFTR biosynthesis Type Genotype Phenotype Defect Cell diagram Drugs that may improve phenotype G542X 621+1 G → T 3905insT W1282X R553X 1717-1 G → A PI no CFTR protein no cell surface chloride transport gentamicin G418 Class II [64] 'F508 N1303K (P574H)a (A455E)a PI defective CFTR processing defective CFTR trafficking no cell surface chloride transport chemical chaperones CPX phenylbutyrate deoxyspergualin Class III [64] G551D G551S PI defective chloride channel regulation reduced or absent cell surface chloride transport genistein pyrophosphate Class IV [64, 66] R117H R334W G314E R347P ('F508)a P574H PS reduced chloride conductance reduced levels of cell surface chloride transport genistein milrinone phenylbutyrate Class V [64] 3849+10 kb C → T 2789+5 G → A 3272-26 A → G A455E 3120+1 G → A 1811+1.6 kb A → G 5Tb PS normal CFTR channels reduced numbers of normal CFTR reduced cell surface chloride transport genistein milrinone phenylbutyrate a Some mutants have features of more than one class of defect.
X
ABCC7 p.Gly551Ser 10940786:22:516
status: NEW100 Whereas G551D is severely defective, G551S is a milder mutant.
X
ABCC7 p.Gly551Ser 10940786:100:37
status: NEW104 Interestingly, inorganic pyrophosphate stimulated G551S and R117H, a class IV mutation.
X
ABCC7 p.Gly551Ser 10940786:104:50
status: NEW[hide] Type I, II, III, IV, and V cystic fibrosis transme... Curr Opin Pulm Med. 2000 Nov;6(6):521-9. Choo-Kang LR, Zeitlin PL
Type I, II, III, IV, and V cystic fibrosis transmembrane conductance regulator defects and opportunities for therapy.
Curr Opin Pulm Med. 2000 Nov;6(6):521-9., [PMID:11100963]
Abstract [show]
Recent advances in cellular and molecular biology have furthered the understanding of several genetic diseases, including cystic fibrosis. Mutations that cause cystic fibrosis are now understood in terms of the specific molecular consequences to the cystic fibrosis transmembrane conductance regulator (CFTR) protein expression and function. This knowledge has spawned interest in the development of therapies aimed directly at correcting the defective CFTR itself. In this article, we review the molecular defect underlying each recognized class of CFTR mutation and the potential therapies currently under investigation. Opportunities for protein-repair therapy appear to be vast and range from naturally occurring compounds, such as isoflavonoids, to pharmaceuticals already in clinical use, including aminoglycoside antibiotics, butyrate analogues, phosphodiesterase inhibitors, and adenosine nucleotides. Future therapies may resemble designer compounds like benzo[c]quinoliziniums or take the form of small peptide replacements. Given the heterogeneity and progressive nature of cystic fibrosis, however, optimal benefit from protein-repair therapy will most likely require the initiation of combined therapies early in the course of disease to avoid irreparable organ damage.
Comments [show]
None has been submitted yet.
No. Sentence Comment
92 These mutants, including S1255P, G551S, G1244E, and G1349D, sustain a reduced response to ATP.
X
ABCC7 p.Gly551Ser 11100963:92:33
status: NEW[hide] Aberrant CFTR-dependent HCO3- transport in mutatio... Nature. 2001 Mar 1;410(6824):94-7. Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S
Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis.
Nature. 2001 Mar 1;410(6824):94-7., 2001-03-01 [PMID:11242048]
Abstract [show]
Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Initially, Cl- conductance in the sweat duct was discovered to be impaired in CF, a finding that has been extended to all CFTR-expressing cells. Subsequent cloning of the gene showed that CFTR functions as a cyclic-AMP-regulated Cl- channel; and some CF-causing mutations inhibit CFTR Cl- channel activity. The identification of additional CF-causing mutants with normal Cl- channel activity indicates, however, that other CFTR-dependent processes contribute to the disease. Indeed, CFTR regulates other transporters, including Cl(-)-coupled HCO3- transport. Alkaline fluids are secreted by normal tissues, whereas acidic fluids are secreted by mutant CFTR-expressing tissues, indicating the importance of this activity. HCO3- and pH affect mucin viscosity and bacterial binding. We have examined Cl(-)-coupled HCO3- transport by CFTR mutants that retain substantial or normal Cl- channel activity. Here we show that mutants reported to be associated with CF with pancreatic insufficiency do not support HCO3- transport, and those associated with pancreatic sufficiency show reduced HCO3- transport. Our findings demonstrate the importance of HCO3- transport in the function of secretory epithelia and in CF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
50 Two sets of particularly interesting mutants are G551D and G551S and H620Q and A800G.
X
ABCC7 p.Gly551Ser 11242048:50:59
status: NEW51 G551S, which is associated with CF with pancreatic suf®ciency, had no effect on Cl-transport but reduced HCO3 transport by 59% (Fig. 2).
X
ABCC7 p.Gly551Ser 11242048:51:0
status: NEW66 Notably, although a few of these mutants exhibit altered letters to nature NATURE |VOL 410 |1 MARCH 2001 |www.nature.com 95 NO3 - Forskolin 5 µM NO3 - Forskolin 5 µM a G551S b G551D 10mMCl- 200 s NO3 - NO3 - Forskolin 5 µM Forskolin 5 µM f H620Q g A800G h H620Q Forskolin 5 µMCl- free Cl- freeCl- free Cl-free c G551S d G551D Forskolin 5 µM Forskolin 5 µM 0.25pHunits 250 s e A800G 0 0.25 0.50 0.75 1.00 H620Q A800G G551D G551S j WT Forskolin 5 µM 0 0.25 0.50 0.75 1.00 H620Q A800G G551D G551S WT i [Cl- ]change(mMs-1 )HCO3 -transport (∆pH+ min-1 ) Figure 2 cAMP-stimulated Cl- and HCO3 transport by CFTR mutants associated with a severe or a mild form of CF.
X
ABCC7 p.Gly551Ser 11242048:66:178
status: NEWX
ABCC7 p.Gly551Ser 11242048:66:337
status: NEWX
ABCC7 p.Gly551Ser 11242048:66:338
status: NEWX
ABCC7 p.Gly551Ser 11242048:66:457
status: NEW186 letters to nature 96 NATURE |VOL 410 |1 MARCH 2001 |www.nature.com HCO3 -/Cl- transportratio 0 0.25 0.50 0.75 1.00 WT I148T G178R R297Q G551D H620Q G970R A1067T G1244E S1255P G1349D E193K G551S A800G H949Y R1070Q Pancreatic insufficient Pancreatic sufficientD648V N CI148T G178R E193K R297Q R117H A1067T R1070Q G1244E S1255P G1349D NBD2 RD H949Y G970R CL4CL3CL2CL1 NBD1 G551D G551S H620Q D648V A800G Figure 3 The HCO3:Cl-transport ratio of CFTR mutants associated with CF.
X
ABCC7 p.Gly551Ser 11242048:186:188
status: NEWX
ABCC7 p.Gly551Ser 11242048:186:376
status: NEW[hide] XV-2c/KM-19 haplotype analysis of cystic fibrosis ... Am J Med Genet. 2001 Aug 15;102(3):277-81. Orozco L, Gonzalez L, Chavez M, Velazquez R, Lezana JL, Saldana Y, Villarreal T, Carnevale A
XV-2c/KM-19 haplotype analysis of cystic fibrosis mutations in Mexican patients.
Am J Med Genet. 2001 Aug 15;102(3):277-81., 2001-08-15 [PMID:11484207]
Abstract [show]
We analyzed 97 unrelated Mexican cystic fibrosis (CF) patients and their first-degree relatives to study the association of XV2C/TaqI/KM19/PstI haplotypes with CF mutations in this population. Haplotype phases could be established in 148 CF and 110 normal chromosomes, and haplotype distributions of normal and CF chromosomes differed significantly (P < 0.001). DeltaF508 and G542X mutations accounted for 56% of CF chromosomes and were found to be associated with haplotype B in 97.2% and 72.7% of chromosomes, respectively. The haplotype distribution of CF chromosomes carrying other rare and unknown mutations was similar to that of normal chromosomes (P > 0.05), haplotypes A and C being the most frequent. This is in accordance with the extensive heterogeneity and the spectrum of mutations reported in Mexican CF patients. We also report the haplotype distribution of all informative chromosomes bearing rare mutations; some were found to be associated with previously reported haplotypes, whereas others were found on different haplotypes. Recombination or recurrence of mutations may explain these different associations, although other intragenic markers must be used to better understand the origin and dispersion of CF mutations in our country. XK haplotype analysis allowed carrier detection among sibs in 24.3% of families, showing that this method may be useful for carrier detection in populations with high allelic heterogeneity.
Comments [show]
None has been submitted yet.
No. Sentence Comment
65 Distribution of XK Haplotype on Chromosomes Bearing Uncommon Cystic Fibrosis (CF) Mutations A B C D S549N 4/4 DI507 3/3 N1303K 3/3 2055 del9!A 2/2 I148T 1/1 406-1G!A 1/1 R75X 1/1 I506T 1/1 935delA 1/1 2183AA!G 1/1 1924del7 1/1 G551S 1/1 1078delT 1/1 R117H 1/1 384910KbC!T 1/1 1716G!A 1/1 W1204X 1/1 W1098C 1/1 846delT 1/1 R75Q 1/1 W1069X 1/1 L558S 1/1 4160insGGGG 1/1 297-1G!A 1/1 Fig.
X
ABCC7 p.Gly551Ser 11484207:65:227
status: NEW[hide] [Cystic fibrosis and normal sweat chloride values:... Rev Mal Respir. 2001 Sep;18(4 Pt 1):443-5. Lebecque P, Leal T, Godding V
[Cystic fibrosis and normal sweat chloride values: a case-report].
Rev Mal Respir. 2001 Sep;18(4 Pt 1):443-5., [PMID:11547256]
Abstract [show]
In a suggestive context, normal sweat chloride values (<60 mmol/L) do not always suffice to exclude the diagnosis of CF.CASE-REPORT: A 19-year-old female presented with a diagnosis of bronchiectasis. Her past medical history was noteworthy for the onset of respiratory symptoms in the infancy, colonization of the respiratory tract by Pseudomonas aeruginosa for three years and previous treatment for allergic bronchopulmonary aspergillosis. She was heterozygote for the DeltaF 508 mutation of the CFTR gene. Sweat chloride values were repeatedly normal, ranging from 25 to 46 mmol/L. The diagnosis of CF was confirmed by the identification of a second CFTR mutation (D1152H) and the demonstration of typical nasal potential.CONCLUSION: It is now estimated that approximately 2% of CF patients will present an "atypical" phenotype with sweat chloride values<60 mmol/L. For these patients, the diagnosis can be confirmed by the identification of a CF-causing mutation in each CFTR allele or in vivo demonstration of CFTR dysfunction by nasal potential difference study.
Comments [show]
None has been submitted yet.
No. Sentence Comment
73 Dans des situations d`hétérozygotie composite, la présence de certaines d`entre elles a pu être associée de manière occasionnelle ou parfois plus consistante avec un taux de chlorure dans la sueur inférieur à 60 voire même (dans de très rares cas) 30 mmol/L. Dans ce singulier petit groupe, figurent notamment les mutations 3 849 + 10kb C→T, A455E, R117H, , R347H, G551S, D1152H.
X
ABCC7 p.Gly551Ser 11547256:73:422
status: NEW[hide] Mutations of the cystic fibrosis gene and intermed... Am J Respir Crit Care Med. 2002 Mar 15;165(6):757-61. Lebecque P, Leal T, De Boeck C, Jaspers M, Cuppens H, Cassiman JJ
Mutations of the cystic fibrosis gene and intermediate sweat chloride levels in children.
Am J Respir Crit Care Med. 2002 Mar 15;165(6):757-61., 2002-03-15 [PMID:11897640]
Abstract [show]
The incidence of mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in children with intermediate sweat chloride levels is unknown. The results of 2,349 sweat tests performed at two Belgian university hospitals were reviewed. Intermediate chloride concentrations were observed in 98 subjects (4.2%), 68 being younger than 18 years of age. Forty-three children could be traced and their parents agreed to take part in the study. Exhaustive analysis of the CFTR gene disclosed a total of 24 putative mutations (27.9%). Three subjects were found to carry only one CFTR mutation, whereas 10 harbored one mutation on both CFTR genes. These 10 children were investigated in detail. At the time of writing, the mean age (+/-SD) of this group is 8.9 years (+/-4.2 years). Nine children are pancreatic sufficient. Three have been asymptomatic for more than two years, whereas the others display, to different degrees, clinical features suggestive of CF. The sweat chloride concentration is slightly higher in this group (39.4 +/- 5.4 mM) than in subjects without CFTR mutation (35.2 +/- 4.4 mM, p < 0.05). The nasal potential difference was abnormal in five of the nine subjects tested. In this study, 23% of children displaying intermediate sweat chloride levels were found to carry a putative mutation on both CFTR genes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 C→T (6-9), R347H (12), G551S (13), D1152H (14), R117H (15, 16), and R117C (17) mutations.
X
ABCC7 p.Gly551Ser 11897640:77:30
status: NEW[hide] Towards the pharmacogenomics of cystic fibrosis. Pharmacogenomics. 2002 Jan;3(1):75-87. Sangiuolo F, D'Apice MR, Bruscia E, Lucidi V, Novelli G
Towards the pharmacogenomics of cystic fibrosis.
Pharmacogenomics. 2002 Jan;3(1):75-87., [PMID:11966405]
Abstract [show]
Cystic fibrosis (CF) is the most common lethal recessive genetic disease affecting children in Europe and the US. CF is a multiorgan disease and may present a variety of clinical symptoms, like chronic obstructive lung disease, exocrine pancreatic insufficiency (PI) and elevated sweat chloride concentration. CF mutations have also been found in other related clinical diseases such as congenital bilateral absence of the vas deferens (CBAVD), disseminated bronchiectasis and chronic pancreatitis. These clinical overlaps pose etiopathogenetic, diagnostic and therapeutic questions. Despite stunning advances in genomic technologies and drug discovery, drug therapy often improves disease symptoms but does not cure the disease. One of the main causes of this failure in CF cure may be attributable to genetic variability and to the scarce knowledge of CF biochemistry. Therefore, knowing the genotype of a patient might help improve drug efficacy, reduce toxicity and suggests innovative genomic-based therapy approaches.
Comments [show]
None has been submitted yet.
No. Sentence Comment
113 G551D G551S PI Defective chloride channel Regulation Reduced or absent cell surface chloride transport Genistein Pyrophosphate UTP INS36217 Moli1901 Class IV Mutations located within membrane spanning domain, implicated in forming the pore of the channel.
X
ABCC7 p.Gly551Ser 11966405:113:6
status: NEW[hide] Cystic fibrosis: a worldwide analysis of CFTR muta... Hum Mutat. 2002 Jun;19(6):575-606. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM
Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening.
Hum Mutat. 2002 Jun;19(6):575-606., [PMID:12007216]
Abstract [show]
Although there have been numerous reports from around the world of mutations in the gene of chromosome 7 known as CFTR (cystic fibrosis transmembrane conductance regulator), little attention has been given to integrating these mutant alleles into a global understanding of the population molecular genetics associated with cystic fibrosis (CF). We determined the distribution of CFTR mutations in as many regions throughout the world as possible in an effort designed to: 1) increase our understanding of ancestry-genotype relationships, 2) compare mutational arrays with disease incidence, and 3) gain insight for decisions regarding screening program enhancement through CFTR multi-mutational analyses. Information on all mutations that have been published since the identification and cloning of the CFTR gene's most common allele, DeltaF508 (or F508del), was reviewed and integrated into a centralized database. The data were then sorted and regional CFTR arrays were determined using mutations that appeared in a given region with a frequency of 0.5% or greater. Final analyses were based on 72,431 CF chromosomes, using data compiled from over 100 original papers, and over 80 regions from around the world, including all nations where CF has been studied using analytical molecular genetics. Initial results confirmed wide mutational heterogeneity throughout the world; however, characterization of the most common mutations across most populations was possible. We also examined CF incidence, DeltaF508 frequency, and regional mutational heterogeneity in a subset of populations. Data for these analyses were filtered for reliability and methodological strength before being incorporated into the final analysis. Statistical assessment of these variables revealed that there is a significant positive correlation between DeltaF508 frequency and the CF incidence levels of regional populations. Regional analyses were also performed to search for trends in the distribution of CFTR mutations across migrant and related populations; this led to clarification of ancestry-genotype patterns that can be used to design CFTR multi-mutation panels for CF screening programs. From comprehensive assessment of these data, we offer recommendations that multiple CFTR alleles should eventually be included to increase the sensitivity of newborn screening programs employing two-tier testing with trypsinogen and DNA analysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
113 Mexico ∆F508 (41.6%) G551S (0.5%) 75.5 57.0 35 374/194 Orozco et al.[1993]; Villalobos- G542X (5.6%) 1078delT (0.5%) Torres et al. [1997]; Liang et al. ∆I507 (2.5%) Y1092X (0.5%) [1998]; Orozco et al. [2000] S549N (1.9%) R117H (0.5%) N1303K (1.7%) G85E (0.5%) R75X (1.5%) 1716G→A (0.5%) 406-1G→A (1.5%) W1204X (0.5%) I148T (1.5%) W1098C (0.5%) 3849+10KbC→T (1.5%) 846delT (0.5%) 621+1G→T (1.2%) P750L (0.5%) 2055del9→A (1.0%) V754M (0.5%) 935delA (1.0%) R75Q (0.5%) I506T (1.0) W1096X (0.5%) 3199del6 (1.0%) L558S (0.5%) 2183AA→G (1.0%) 4160insGGGG (0.5%) G551D (0.5%) 297-1G→A (0.5%) R553X (0.5%) H199Y (0.5%) 1924del7 (0.5%) United States ∆F508 (68.6%) R553X (0.9%) 79.7 63.5 10 25048 Cystic Fibrosis Foundation (total) G542X (2.4%) 621+1G→T (0.9%) [1998] G551D (2.1%) 1717-1G→A (0.7%) W1282X (1.4%) 3849+10KbC→T (0.7%) N1303K (1.3%) R117H (0.7%) United States ∆F508 (48.0%) S1255X (1.4%) 77.3 59.8 16 160/148 Carles et al. [1996]; Macek et al. (African 3120+1G→A (12.2%) 444delA (0.7%) [1997]; Dörk et al. [1998]; American) 2307insA (2.0%) R334W (0.7%) Friedman et al. [1998] A559T (2.0%) ∆I507 (0.7%) R553X (2.0%) 1717-1G→A (0.7%) ∆F311 (2.0%) G542X (0.7%) G480C (1.4%) S549N (0.7%) 405+3A→C (1.4%) G551D (0.7%) United States 1) L1093P - - 1 2 Yee et al. [2000] (Cherokee) United States Non-French: French: Non- Non- Non- Non- Bayleran et al. [1996] (Maine) ∆F508 (82.0%) ∆F508 (58%) French: French: French: French: G542X (2.6%) 711+1G→T (8.3%) 95.3 90.8 11 191 G551D (2.6%) I148T (4.2%) French: French: French: French: N1303K (2.1%) A455E (4.2%) 80.3 64.5 8 72 R560T (1.0%) 1717-1G→A (1.4%) Total: 621+1G→T (1.0%) G85E (1.4%) 263 711+1G→T (1.0%) 621+1G→T (1.4%) R117H (1.0%) Y1092X (1.4%) 1717-1G→A (1.0%) G85E (0.5%) W1282X (0.5%) TABLE 1. Continued. Estimated Projected detection of Number of Number of Country/ allele two CFTR mutations chromosomes Region Mutation array detectiona mutationsb includedc (max/min)d Reference WORLDWIDEANALYSISOFCFTRMUTATIONS589 United States ∆F508 (46.0%) R334W (1.6%) 58.5 34.2 7 129 Grebe et al. [1994] (SW Hispanic) G542X (5.4%) W1282X (0.8%) 3849+10KbC→T (2.3%) R553X (0.8%) R1162X (1.6%) United States 1) R1162X - - 3 17 Mercier et al. [1992] (SW Native 2) D648V American) 3) G542X United States 1) R1162X 3) G542X - - 4 16 Mercier et al. [1994] (Zuni Pueblo) 2) 3849+10KbC®T 4) D648V Venezuela ∆F508 (29.6%) G542X (3.7%) 33.3 11.1 2 54 Restrepo et al. [2000] Other Regions Australia ∆F508 (76.9%) 621+1G→T (1.1%) 88.7 78.7 8 761/464 CFGAC [1994] G551D (4.5%) N1303K (0.9%) G542X (2.8%) W1282X (0.6%) R553X (1.3%) R117H (0.6%) East Asia 1) 1898+1G®T 2) 1898+5G®T - - 2 28 Suwanjutha et al. [1998] Hutterite 1) M1101K (69.0%) 2) DF508 (31.0%) - - 2 32 Zielenski et al. [1993] Brethren New Zealand ∆F508 (78.0%) N1303K (1.9%) 87.4 76.4 5 636 CFGAC [1994] G551D (4.4%) 621+1G→T (1.1%) G542X (2.0%) *This table presents the mutation panels for all regions investigated in this study.
X
ABCC7 p.Gly551Ser 12007216:113:28
status: NEW[hide] Splice mutation 1811+1.6kbA>G causes severe cystic... J Med Genet. 2002 Nov;39(11):e73. Reboul MP, Bieth E, Fayon M, Biteau N, Barbier R, Dromer C, Desgeorges M, Claustres M, Bremont F, Lacombe D, Iron A
Splice mutation 1811+1.6kbA>G causes severe cystic fibrosis with pancreatic insufficiency: report of 11 compound heterozygous and two homozygous patients.
J Med Genet. 2002 Nov;39(11):e73., [PMID:12414835]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
160 Some of them are always responsible for a unique phenotype that can be either CF-PI (for instance, the case of N1303K in class II, G551D in class III, and R1066C in class IV), or CF-PS (for instance, the case of G551S in class III) or CBVAD for D1152H (class IV).
X
ABCC7 p.Gly551Ser 12414835:160:212
status: NEW[hide] CFTR genotypes in patients with normal or borderli... Hum Mutat. 2003 Oct;22(4):340. Feldmann D, Couderc R, Audrezet MP, Ferec C, Bienvenu T, Desgeorges M, Claustres M, Mittre H, Blayau M, Bozon D, Malinge MC, Monnier N, Bonnefont JP, Iron A, Bieth E, Dumur V, Clavel C, Cazeneuve C, Girodon E
CFTR genotypes in patients with normal or borderline sweat chloride levels.
Hum Mutat. 2003 Oct;22(4):340., [PMID:12955726]
Abstract [show]
In recent years, some patients bearing "atypical" forms of cystic fibrosis (CF) with normal sweat chloride concentrations have been described. To identify the spectrum of mutant combinations causing such atypical CF, we collected the results of CFTR (ABCC7) mutation analysis from 15 laboratories. Thirty patients with one or more typical symptoms of the disease associated with normal or borderline sweat chloride levels and bearing two CFTR mutations were selected. Phenotypes and genotypes of these 30 patients are described. A total of 18 different CFTR mutations were observed in the 60 chromosomes analysed. F508del was present in 31.6 % of the mutated chromosomes and 3849+10kbC>T in 13.3 %. R117H, D1152H, L206W, 3272-26A>G, S1235R, G149R, R1070W, S945L, and the poly-T tract variation commonly called IVS8-5T were also observed. The relative frequency of CFTR mutations clearly differed from that observed in typical CF patients or in CBAVD patients with the same ethnic origin. A mild genotype with one or two mild or variable mutations was observed in all the patients. These findings improve our understanding of the distribution of CFTR alleles in CF with normal or borderline sweat chloride concentrations and will facilitate the development of more sensitive CFTR mutation screening.
Comments [show]
None has been submitted yet.
No. Sentence Comment
18 Other mutations that might be associated with intermediate (40-60 mmol/L) or normal sweat chloride values have been reported: R117H [Kerem et al., 1997; Massie et al., 2000], G551S [Strong et al., 1991], A455E [Gan et al., 1995], L206W [Desgeoges et al., 1995], D1152H [Feldmann et al., 1995; Lebecque et al., 2001].
X
ABCC7 p.Gly551Ser 12955726:18:175
status: NEW[hide] Emerging drug treatments for cystic fibrosis. Expert Opin Emerg Drugs. 2003 Nov;8(2):523-35. Zeitlin PL
Emerging drug treatments for cystic fibrosis.
Expert Opin Emerg Drugs. 2003 Nov;8(2):523-35., [PMID:14662004]
Abstract [show]
Cystic fibrosis (CF) is one of the most common life-shortening inherited disorders. Mutations in the cystic fibrosis transmembrane regulator (CFTR) gene disrupt the localisation and function of the cAMP-mediated chloride channel. Most of the morbidity and mortality arise from the lung disease which is characterised by excessive inflammation and chronic infection. Research into the mechanisms of wild-type and mutant CFTR biogenesis suggest that multiple drug targets can be identified. This review explores the current understanding of the nature of the different mutant CFTR forms and the potential for repair of the chloride channel defect. High-throughput screening, pharmacogenomics and proteomics bring recent technological advances to the field.
Comments [show]
None has been submitted yet.
No. Sentence Comment
60 This group includes G551D and G551S.
X
ABCC7 p.Gly551Ser 14662004:60:30
status: NEW88 Class of mutation Molecular mechanism Pancreatic status (if known) Examples 1 No CFTR protein synthesis PI W1282X, G542X, R553X, 621 + 1 G→T, 1717-1 G→A, 3905insT, 394delTT 2 Abnormal CFTR processing and trafficking PI ∆F508, N1303K, P574H 3 Defective CFTR regulation (normal trafficking) PI G551D, G551S, G1349D, S1255P 4 Decreased CFTR chloride conductance PS R117H, R334W, R347P, P547H 5 Reduced synthesis and trafficking of normal CFTR PS A455E, 3849 + 10kb C→T, (5T) 6A Reduced apical stability PI S1455X, Q1412S, 4326delTC, 4279insA 6B Defective regulation of other ion channels PI G551D Note that the G551D is placed in Class 3 for defective regulation and Class 6B for defective regulation of the outwardly rectifying chloride channel.
X
ABCC7 p.Gly551Ser 14662004:88:320
status: NEW[hide] Bicarbonate secretion: it takes two to tango. Nat Cell Biol. 2004 Apr;6(4):292-4. Gray MA
Bicarbonate secretion: it takes two to tango.
Nat Cell Biol. 2004 Apr;6(4):292-4., [PMID:15057243]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
82 However, chloride channel activity alone is not necessarily sufficient to activate chloride-bicarbonate exchange: some CFTR mutations (for example, G551S) display near normal chloride N NPlasma membrane ETKF DTRL NBD1 NBD2 PKA phosphorylation SLC26 CFTR STAS PDZ binding protein C C C R N NPlasma membrane ETKF DTRL NBD1 NBD2 SLC26 CFTR STAS PDZ binding protein C R P P Figure 1 Interactions between CFTR and SLC26 transporters. CFTR and SLC26 are envisaged to interact through binding of their respective R and STAS domains, a process that is enhanced by PKA (protein kinase A)-mediated phosphorylation of the CFTR R domain1 (not shown).
X
ABCC7 p.Gly551Ser 15057243:82:148
status: NEW[hide] Relation of sweat chloride concentration to severi... Pediatr Pulmonol. 2004 Sep;38(3):204-9. Davis PB, Schluchter MD, Konstan MW
Relation of sweat chloride concentration to severity of lung disease in cystic fibrosis.
Pediatr Pulmonol. 2004 Sep;38(3):204-9., [PMID:15274098]
Abstract [show]
In cystic fibrosis (CF), sweat chloride concentration has been proposed as an index of CFTR function for testing systemic drugs designed to activate mutant CFTR. This suggestion arises from the assumption that greater residual CFTR function should lead to a lower sweat chloride concentration, as well as protection against severe lung disease. This logic gives rise to the hypothesis that the lower the sweat chloride concentration, the less severe the lung disease. In order to test this hypothesis, we studied 230 patients homozygous for the DeltaF508 allele, and 34 patients with at least one allele associated with pancreatic sufficiency, born since January 1, 1955, who have pulmonary function data and sweat chloride concentrations recorded in our CF center database, and no culture positive for B. cepacia. We calculated a severity index for pulmonary disease, using an approach which takes into account all available pulmonary function data as well as the patient's current age and survival status. Patients with alleles associated with pancreatic sufficiency had significantly better survival (P = 0.0083), lower sweat chloride concentration (81.4 +/- 23.8 vs. 103.2 +/- 14.2 mEq/l, P < 0.0001), slower rate of decline of FEV(1) % predicted (-0.75 +/- 0.34 vs. -2.34 +/- 0.17% predicted per year), and a better severity index than patients homozygous for the DeltaF508 allele (median 73rd percentile vs. median 55th percentile, P = 0.0004). However, the sweat chloride concentration did not correlate with the severity index, either in the population as a whole, or in the population of patients with alleles associated with pancreatic sufficiency, who are thought to have some residual CFTR function. These data suggest that, by itself, sweat chloride concentration does not necessarily predict a milder pulmonary course in patients with cystic fibrosis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
27 T; G91R; E92K; P205S; G551S; Y563N; and P574H.23,24 Note that there are 36 mild alleles in 34 subjects, because two subjects had both the 3848 þ 10 kb C !
X
ABCC7 p.Gly551Ser 15274098:27:22
status: NEW[hide] Use of fecal elastase-1 to classify pancreatic sta... J Pediatr. 2004 Sep;145(3):322-6. Borowitz D, Baker SS, Duffy L, Baker RD, Fitzpatrick L, Gyamfi J, Jarembek K
Use of fecal elastase-1 to classify pancreatic status in patients with cystic fibrosis.
J Pediatr. 2004 Sep;145(3):322-6., [PMID:15343184]
Abstract [show]
OBJECTIVE: To test the hypothesis that some patients with cystic fibrosis (CF) are misclassified as pancreatic insufficient, using fecal elastase-1 (FE-1) to define pancreatic status. STUDY DESIGN: Subjects with CF at 33 CF centers filled out questionnaires and submitted a stool specimen that was analyzed for FE-1. Subjects taking pancreatic enzyme supplements (PES) were asked to discontinue them and perform a 3-day fecal fat balance study if their FE-1 was >200 microg/g stool and they had never had pancreatitis. RESULTS: The median value for FE-1 in 1215 subjects was 0 microg/g stool (range, 0-867). There was a significant difference between patients who had been prescribed PES (n=1131) and those who had FE-1 <200 microg/g stool (n=1074; P<.0001). Sixty-seven subjects met criteria for discontinuation of PES. The mean coefficient of fat absorption for these subjects was 96.1%. CONCLUSIONS: FE-1 is an accurate, easily obtained screening test to classify pancreatic status in patients with CF. This information is important for prognostication, treatment, and to avoid misclassification in clinical research. Measurement of FE-1 should become a standard of care for patients with CF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
116 FE-1 values in subjects with CFTR mutations associated with pancreatic sufficiency11 N Mean (mg/g stool) Median (mg/g stool) Range (mg/g stool) Subjects with at least one PS allele* FE-1 >200 mg/g stool 16 584 582.9 349-773 FE-1 <200 mg/g stool 5 64.4 74.8 0-125 Subjects with at least one PS variable alleley FE-1>200 mg/g stool 29 496.2 493.6 224-798 FE-1 <200 mg/g stool 13 76.1 65.9 0-187 *Pancreatic sufficient dominant CF alleles G551S R117H R347H P574H R334W R352Q T3381 yVariable pancreatic sufficient CF mutations G85E 3849 + 10 kb C fi T R347P 2789 + 5G fi A A455E In summary, FE-1 is an accurate, easily obtained screening test to classify patients with CF as PI or PS.
X
ABCC7 p.Gly551Ser 15343184:116:436
status: NEW[hide] Cystic fibrosis: an overview. J Clin Gastroenterol. 2005 Apr;39(4):307-17. Turcios NL
Cystic fibrosis: an overview.
J Clin Gastroenterol. 2005 Apr;39(4):307-17., [PMID:15758625]
Abstract [show]
Cystic fibrosis (CF) is one of the most common inherited disorders of white populations. The isolation and cloning of the gene in CF that encodes the production of a transport protein that acts as an apical membrane chloride channel, termed cystic fibrosis transmembrane conductance regulator (CFTR), have improved our understanding of the disorder's pathophysiology and has aided diagnosis, but has also revealed the disease's complexity. Gene replacement therapy is still far from being used in patients with CF, mostly because of difficulties in targeting the appropriate cells. Life expectancy of patients with this disorder has greatly improved over past decades because of better symptomatic treatment strategies. This article summarizes advances in understanding and treatment of CF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
55 Pancreatic Sufficient CF Mutations Dominant Pancreatic-Sufficient Variable Pancreatic-Sufficient G551S G85E P574H R347P R117H 3849 + 10kb C !
X
ABCC7 p.Gly551Ser 15758625:55:97
status: NEW[hide] Two-tiered immunoreactive trypsinogen-based newbor... J Pediatr. 2005 Sep;147(3 Suppl):S83-8. Sontag MK, Hammond KB, Zielenski J, Wagener JS, Accurso FJ
Two-tiered immunoreactive trypsinogen-based newborn screening for cystic fibrosis in Colorado: screening efficacy and diagnostic outcomes.
J Pediatr. 2005 Sep;147(3 Suppl):S83-8., [PMID:16202790]
Abstract [show]
OBJECTIVE: To examine immunoreactive trypsinogen (IRT)-based screening for cystic fibrosis (CF) for recall rate, genotype distribution, and "borderline" sweat test results. STUDY DESIGN: CF newborn screening in Colorado began in 1982, and >1,153,000 infants were screened through 2002 with an IRT-based screen (IRT/IRT). RESULTS: We have identified 313 infants with CF, giving an overall incidence of 1 in 3684 and a Hispanic incidence of 1 in 6495. Fifty-five infants with meconium ileus (17.6%) were excluded from analysis. Fourteen infants with false-negative results were identified (5.4%). The average recall rate was 0.6%, with a positive predictive value of 4.7%. Ninety-three percent of the infants had at least 1 DeltaF508 mutation, and 98% of the infants had at least 1 mutation from the American College of Medical Genetics recommended panel. Six infants had hypertrypsinogenemia and borderline results on sweat tests (30-60 mmol/L). Increased variability in sweat chloride levels were seen in these infants compared with infants with homozygous DeltaF508. Three children with initial borderline results on sweat tests had CF diagnosed. CONCLUSIONS: The recall and false-negative rates of our IRT/IRT CF screening program are reported. Additionally, genotypes of the patients identified mirror the CF population genotypes, reflecting similar disease severity in the screened population. Finally, infants with persistent hypertrypsinogenemia and borderline sweat test results need long-term follow-up.
Comments [show]
None has been submitted yet.
No. Sentence Comment
86 The pancreatic sufficient mutations identified were 18981 5G>T, 278915G>A, A455E, G551S, G85E, I336K, P67L, R117C, R117H, R334W, R347P.
X
ABCC7 p.Gly551Ser 16202790:86:82
status: NEW[hide] The relevance of sweat testing for the diagnosis o... Clin Biochem Rev. 2005 Nov;26(4):135-53. Mishra A, Greaves R, Massie J
The relevance of sweat testing for the diagnosis of cystic fibrosis in the genomic era.
Clin Biochem Rev. 2005 Nov;26(4):135-53., [PMID:16648884]
Abstract [show]
Cystic fibrosis (CF) is the most common inherited disorder of childhood. The diagnosis of CF has traditionally been based on clinical features with confirmatory evidence by sweat electrolyte analysis. Since 1989 it has been possible to also use gene mutation analysis to aid the diagnosis. Cloning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has advanced our understanding of CF, in particular the molecular basis of an expanded CF phenotype. However, because there are over 1000 mutations and 200 polymorphisms, many without recognised effects on CFTR, the molecular diagnosis can be troublesome. This has necessitated measurement of CFTR function with renewed interest in the sweat test. This review provides an overview of the clinical features of CF, the diagnosis and complex genetics. We provide a detailed discussion of the structure and function of CFTR and the classification of CFTR mutations. Sweat electrolyte analysis is discussed, from the physiology of sweating to the rigours of a properly performed sweat test and its interpretation. With this information it is possible to understand the relevance of the sweat test in the genomic era.
Comments [show]
None has been submitted yet.
No. Sentence Comment
244 Highsmith and colleagues (1994) studied 23 patients with pulmonary disease characteristic of CF but with a normal sweat test and identified a point mutation in intron 19 of the CFTR gene, termed 3849+10kb C-T.15 This mutation produces an alternative splicing site and decreased amounts of CFTR mRNA can be detected.16 Thus, according to the classification of the CFTR mutations, this mutation falls into Class V.16,67 Other mutations associated with normal or borderline sweat electrolytes are R117H, D1152H, A455E, G551S and 2789+5G - A.9,24,78 An interesting phenotype, presenting with elevated sweat chloride concentration in the absence of other CF symptoms, has been described in a patient with a nonsense mutation, S1455X.105 This mutation truncates 26 amino acids from the C-terminus of the protein product.
X
ABCC7 p.Gly551Ser 16648884:244:516
status: NEW[hide] State-dependent modulation of CFTR gating by pyrop... J Gen Physiol. 2009 Apr;133(4):405-19. Tsai MF, Shimizu H, Sohma Y, Li M, Hwang TC
State-dependent modulation of CFTR gating by pyrophosphate.
J Gen Physiol. 2009 Apr;133(4):405-19., [PMID:19332621]
Abstract [show]
Cystic fibrosis transmembrane conductance regulator (CFTR) is an adenosine triphosphate (ATP)-gated chloride channel. ATP-induced dimerization of CFTR's two nucleotide-binding domains (NBDs) has been shown to reflect the channel open state, whereas hydrolysis of ATP is associated with channel closure. Pyrophosphate (PPi), like nonhydrolytic ATP analogues, is known to lock open the CFTR channel for tens of seconds when applied with ATP. Here, we demonstrate that PPi by itself opens the CFTR channel in a Mg(2+)-dependent manner long after ATP is removed from the cytoplasmic side of excised membrane patches. However, the short-lived open state (tau approximately 1.5 s) induced by MgPPi suggests that MgPPi alone does not support a stable NBD dimer configuration. Surprisingly, MgPPi elicits long-lasting opening events (tau approximately 30 s) when administrated shortly after the closure of ATP-opened channels. These results indicate the presence of two different closed states (C(1) and C(2)) upon channel closure and a state-dependent effect of MgPPi on CFTR gating. The relative amount of channels entering MgPPi-induced long-open bursts during the ATP washout phase decreases over time, indicating a time-dependent dissipation of the closed state (C(2)) that can be locked open by MgPPi. The stability of the C(2) state is enhanced when the channel is initially opened by N(6)-phenylethyl-ATP, a high affinity ATP analogue, but attenuated by W401G mutation, which likely weakens ATP binding to NBD1, suggesting that an ATP molecule remains bound to the NBD1 site in the C(2) state. Taking advantage of the slow opening rate of Y1219G-CFTR, we are able to identify a C(2)-equivalent state (C(2)*), which exists before the channel in the C(1) state is opened by ATP. This closed state responds to MgPPi much more inefficiently than the C(2) state. Finally, we show that MgAMP-PNP exerts its effects on CFTR gating via a similar mechanism as MgPPi. The structural and functional significance of our findings is discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 Carson et al. (1995) confirmed and expanded this observation by showing that PPi also strongly potentiates cystic fibrosis-associated mutations ⌬F508 and G551S.
X
ABCC7 p.Gly551Ser 19332621:56:161
status: NEW[hide] Mutations that permit residual CFTR function delay... Respir Res. 2010 Oct 8;11:140. Green DM, McDougal KE, Blackman SM, Sosnay PR, Henderson LB, Naughton KM, Collaco JM, Cutting GR
Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients.
Respir Res. 2010 Oct 8;11:140., [PMID:20932301]
Abstract [show]
BACKGROUND: Lung infection by various organisms is a characteristic feature of cystic fibrosis (CF). CFTR genotype effects acquisition of Pseudomonas aeruginosa (Pa), however the effect on acquisition of other infectious organisms that frequently precede Pa is relatively unknown. Understanding the role of CFTR in the acquisition of organisms first detected in patients may help guide symptomatic and molecular-based treatment for CF. METHODS: Lung infection, defined as a single positive respiratory tract culture, was assessed for 13 organisms in 1,381 individuals with CF. Subjects were divided by predicted CFTR function: 'Residual': carrying at least one partial function CFTR mutation (class IV or V) and 'Minimal' those who do not carry a partial function mutation. Kaplan-Meier estimates were created to assess CFTR effect on age of acquisition for each organism. Cox proportional hazard models were performed to control for possible cofactors. A separate Cox regression was used to determine whether defining infection with Pa, mucoid Pa or Aspergillus (Asp) using alternative criteria affected the results. The influence of severity of lung disease at the time of acquisition was evaluated using stratified Cox regression methods by lung disease categories. RESULTS: Subjects with 'Minimal' CFTR function had a higher hazard than patients with 'Residual' function for acquisition of 9 of 13 organisms studied (HR ranging from 1.7 to 3.78 based on the organism studied). Subjects with minimal CFTR function acquired infection at a younger age than those with residual function for 12 of 13 organisms (p-values ranging: < 0.001 to 0.017). Minimal CFTR function also associated with younger age of infection when 3 alternative definitions of infection with Pa, mucoid Pa or Asp were employed. Risk of infection is correlated with CFTR function for 8 of 9 organisms in patients with good lung function (>90%ile) but only 1 of 9 organisms in those with poorer lung function (<50%ile). CONCLUSIONS: Residual CFTR function correlates with later onset of respiratory tract infection by a wide spectrum of organisms frequently cultured from CF patients. The protective effect conferred by residual CFTR function is diminished in CF patients with more advanced lung disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 For Pa, the hazard ratio Table 1 Classification of CFTR alleles Category Mutation Specific mutations Class I Defective Protein Synthesis (nonsense, frameshift, aberrant splicing) 1078delT, 1154 insTC, 1525-2A > G, 1717-1G > A, 1898+1G > A, 2184delA, 2184 insA, 3007delG, 3120+1G > A, 3659delC, 3876delA, 3905insT, 394delTT, 4010del4, 4016insT, 4326delTC, 4374+1G > T, 441delA, 556delA, 621+1G > T, 621-1G > T, 711+1G > T, 875+1G > C, E1104X, E585X, E60X, E822X, G542X, G551D/R553X, Q493X, Q552X, Q814X, R1066C, R1162X, R553X, V520F, W1282X, Y1092X Class II Abnormal Processing and Trafficking A559T, D979A, ΔF508, ΔI507, G480C, G85E, N1303K, S549I, S549N, S549R Class III Defective Channel Regulation/Gating G1244E, G1349D, G551D, G551S, G85E, H199R, I1072T, I48T, L1077P, R560T, S1255P, S549 (R75Q) Class IV Decreased Channel Conductance A800G, D1152H, D1154G, D614G, delM1140, E822K, G314E, G576A, G622D, G85E, H620Q, I1139V, I1234V, L1335P, M1137V, P67L, R117C, R117P, R117H, R334W, R347H, R347P, R347P/ R347H, R792G, S1251N, V232D Class V Reduced Synthesis and/or Trafficking 2789+5G > A, 3120G > A, 3272-26A > G, 3849+10kbC > T, 5T variant, 621+3A > G, 711+3A > G, A445E, A455E, IVS8 poly T, P574H was increased 3 fold for those with 'Minimal` function when compared to those with 'Residual` function.
X
ABCC7 p.Gly551Ser 20932301:74:743
status: NEW[hide] Pathology of pancreatic and intestinal disorders i... J R Soc Med. 1998;91 Suppl 34:40-9. Wilschanski M, Durie PR
Pathology of pancreatic and intestinal disorders in cystic fibrosis.
J R Soc Med. 1998;91 Suppl 34:40-9., [PMID:9709387]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
152 A small number of more Table 1 Classification of cystic fibrosis gene mutation as severe, mild or indeterminate with respect to pancreatic function Severe Mild Variable (classes 1, I/ or 111) (classes IV or V) (classes IV or V) AF508 R117H G85E 1148T R334W 2789+5G-*A G480C R347P G551D A455E R560T P574H N1303K 3849+1 Okb C-+T G542X G551S W1282X P5748 621 +1 G-T R352Q 1717-1G-T T3381 556delA Adapted from Ref 20 with permission recently described mutations [G85E and 278+5G-÷AI are less clearly determinant with respect to the pancreatic sufficient and pancreatic insufficient phenotypes.
X
ABCC7 p.Gly551Ser 9709387:152:333
status: NEW[hide] CFTR! Am J Physiol. 1992 Aug;263(2 Pt 1):C267-86. Fuller CM, Benos DJ
CFTR!
Am J Physiol. 1992 Aug;263(2 Pt 1):C267-86., [PMID:1381146]
Abstract [show]
Cystic fibrosis (CF) is a fatal genetic disease primarily affecting Caucasians, although cases have been reported from other ethnic groups. CF has a complex etiology, but it is chiefly a disease of electrolyte transport and is characterized by defects in fluid secretion by several epithelia, including the sweat duct, exocrine pancreas, and the pulmonary airways. The link between CF and a defect in cAMP-mediated Cl- transport in secretory epithelia was established in the early 1980s. Since then, numerous electrophysiological studies have focused on the characterization and regulation of individual Cl- channels underlying the macroscopic Cl- currents of secretory epithelia in the airways, sweat ducts, and gut. In this review the results of these studies in the light of current knowledge of the function of the CF gene product, the CF transmembrane conductance regulator (CFTR) protein, will be analyzed. The CFTR protein is a member of a family of ATP-binding proteins that act as unidirectional solute pumps. These proteins are membrane spanning, are found in both prokaryotic and eukaryotic cells, and have two ATP-binding domains. The family includes the p-glycoproteins that are involved with the expression of multidrug resistance in certain tumor cells. The majority of CF chromosomes (70%) have a single codon deletion that translates to a missing phenylalanine residue at position 508 (delta F508) of the protein. Unique for this family of proteins, the CFTR protein possesses an additional highly charged domain (the R domain) containing several consensus polypeptide sequences for kinase phosphorylation. Although CFTR bears structural resemblance to this family of ATP-dependent pumps, overexpression of the protein in a variety of different cell types is associated with the appearence of a cAMP-sensitive Cl- channel. We critically examine current information concerning the structure-function relationships of the CFTR protein obtained from both electrophysiological and biochemical approaches. We also summarize recent evidence suggesting that the CFTR protein may act as a pump and a channel, a hypothesis in keeping with the multifaceted nature of the disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
223 Thus G55lS is a mutation of a glycine at position 551 to a serine.
X
ABCC7 p.Gly551Ser 1381146:223:30
status: NEW366 AF508/AF508 G551D/G551D G542X/G458V G542X/G542X R553X/W1316X N369X/unknown R553X/R553X G551S/G551S G368Xlunknown AF508/R117H PI PI PI PI PI PI PI PS PS PS Severe 116 Severe 181 Severe 49 Mild 49 Mild 50 Mild 102 Moderate-Severe 13 Mild 181 Mild 102 Mild 55 Comparison of genotype with phenotype for some CF-associated mutations.
X
ABCC7 p.Gly551Ser 1381146:366:87
status: NEWX
ABCC7 p.Gly551Ser 1381146:366:93
status: NEW[hide] Mutational analysis of the Saccharomyces cerevisia... Mol Microbiol. 1997 Aug;25(4):683-94. Wemmie JA, Moye-Rowley WS
Mutational analysis of the Saccharomyces cerevisiae ATP-binding cassette transporter protein Ycf1p.
Mol Microbiol. 1997 Aug;25(4):683-94., [PMID:9379898]
Abstract [show]
Ycf1p is a member of the ATP-binding cassette transporter family of membrane proteins. Strong sequence similarity has been observed between Ycf1p, the cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance protein (MRP). In this work, we have examined the functional significance of several of the conserved amino acid residues and the genetic requirements for Ycf1p subcellular localization. Biochemical fractionation experiments have established that Ycf1p, expressed at single-copy gene levels, co-fractionates with the vacuolar membrane and that this co-fractionation is independent of vps15, vps34 or end3 gene function. Several cystic fibrosis-associated alleles of the CFTR were introduced into Ycf1p and found to elicit defects analogous to those seen in the CFTR. An amino-terminal extension shared between Ycf1p and MRP, but absent from CFTR, was found to be required for Ycf1p function, but not its subcellular localization. Mutant forms of Ycf1p were also identified that exhibited enhanced biological function relative to the wild-type protein. These studies indicate that Ycf1p will provide a simple, genetically tractable model system for the study of the trafficking and function of ATP-binding cassette transporter proteins, such as the CFTR and MRP.
Comments [show]
None has been submitted yet.
No. Sentence Comment
133 These mutants corresponded to CFTR alterations known to be associated with cystic fibrosis (G551D and G551S in CFTR, G756D and G756S in Ycf1p) as well as lesions that either disturb normal function (K464M in CFTR, K669M in Ycf1p) or act to suppress the phenotype of ⌬F508 CFTR (R553Q and R553M in CFTR, K758Q and K758M in CFTR).
X
ABCC7 p.Gly551Ser 9379898:133:102
status: NEW237 The three mutant Ycf1p derivatives (⌬F713, G756D and G756S) that correspond to known CF-causing alleles of CFTR (⌬F508, G551D and G551S) all produce a Ycf1p mutant that exhibits a defect analogous to its CFTR counterpart.
X
ABCC7 p.Gly551Ser 9379898:237:144
status: NEW[hide] Link between CFTR mutations and ABPA: a systematic... Mycoses. 2012 Jul;55(4):357-65. doi: 10.1111/j.1439-0507.2011.02130.x. Epub 2011 Oct 17. Agarwal R, Khan A, Aggarwal AN, Gupta D
Link between CFTR mutations and ABPA: a systematic review and meta-analysis.
Mycoses. 2012 Jul;55(4):357-65. doi: 10.1111/j.1439-0507.2011.02130.x. Epub 2011 Oct 17., [PMID:21999194]
Abstract [show]
Summary There is a biological plausibility on the link between cystic fibrosis transmembrane conductance regulator (CFTR) mutations and allergic bronchopulmonary aspergillosis (ABPA). The aim of the systematic review was to investigate this link by determining the frequency of CFTR mutations in ABPA. We searched the PubMed and EmBase databases for studies reporting CFTR mutations in ABPA. We pooled the odds ratio (OR) and 95% confidence intervals (CI) from individual studies using both fixed and random effects model. Statistical heterogeneity was evaluated using the I(2) test and the Cochran-Q statistic. Publication bias was assessed using both graphical and statistical methods. Our search yielded four studies (79 ABPA, 268 controls). The odds of encountering CFTR mutation was higher in ABPA compared with the control group (OR 10.39; 95% CI, 4.35-24.79) or the asthma population (OR 5.53; 95% CI 1.62-18.82). There was no evidence of statistical heterogeneity or publication bias. There is a possible pathogenetic link between CFTR mutations and ABPA. However, because of the small numbers of patients, further studies are required to confirm this finding. Future studies should adopt a uniform methodology and should screen for the entire genetic sequence of the CFTR gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 (1996)[30] 11ABPA53chronic bronchitis Asthma,pulmonaryinfiltrates,CB, immediateAfskintestpositivity,totalIgE >1000ngml)1 ,positiveAfprecipitins, elevatedAfIgG/IgE,bloodeosinophilia, sweatchloride<40mmoll)1 /(United States) BothgroupssixmutationsF508del, G542X,GS51D,R553X,W1282X andN1303K;ninemoremutations inABPA:R117H,R347P,R347H, R334W,A455E,G551S, 2789+5G>A,D1152H,and 3849+10kbC>T ReverseASOanalysis andDGGEwithDNA sequencing 1patientcarried2CF (F508del;R347H)and5 carried1CF(4F508del; 1R117H).Mutationsseenin 6/11ABPAvs.1/53 controls Aronetal.
X
ABCC7 p.Gly551Ser 21999194:56:345
status: NEW[hide] Ivacaftor potentiation of multiple CFTR channels w... J Cyst Fibros. 2012 May;11(3):237-45. doi: 10.1016/j.jcf.2011.12.005. Epub 2012 Jan 30. Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JP Jr, Urrutia A, Joubran J, Seepersaud S, Sussky K, Hoffman BJ, Van Goor F
Ivacaftor potentiation of multiple CFTR channels with gating mutations.
J Cyst Fibros. 2012 May;11(3):237-45. doi: 10.1016/j.jcf.2011.12.005. Epub 2012 Jan 30., [PMID:22293084]
Abstract [show]
BACKGROUND: The investigational CFTR potentiator ivacaftor (VX-770) increased CFTR channel activity and improved lung function in subjects with CF who have the G551D CFTR gating mutation. The aim of this in vitro study was to determine whether ivacaftor potentiates mutant CFTR with gating defects caused by other CFTR gating mutations. METHODS: The effects of ivacaftor on CFTR channel open probability and chloride transport were tested in electrophysiological studies using Fischer rat thyroid (FRT) cells expressing different CFTR gating mutations. RESULTS: Ivacaftor potentiated multiple mutant CFTR forms with defects in CFTR channel gating. These included the G551D, G178R, S549N, S549R, G551S, G970R, G1244E, S1251N, S1255P and G1349D CFTR gating mutations. CONCLUSION: These in vitro data suggest that ivacaftor has a similar effect on all CFTR forms with gating defects and support investigation of the potential clinical benefit of ivacaftor in CF patients who have CFTR gating mutations beyond G551D.
Comments [show]
None has been submitted yet.
No. Sentence Comment
4 These included the G551D, G178R, S549N, S549R, G551S, G970R, G1244E, S1251N, S1255P and G1349D CFTR gating mutations.
X
ABCC7 p.Gly551Ser 22293084:4:47
status: NEW23 Other known CFTR gating mutations include G178R, G551S, G970R, G1244E, S1255P, and G1349D [9-11].
X
ABCC7 p.Gly551Ser 22293084:23:49
status: NEW39 These included G551D-, G178R-, S549N-, S549R-, G551S-, G970R-, G1244E-, S1251N-, S1255P-, and G1349D-CFTR [4,7,9-11].
X
ABCC7 p.Gly551Ser 22293084:39:47
status: NEW46 This analysis showed that, as expected for known CFTR gating mutations (G551D, G178R, G551S, G970R, G1244E, S1255P, and G1349D) [5,9-11], the amount of CFTR delivered to the cell surface was generally similar between CFTR with gating defects and normal CFTR.
X
ABCC7 p.Gly551Ser 22293084:46:86
status: NEW48 Interestingly, there was significantly more G551S-CFTR at the cell surface than normal CFTR, although the total amount of G551S-CFTR synthesized and the ratio of mature to total CFTR were similar to normal CFTR.
X
ABCC7 p.Gly551Ser 22293084:48:44
status: NEWX
ABCC7 p.Gly551Ser 22293084:48:122
status: NEW50 Ivacaftor increased the channel gating of mutant CFTR with defective channel gating The effect of ivacaftor on CFTR channel gating was monitored by quantifying the channel open probability by patch-clamp electrophysiology using membrane patches excised from FRT cells expressing the known CFTR gating mutations, G551D-, G178R-, G551S-, G970R-, G1244E-, S1255P-, or G1349D-CFTR.
X
ABCC7 p.Gly551Ser 22293084:50:328
status: NEW52 Under these conditions, the baseline CFTR channel open probability of G551D-, G178R-, G551S-, G970R-, G1244E-, S1255P-, and G1349D-CFTR was ≤5% of normal CFTR (Fig. 2, B; Table 1).
X
ABCC7 p.Gly551Ser 22293084:52:86
status: NEW53 For most mutant CFTR forms, the single channel current amplitude, a measure of channel conductance, was similar to normal CFTR (between 77% and 122% of normal CFTR), although a small but statistically significant difference in single channel current amplitude was observed for S1255P-CFTR (Table 1).
X
ABCC7 p.Gly551Ser 22293084:53:86
status: NEW58 Ivacaftor enhanced chloride transport through mutant CFTR with defective channel gating The impact of the increase in CFTR channel gating by ivacaftor on total chloride transport was assessed in Ussing chamber studies using FRT cells expressing the known CFTR gating mutations, G551D-, G178R-, G551S-, G970R-, G1244E-, S1255P-, and G1349D-CFTR.
X
ABCC7 p.Gly551Ser 22293084:58:294
status: NEW61 Under these conditions, the baseline level of chloride transport in FRT cells expressing G551D-, G178R-, G551S-, G970R-, G1244E-, S1255P-, and G1349D-CFTR was b10% of normal CFTR (Fig. 3; Table 2), which was consistent with the low CFTR channel open probability of these mutant CFTR forms (Table 1).
X
ABCC7 p.Gly551Ser 22293084:61:105
status: NEW71 Patch-clamp studies confirmed that the channel open probability of S549N-, S549R-, and S1251N-CFTR was b5% of normal CFTR, whereas the single channel current amplitude Normal F508del G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0 50 100 150 200 CFTRmRNA (%NormalCFTR) None F508del G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0.0 0.2 0.4 0.6 0.8 1.0 ** * CFTRMaturation (Mature/Total) None F508del G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0 100 200 300 400 ** * * * CFTR Mutations MatureCFTR (%NormalCFTR) A B D C Mature Immature Fig. 1.
X
ABCC7 p.Gly551Ser 22293084:71:207
status: NEWX
ABCC7 p.Gly551Ser 22293084:71:324
status: NEWX
ABCC7 p.Gly551Ser 22293084:71:460
status: NEW90 In a panel of FRT cells expressing G551D-, G178R-, G551S-, G970R-, G1244E-, S1255P-, and G1349D-CFTR, we confirmed that all these mutant CFTR forms shared similar in vitro functional characteristics that were consistent with a defect in channel gating.
X
ABCC7 p.Gly551Ser 22293084:90:51
status: NEW91 In addition, we showed that the 3 additional mutations, S549N, S549R, and S1251N also have characteristics consistent with gating defects.
X
ABCC7 p.Gly551Ser 22293084:91:51
status: NEW93 Ivacaftor addition caused a N10-fold increase in CFTR-mediated chloride transport in FRT cells expressing G551D-, G178R-, S549N-, S549R-, G551S-, G970R-, G1244E-, S1251N-, S1255P-, and G1349D-CFTR.
X
ABCC7 p.Gly551Ser 22293084:93:138
status: NEW96 Taken together, these in vitro results provide a rationale for testing the potential benefit of ivacaftor in individuals with CF who have a CFTR gating mutation other than G551D, including the G178R-, S549N-, S549R-, G551S-, G970R-, G1244E-, S1251N-, S1255P, and G1349D CFTR gating mutations.
X
ABCC7 p.Gly551Ser 22293084:96:217
status: NEW97 Evaluation of CF-associated CFTR mutations that were expected to cause protein alterations in the ATP-binding sites formed by the NBDs indicated that S549N- and S1251N-CFTR also shared similar in vitro functional characteristics with G551D-CFTR and could be classified as CFTR gating mutations.
X
ABCC7 p.Gly551Ser 22293084:97:217
status: NEW99 The partial reduction in S549R-CFTR maturation was ~27% of A Normal G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200 250 Baseline With 10 µM Ivacaftor * * * * * * * * * * * CFTR Mutation ChannelOpenProbability ChannelOpenProbability (%NormalCFTR) B 1pA 3sec + 10 µM Ivacaftor G1349D S1255P G970R G551S G178R G1244E Baseline Normal G551D S1251N S549N S549R Fig. 2.
X
ABCC7 p.Gly551Ser 22293084:99:92
status: NEWX
ABCC7 p.Gly551Ser 22293084:99:362
status: NEW113 A milder CF clinical phenotype has been associated with the G551S CFTR gating mutation, as demonstrated by a lower sweat chloride concentration (75-94 mmol/L) and lower incidence of pancreatic insufficiency compared to patients with CF who carry the G551D CFTR gating mutation [21].
X
ABCC7 p.Gly551Ser 22293084:113:60
status: NEW114 In the present study, although the expression and channel open probability of G551S-CFTR were similar to G551D-CFTR, the baseline chloride transport was higher (~9% normal CFTR).
X
ABCC7 p.Gly551Ser 22293084:114:60
status: NEWX
ABCC7 p.Gly551Ser 22293084:114:78
status: NEW115 This may be due to the increased level of mature G551S-CFTR delivered to the cell surface compared to normal CFTR, as determined by immunoblot studies in FRT cells.
X
ABCC7 p.Gly551Ser 22293084:115:49
status: NEWX
ABCC7 p.Gly551Ser 22293084:115:78
status: NEW116 The potency (EC50) of ivacaftor for the CFTR gating mutations tested was similar to G551D in vitro, suggesting that a similar dose of ivacaftor as that used in clinical trials of patients with CF who carry the G551D CFTR gating mutation may be appropriate for most other CFTR gating mutations.
X
ABCC7 p.Gly551Ser 22293084:116:49
status: NEW127 Like G551D, the G551S, G1244E, S1255P, and G1349D CFTR gating mutations, as well as the S549N, S549R, and S1251N CFTR gating mutations identified in the Table 1 Effect of ivacaftor on the channel gating activity of CFTR with gating mutations.
X
ABCC7 p.Gly551Ser 22293084:127:16
status: NEW128 Single channel current amplitude at 80 mV CFTR channel open probability Baseline With 10 μM ivacaftor Baseline With 10 μM ivacaftor Mutation pA % Normal pA % Normal Po % Normal Po % Normal Normal 0.57±0.03 100 0.63±0.02 111 0.400±0.04 100 0.800±0.04 a 200 G551D 0.46±0.06 81 0.46±0.03 81 0.019±0.01 b 5 0.121±0.035 a 30 G178R 0.59±0.11 103 0.66±0.08 116 0.005±0.001 b 1 0.228±0.022 a 57 S549N 0.55±0.02 97 0.61±0.02 108 0.003±0.010 b 1 0.396±0.119 a 99 S549R 0.45±0.01 b 79 0.55±0.02 a 96 0.004±0.010 b 1 0.143±0.031 a 36 G551S 0.57±0.13 100 0.64±0.02 113 0.010±0.001 b 3 0.337±0.110 a 84 G970R 0.55±0.03 96 0.55±0.03 97 0.001±0.001 b 0 0.245±0.042 a 61 G1244E 0.44±0.11 77 0.54±0.08 94 0.011±0.010 b 3 0.470±0.122 a 118 S1251N 0.54±0.07 95 0.63±0.04 111 0.003±0.010 b 1 0.350±0.03 a 88 S1255P 0.70±0.03 b 122 0.71±0.02 125 0.018±0.016 b 5 0.468±0.168 a 117 G1349D 0.49±0.08 85 0.63±0.06 111 0.019±0.015 b 5 0.315±0.110 a 79 a Significantly different (Pb0.05; paired t-test, n=3-5) compared to baseline levels for each CFTR mutation.
X
ABCC7 p.Gly551Ser 22293084:128:16
status: NEWX
ABCC7 p.Gly551Ser 22293084:128:634
status: NEW130 0 100 200 300 400 -9 -8 -7 -6 -5 -4 G178R G551D G551S 0 S549N S549R Ivacaftor [Log M] 0 100 200 300 400 0 50 100 150 200 -9 -8 -7 -6 -5 -4 G970R G1244E S1255P G1349D 0 S1251N Ivacaftor [Log M] ChlorideTransport (%NormalCFTR) Normal Forskolin G178R G551S G970R G1244E 50 2 1 min S1255P Normal F508del G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0 100 200 300 400 0 50 100 150 200 * * * * * * * * * * * * * CFTR Mutation ChlorideTransport(µA/cm2)ChlorideTransport(µA/cm2) ChlorideTransport(A/cm2) ChlorideTransport (%NormalCFTR) B G1349D G551D A F508del C S549N S549R S1251N Baseline Baseline present study, cause protein alterations in the ATP binding pockets formed by the two NBDs required for normal CFTR channel gating (Fig. 4) [2].
X
ABCC7 p.Gly551Ser 22293084:130:48
status: NEWX
ABCC7 p.Gly551Ser 22293084:130:248
status: NEWX
ABCC7 p.Gly551Ser 22293084:130:324
status: NEW131 The G178R and G970R CFTR gating mutations alter the intracellular cytoplasmic loops that are believed to link the ATP-driven conformational changes in the NBDs to the opening of the CFTR channel pore formed by the membrane spanning domains [27].
X
ABCC7 p.Gly551Ser 22293084:131:48
status: NEWX
ABCC7 p.Gly551Ser 22293084:131:251
status: NEWX
ABCC7 p.Gly551Ser 22293084:131:327
status: NEW144 The in vitro data presented here suggest that ivacaftor has a similar effect on all CFTR forms with gating defects and support the investigation of ivacaftor in patients with CF who have CFTR gating mutations beyond G551D, including G178R, S549N, S549R, G551S, G970R, G1244E, S1251N, S1255P, and G1349D.
X
ABCC7 p.Gly551Ser 22293084:144:254
status: NEW24 Other known CFTR gating mutations include G178R, G551S, G970R, G1244E, S1255P, and G1349D [9-11].
X
ABCC7 p.Gly551Ser 22293084:24:49
status: NEW40 These included G551D-, G178R-, S549N-, S549R-, G551S-, G970R-, G1244E-, S1251N-, S1255P-, and G1349D-CFTR [4,7,9-11].
X
ABCC7 p.Gly551Ser 22293084:40:47
status: NEW47 This analysis showed that, as expected for known CFTR gating mutations (G551D, G178R, G551S, G970R, G1244E, S1255P, and G1349D) [5,9-11], the amount of CFTR delivered to the cell surface was generally similar between CFTR with gating defects and normal CFTR.
X
ABCC7 p.Gly551Ser 22293084:47:86
status: NEW49 Interestingly, there was significantly more G551S-CFTR at the cell surface than normal CFTR, although the total amount of G551S-CFTR synthesized and the ratio of mature to total CFTR were similar to normal CFTR.
X
ABCC7 p.Gly551Ser 22293084:49:44
status: NEWX
ABCC7 p.Gly551Ser 22293084:49:122
status: NEW51 Ivacaftor increased the channel gating of mutant CFTR with defective channel gating The effect of ivacaftor on CFTR channel gating was monitored by quantifying the channel open probability by patch-clamp electrophysiology using membrane patches excised from FRT cells expressing the known CFTR gating mutations, G551D-, G178R-, G551S-, G970R-, G1244E-, S1255P-, or G1349D-CFTR.
X
ABCC7 p.Gly551Ser 22293084:51:328
status: NEW59 Ivacaftor enhanced chloride transport through mutant CFTR with defective channel gating The impact of the increase in CFTR channel gating by ivacaftor on total chloride transport was assessed in Ussing chamber studies using FRT cells expressing the known CFTR gating mutations, G551D-, G178R-, G551S-, G970R-, G1244E-, S1255P-, and G1349D-CFTR.
X
ABCC7 p.Gly551Ser 22293084:59:294
status: NEW62 Under these conditions, the baseline level of chloride transport in FRT cells expressing G551D-, G178R-, G551S-, G970R-, G1244E-, S1255P-, and G1349D-CFTR was b10% of normal CFTR (Fig. 3; Table 2), which was consistent with the low CFTR channel open probability of these mutant CFTR forms (Table 1).
X
ABCC7 p.Gly551Ser 22293084:62:105
status: NEW72 Patch-clamp studies confirmed that the channel open probability of S549N-, S549R-, and S1251N-CFTR was b5% of normal CFTR, whereas the single channel current amplitude Normal F508del G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0 50 100 150 200 CFTR mRNA (% Normal CFTR) None F508del G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0.0 0.2 0.4 0.6 0.8 1.0 ** * CFTR Maturation (Mature/Total) None F508del G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0 100 200 300 400 ** * * * CFTR Mutations Mature CFTR (% Normal CFTR) A B D C Mature Immature Fig. 1.
X
ABCC7 p.Gly551Ser 22293084:72:207
status: NEWX
ABCC7 p.Gly551Ser 22293084:72:327
status: NEWX
ABCC7 p.Gly551Ser 22293084:72:464
status: NEW94 Ivacaftor addition caused a N10-fold increase in CFTR-mediated chloride transport in FRT cells expressing G551D-, G178R-, S549N-, S549R-, G551S-, G970R-, G1244E-, S1251N-, S1255P-, and G1349D-CFTR.
X
ABCC7 p.Gly551Ser 22293084:94:138
status: NEW100 The partial reduction in S549R-CFTR maturation was ~27% of A Normal G551D G178R S549N S549R G551S G970R G1244E S1251N S1255P G1349D 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200 250 Baseline With 10 &#b5;M Ivacaftor * * * * * * * * * * * CFTR Mutation Channel Open Probability Channel Open Probability (% Normal CFTR) B 1pA 3sec + 10 &#b5;M Ivacaftor G1349D S1255P G970R G551S G178R G1244E Baseline Normal G551D S1251N S549N S549R Fig. 2.
X
ABCC7 p.Gly551Ser 22293084:100:92
status: NEWX
ABCC7 p.Gly551Ser 22293084:100:366
status: NEW129 Single channel current amplitude at 80 mV CFTR channel open probability Baseline With 10 bc;M ivacaftor Baseline With 10 bc;M ivacaftor Mutation pA % Normal pA % Normal Po % Normal Po % Normal Normal 0.57&#b1;0.03 100 0.63&#b1;0.02 111 0.400&#b1;0.04 100 0.800&#b1;0.04 a 200 G551D 0.46&#b1;0.06 81 0.46&#b1;0.03 81 0.019&#b1;0.01 b 5 0.121&#b1;0.035 a 30 G178R 0.59&#b1;0.11 103 0.66&#b1;0.08 116 0.005&#b1;0.001 b 1 0.228&#b1;0.022 a 57 S549N 0.55&#b1;0.02 97 0.61&#b1;0.02 108 0.003&#b1;0.010 b 1 0.396&#b1;0.119 a 99 S549R 0.45&#b1;0.01 b 79 0.55&#b1;0.02 a 96 0.004&#b1;0.010 b 1 0.143&#b1;0.031 a 36 G551S 0.57&#b1;0.13 100 0.64&#b1;0.02 113 0.010&#b1;0.001 b 3 0.337&#b1;0.110 a 84 G970R 0.55&#b1;0.03 96 0.55&#b1;0.03 97 0.001&#b1;0.001 b 0 0.245&#b1;0.042 a 61 G1244E 0.44&#b1;0.11 77 0.54&#b1;0.08 94 0.011&#b1;0.010 b 3 0.470&#b1;0.122 a 118 S1251N 0.54&#b1;0.07 95 0.63&#b1;0.04 111 0.003&#b1;0.010 b 1 0.350&#b1;0.03 a 88 S1255P 0.70&#b1;0.03 b 122 0.71&#b1;0.02 125 0.018&#b1;0.016 b 5 0.468&#b1;0.168 a 117 G1349D 0.49&#b1;0.08 85 0.63&#b1;0.06 111 0.019&#b1;0.015 b 5 0.315&#b1;0.110 a 79 a Significantly different (Pb0.05; paired t-test, n=3-5) compared to baseline levels for each CFTR mutation.
X
ABCC7 p.Gly551Ser 22293084:129:612
status: NEW145 The in vitro data presented here suggest that ivacaftor has a similar effect on all CFTR forms with gating defects and support the investigation of ivacaftor in patients with CF who have CFTR gating mutations beyond G551D, including G178R, S549N, S549R, G551S, G970R, G1244E, S1251N, S1255P, and G1349D.
X
ABCC7 p.Gly551Ser 22293084:145:254
status: NEW[hide] Mechanism of direct bicarbonate transport by the C... J Cyst Fibros. 2009 Mar;8(2):115-21. Epub 2008 Nov 18. Tang L, Fatehi M, Linsdell P
Mechanism of direct bicarbonate transport by the CFTR anion channel.
J Cyst Fibros. 2009 Mar;8(2):115-21. Epub 2008 Nov 18., [PMID:19019741]
Abstract [show]
BACKGROUND: CFTR contributes to HCO(3)(-) transport in epithelial cells both directly (by HCO(3)(-) permeation through the channel) and indirectly (by regulating Cl(-)/HCO(3)(-) exchange proteins). While loss of HCO(3)(-) transport is highly relevant to cystic fibrosis, the relative importance of direct and indirect HCO(3)(-) transport it is currently unknown. METHODS: Patch clamp recordings from membrane patches excised from cells heterologously expressing wild type and mutant forms of human CFTR were used to isolate directly CFTR-mediated HCO(3)(-) transport and characterize its functional properties. RESULTS: The permeability of HCO(3)(-) was approximately 25% that of Cl(-) and was invariable under all ionic conditions studied. CFTR-mediated HCO(3)(-) currents were inhibited by open channel blockers DNDS, glibenclamide and suramin, and these inhibitions were affected by mutations within the channel pore. Cystic fibrosis mutations previously associated with disrupted cellular HCO(3)(-) transport did not affect direct HCO(3)(-) permeability. CONCLUSIONS: Cl(-) and HCO(3)(-) share a common transport pathway in CFTR, and selectivity between Cl(-) and HCO(3)(-) is independent of ionic conditions. The mechanism of transport is therefore effectively identical for both ions. We suggest that mutations in CFTR that cause cystic fibrosis by selectively disrupting HCO(3)(-) transport do not impair direct CFTR-mediated HCO(3)(-) transport, but may predominantly alter CFTR regulation of other HCO(3)(-) transport pathways.
Comments [show]
None has been submitted yet.
No. Sentence Comment
103 It can be seen that each of these mutants is capable of mediating HCO3 - efflux; in fact, reversal potential measurements indicate PHCO3/PCl values of 0.289±0.038 (n=3) for G178R, 0.264±0.035 (n=3) for G551S, and 0.237±0.033 (n=3) for H620Q, none of which were significantly different from the value of 0.250±0.037 (n=4) estimated from wild type under the same conditions (see Fig. 1B).
X
ABCC7 p.Gly551Ser 19019741:103:210
status: NEW138 Bicarbonate permeability of CF mutant forms of CFTR Example leak-subtracted macroscopic I-V relationships for G178R, G551S, and H620Q-CFTR under the same ionic conditions used in Fig. 1B.
X
ABCC7 p.Gly551Ser 19019741:138:117
status: NEW146 Our direct measurements of CFTR HCO3 - currents also showed no change in HCO3 - permeability in three CF-associated CFTR mutants (G178R, G551S, H620Q; Fig. 5) that were previously associated with different effects on cellular HCO3 - transport relative to Cl- transport [10].
X
ABCC7 p.Gly551Ser 19019741:146:137
status: NEW[hide] Therapeutic approaches to repair defects in deltaF... Adv Drug Deliv Rev. 2002 Dec 5;54(11):1395-408. Powell K, Zeitlin PL
Therapeutic approaches to repair defects in deltaF508 CFTR folding and cellular targeting.
Adv Drug Deliv Rev. 2002 Dec 5;54(11):1395-408., [PMID:12458151]
Abstract [show]
The deltaF508 mutation in the cystic fibrosis transmembrane regulator (CFTR) gene is the most common mutation in CF. The mutant CFTR protein is defective with respect to multiple functions including cAMP-regulated chloride conductance, nucleotide transport, and regulatory actions on other ion channels. Since the deltaF508 protein is also temperature-sensitive and unstable during translation and folding in the endoplasmic reticulum (ER), most of the nascent chains are targeted for premature proteolysis from the ER. This paper focuses on the events that occur in the ER during folding and reviews potential targets for therapeutic intervention.
Comments [show]
None has been submitted yet.
No. Sentence Comment
93 on band C formation was reversible so that when the Class III mutations are defective in regulation of cells were placed back into culture at 37 8C, the chloride conductance through the CFTR at the amount of fully mature protein decreased with a plasma membrane and include the G551D and half-life of approximately 7 h (similar to wild type) G551S mutations.
X
ABCC7 p.Gly551Ser 12458151:93:342
status: NEW94 Class IV mutations (R117H, and was not replaced with mature protein.
X
ABCC7 p.Gly551Ser 12458151:94:342
status: NEW[hide] Cystic fibrosis: a multiple exocrinopathy caused b... Am J Med. 1998 Jun;104(6):576-90. Schwiebert EM, Benos DJ, Fuller CM
Cystic fibrosis: a multiple exocrinopathy caused by dysfunctions in a multifunctional transport protein.
Am J Med. 1998 Jun;104(6):576-90., [PMID:9674722]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
223 They include another deletion mutation at amino acid position 507 (⌬I507), several missense mutations (F508C, G551D, G551S, A455E, R553Q, P574H, S549N, A559T), and some nonsense mutations (G542X, R553X, Q493X).
X
ABCC7 p.Gly551Ser 9674722:223:124
status: NEW238 Some of these mutations, however, such as A455E, P574H and G551S have been associated either with less severe pulmonary disease and/or less compromised Cl- channel function.
X
ABCC7 p.Gly551Ser 9674722:238:59
status: NEW[hide] Cystic fibrosis transmembrane conductance regulato... Biophys J. 1998 Mar;74(3):1320-32. Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drumm ML, Collins FS, Dawson DC
Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
Biophys J. 1998 Mar;74(3):1320-32., [PMID:9512029]
Abstract [show]
We compared the effects of mutations in transmembrane segments (TMs) TM1, TM5, and TM6 on the conduction and activation properties of the cystic fibrosis transmembrane conductance regulator (CFTR) to determine which functional property was most sensitive to mutations and, thereby, to develop a criterion for measuring the importance of a particular residue or TM for anion conduction or activation. Anion substitution studies provided strong evidence for the binding of permeant anions in the pore. Anion binding was highly sensitive to point mutations in TM5 and TM6. Permeability ratios, in contrast, were relatively unaffected by the same mutations, so that anion binding emerged as the conduction property most sensitive to structural changes in CFTR. The relative insensitivity of permeability ratios to CFTR mutations was in accord with the notion that anion-water interactions are important determinants of permeability selectivity. By the criterion of anion binding, TM5 and TM6 were judged to be likely to contribute to the structure of the anion-selective pore, whereas TM1 was judged to be less important. Mutations in TM5 and TM6 also dramatically reduced the sensitivity of CFTR to activation by 3-isobutyl 1-methyl xanthine (IBMX), as expected if these TMs are intimately involved in the physical process that opens and closes the channel.
Comments [show]
None has been submitted yet.
No. Sentence Comment
179 The alanine and aspartic acid substitutions resulted in less dramatic but nevertheless significant decreases in sensitivity comparable to that produced by G551S (Wilkinson et al., 1996), a CF mutation associated with a pancreatic sufficient phenotype (Strong et al., 1991).
X
ABCC7 p.Gly551Ser 9512029:179:155
status: NEW[hide] Missense mutation R1066C in the second transmembra... Hum Mutat. 1997;10(5):387-92. Casals T, Pacheco P, Barreto C, Gimenez J, Ramos MD, Pereira S, Pinheiro JA, Cobos N, Curvelo A, Vazquez C, Rocha H, Seculi JL, Perez E, Dapena J, Carrilho E, Duarte A, Palacio AM, Nunes V, Lavinha J, Estivill X
Missense mutation R1066C in the second transmembrane domain of CFTR causes a severe cystic fibrosis phenotype: study of 19 heterozygous and 2 homozygous patients.
Hum Mutat. 1997;10(5):387-92., [PMID:9375855]
Abstract [show]
We report the clinical features of 21 unrelated cystic fibrosis (CF) patients from Portugal and Spain, who carry the mutation R1066C in the CFTR gene. The current age of the patients was higher in the R1066C/any mutation group (P < 0.01), as compared to the deltaF508/deltaF508 group. Poor values for lung radiological involvement (Chrispin-Norman) and general status (Shwachman-Kulcycki) were observed in the R1066C/any mutation group (P < 0.005 and P < 0.0004). A slightly, but not significantly worse lung function was found in the R1066C/any mutation group when compared with the deltaF508/deltaF508 patients. No significant differences were detected regarding the age at diagnosis, sweat Cl-values, or percentiles of height and weight between the two groups. Neither were significant differences observed regarding sex, meconium ileus (4.7% vs. 11.1%), dehydration (10.5% vs. 14.7%), or pancreatic insufficiency (PI) (100% vs. 97.8%). The proportion of patients with lung colonization by bacterial pathogens was slightly, but not significantly higher in the R1066C/any mutation group (70.0%), as compared with the deltaF508/deltaF508 group (57.5%). Other clinical complications were significantly more frequent in the R1066C/any mutation patients(P < 0.02) than in the deltaF508/deltaF508 group. The two homozygous R1066C/R1066C patients died at the ages of 3 months and 7 years. The data presented in this study clearly demonstrate that the R1066C mutation is responsible for a severe phenotype similar to that observed in homozygous deltaF508 patients. The poor clinical scores and complications of patients with the R1066C mutation are probably related to their slightly longer survival.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 Data on homozygous patients for missense mutations have been obtained for G551S TABLE 1.
X
ABCC7 p.Gly551Ser 9375855:57:74
status: NEW[hide] Genotype-phenotype relationships in a cohort of ad... Eur Respir J. 1996 Nov;9(11):2207-14. Hubert D, Bienvenu T, Desmazes-Dufeu N, Fajac I, Lacronique J, Matran R, Kaplan JC, Dusser DJ
Genotype-phenotype relationships in a cohort of adult cystic fibrosis patients.
Eur Respir J. 1996 Nov;9(11):2207-14., [PMID:8947061]
Abstract [show]
In cystic fibrosis (CF), relationships between genotype and phenotype have been shown for pancreatic status but not for pulmonary disease. One hundred and ten adult CF patients were classified according to the expected effect of their mutations on cystic fibrosis transmembrane conductance regulator (CFTR) protein: Group 1 (n=48) included deltaF508 homozygotes; Group 2 (n=26), patients with two "severe" mutations and no expected CFTR production; Group 3 (n=17), patients with expected partly functional CFTR corresponding to at least one "mild" mutation; Group 4 (n=19), patients with no mutation identified or only one identified "severe" mutation. As compared to Groups 1 and 2: patients from Groups 3 and 4 had higher arterial oxygen tension (Pa,O2) (9.5+/-1.9 and 9.9+/-1.5 vs 8.8+/-1.5 and 8.3+/-1.7 kPa, respectively p<0.02); and a slower decline in their pulmonary function, estimated by the mean annual loss in forced vital capacity (FVC) (1.2+/-1.0 and 1.5+/-1.1 vs 2.0+/-0.9 and 2.2+/-1.0%, respectively; p<0.01) and in forced expiratory volume in one second (FEV1) (1.7+/-1.1 and 1.9+/-1.3 vs 2.6+/-1.0 and 2.8+/-1.0%, respectively; p<0.005). They had fewer episodes of colonization of the airways by Pseudomonas aeruginosa, and colonization occurred at a more advanced age (median age 25 and 19 vs 15 and 17 yrs, respectively; p<0.01) and required fewer intravenous antibiotic courses (p<0.01). Pancreatic insufficiency was less frequent in Groups 3 (23%) and 4 (63%) than in Groups 1 (100%) and 2 (96%). This study suggests that the phenotype of adult cystic fibrosis patients, including the severity of the lung disease, is related to the severity of the cystic fibrosis transmembrane conductance regulator mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
22 Concerning the relationship between the severity of pulmonary involvement and other mutations than ∆F508, a mild pulmonary disease was described in two sisters homozygous for the G551S mutation [13], and in compound heterozygotes for the missense mutation A455E, a mutation commonly found in The Netherlands [14].
X
ABCC7 p.Gly551Ser 8947061:22:185
status: NEW112 In the studies by GAN et al. [14], and STRONG et al. [13] patients with the A455E mutation or with the G551S mutation, respectively, who would be classified as Group 3 in the present study, had mild pulmonary disease.
X
ABCC7 p.Gly551Ser 8947061:112:103
status: NEW[hide] Effect of cystic fibrosis-associated mutations in ... J Biol Chem. 1996 Aug 30;271(35):21279-84. Cotten JF, Ostedgaard LS, Carson MR, Welsh MJ
Effect of cystic fibrosis-associated mutations in the fourth intracellular loop of cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 1996 Aug 30;271(35):21279-84., [PMID:8702904]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR) contains multiple membrane spanning sequences that form a Cl- channel pore and cytosolic domains that control the opening and closing of the channel. The fourth intracellular loop (ICL4), which connects the tenth and eleventh transmembrane spans, has a primary sequence that is highly conserved across species, is the site of a preserved sequence motif in the ABC transporter family, and contains a relatively large number of missense mutations associated with cystic fibrosis (CF). To investigate the role of ICL4 in CFTR function and to learn how CF mutations in this region disrupt function, we studied several CF-associated ICL4 mutants. We found that most ICL4 mutants disrupted the biosynthetic processing of CFTR, although not as severely as the most common DeltaF508 mutation. The mutations had no discernible effect on the channel's pore properties; but some altered gating behavior, the response to increasing concentrations of ATP, and stimulation in response to pyrophosphate. These effects on activity were similar to those observed with mutations in the nucleotide-binding domains, suggesting that ICL4 might help couple activity of the nucleotide-binding domains to gating of the Cl- channel pore. The data also explain how these mutations cause a loss of CFTR function and suggest that some patients with mutations in ICL4 may have a milder clinical phenotype because they retain partial activity of CFTR at the cell membrane.
Comments [show]
None has been submitted yet.
No. Sentence Comment
148 We found that two NBD1 mutants, K464A and G551S, had a normal or increased response to PPi (Fig. 7C).
X
ABCC7 p.Gly551Ser 8702904:148:42
status: NEW200 Data are mean Ϯ S.E. of (n) measurements for: wild-type (9), F1052V (3), R1066L (4), A1067T (4), G551S (6), K464A (4), G1349D (5), K1250 M at 5 mM PPi (5), wild-type at 5 mM PPi (16).
X
ABCC7 p.Gly551Ser 8702904:200:103
status: NEW147 We found that two NBD1 mutants, K464A and G551S, had a normal or increased response to PPi (Fig. 7C).
X
ABCC7 p.Gly551Ser 8702904:147:42
status: NEW199 Data are mean 6 S.E. of (n) measurements for: wild-type (9), F1052V (3), R1066L (4), A1067T (4), G551S (6), K464A (4), G1349D (5), K1250 M at 5 mM PPi (5), wild-type at 5 mM PPi (16).
X
ABCC7 p.Gly551Ser 8702904:199:97
status: NEW[hide] Heterogeneity of phenotype in two cystic fibrosis ... J Med Genet. 1996 Aug;33(8):711-3. Parad RB
Heterogeneity of phenotype in two cystic fibrosis patients homozygous for the CFTR exon 11 mutation G551D.
J Med Genet. 1996 Aug;33(8):711-3., [PMID:8863168]
Abstract [show]
In the heterozygous state, the cystic fibrosis transmembrane conductance regulator (CFTR) exon 11 mutation G551D has been described as "severe," causing pancreatic insufficiency. Two cystic fibrosis (CF) patients homozygous for this mutation showed a mild rather than severe pancreatic phenotype and a variable pulmonary phenotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 It is still possible that a similar mutation, such as G551S,'5 is present (rather than G55 1 D) on one or both alleles and is producing a false positive result.
X
ABCC7 p.Gly551Ser 8863168:85:54
status: NEW[hide] Cystic fibrosis transmembrane conductance regulato... Am J Hum Genet. 1996 Jul;59(1):45-51. Miller PW, Hamosh A, Macek M Jr, Greenberger PA, MacLean J, Walden SM, Slavin RG, Cutting GR
Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis.
Am J Hum Genet. 1996 Jul;59(1):45-51., [PMID:8659542]
Abstract [show]
The etiology of allergic bronchopulmonary aspergillosis (ABPA) is not well understood. A clinical phenotype resembling the pulmonary disease seen in cystic fibrosis (CF) patients can occur in some individuals with ABPA. Reports of familial occurrence of ABPA and increased incidence in CF patients suggest a possible genetic basis for the disease. To test this possibility, the entire coding region of the cystic fibrosis transmembrane regulator (CFTR) gene was analyzed in 11 individuals who met strict criteria for the diagnosis of ABPA and had normal sweat electrolytes (< or = 40 mmol/liter). One patient carried two CF mutations (deltaF508/R347H), and five were found to carry one CF mutation (four deltaF508; one R117H). The frequency of the deltaF508 mutation in patients with ABPA was significantly higher than in 53 Caucasian patients with chronic bronchitis (P < .0003) and the general population (P < .003). These results suggest that CFTR plays an etiologic role in a subset of ABPA patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
63 DNA samples from ABPA patients were screened for nine additional mutations associated with pancreatic sufficient and atypical CF: R117H (ASO), R347P (NcoI digest) and R347H (HhaI digest), R334W (MspI digest), A455E (ASO and BamHI digest), G551S (ASO) (Strong et al. 1991), 2789+5G-*A (ASO), D1152H (ASO) (Tsui 1992), and 3849+10kbC-*T (ASO and HphI digest) (Highsmith et al. 1994).
X
ABCC7 p.Gly551Ser 8659542:63:239
status: NEW[hide] Disease-associated mutations in the fourth cytopla... J Biol Chem. 1996 Jun 21;271(25):15139-45. Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Clarke DM, Riordan JR
Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity.
J Biol Chem. 1996 Jun 21;271(25):15139-45., [PMID:8662892]
Abstract [show]
A cluster of 18 point mutations in exon 17b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has been detected in patients with cystic fibrosis. These mutations cause single amino acid substitutions in the most C-terminal cytoplasmic loop (CL4, residues 1035-1102) of the CFTR chloride channel. Heterologous expression of the mutants showed that 12 produced only core-glycosylated CFTR, which was retained in the endoplasmic reticulum; the other six mutants matured and reached the cell surface. In some cases substitution of one member of pairs of adjacent residues resulted in misprocessing, whereas the other did not. Thus, the secondary structure of CL4 may contribute crucially to the proper folding of the entire CFTR molecule. Cyclic AMP-stimulated iodide efflux was not detected from cells expressing the misprocessed variants but was from the other six, indicating that their mutations cause relatively subtle channel defects. Consistent with this, these latter mutations generally are present in patients who are pancreatic-sufficient, while the processing mutants are mostly from patients who are pancreatic-insufficient. Single-channel patch-clamp analysis demonstrated that the processed mutants had the same ohmic conductance as wild-type CFTR, but a lower open probability, generally due to an increase in channel mean closed time and a reduction in mean open time. This suggests that mutations in CL4 do not affect pore properties of CFTR, but disrupt the mechanism of channel gating.
Comments [show]
None has been submitted yet.
No. Sentence Comment
88 Other disease-causing CFTR mutants, which are appropriately processed and trafficked to the plasma membrane, show defective ion conduction properties (e.g. R334W, R347H, and R347P; Sheppard et al., 1993; Tabcharani et al., 1993) or defective regulation of channel activity (e.g. G551S, G1244E, S1255P, and G1349D; Anderson and Welsh, 1992).
X
ABCC7 p.Gly551Ser 8662892:88:279
status: NEW95 Other disease-causing CFTR mutants, which are appropriately processed and trafficked to the plasma membrane, show defective ion conduction properties (e.g. R334W, R347H, and R347P; Sheppard et al., 1993; Tabcharani et al., 1993) or defective regulation of channel activity (e.g. G551S, G1244E, S1255P, and G1349D; Anderson and Welsh, 1992).
X
ABCC7 p.Gly551Ser 8662892:95:279
status: NEW[hide] CFTR: the nucleotide binding folds regulate the ac... J Gen Physiol. 1996 Jan;107(1):103-19. Wilkinson DJ, Mansoura MK, Watson PY, Smit LS, Collins FS, Dawson DC
CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state.
J Gen Physiol. 1996 Jan;107(1):103-19., [PMID:8741733]
Abstract [show]
The functional roles of the two nucleotide binding folds, NBF1 and NBF2, in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) were investigated by measuring the rates of activation and deactivation of CFTR Cl- conductance in Xenopus oocytes. Activation of wild-type CFTR in response to application of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was described by a single exponential. Deactivation after washout of the cocktail consisted of two phases: an initial slow phase, described by a latency, and an exponential decline. Rate analysis of CFTR variants bearing analogous mutations in NBF1 and NBF2 permitted us to characterize amino acid substitutions according to their effects on the accessibility and stability of the active state. Access to the active state was very sensitive to substitutions for the invariant glycine (G551) in NBF1, where mutations to alanine (A), serine (S), or aspartic acid (D) reduced the apparent on rate by more than tenfold. The analogous substitutions in NBF2 (G1349) also reduced the on rate, by twofold to 10-fold, but substantially destabilized the active state as well, as judged by increased deactivation rates. In the putative ATP-binding pocket of either NBF, substitution of alanine, glutamine (Q), or arginine (R) for the invariant lysine (K464 or K1250) reduced the on rate similarly, by two- to fourfold. In contrast, these analogous substitutions produced opposite effects on the deactivation rate. NBF1 mutations destabilized the active state, whereas the analogous substitutions in NBF2 stabilized the active state such that activation was prolonged compared with that seen with wild-type CFTR. Substitution of asparagine (N) for a highly conserved aspartic acid (D572) in the ATP-binding pocket of NBF1 dramatically slowed the on rate and destabilized the active state. In contrast, the analogous substitution in NBF2 (D1370N) did not appreciably affect the on rate and markedly stabilized the active state. These results are consistent with a hypothesis for CFTR activation that invokes the binding and hydrolysis of ATP at NBF1 as a crucial step in activation, while at NBF2, ATP binding enhances access to the active state, but the rate of ATP hydrolysis controls the duration of the active state. The relatively slow time courses for activation and deactivation suggest that slow processes modulate ATP-dependent gating.
Comments [show]
None has been submitted yet.
No. Sentence Comment
150 The values listed in Table I show that NBF mutations generally reduced the value of (ko,, + ko~), in some cases by more TABLE I Summary ofActivation and DeactivationDatafor Wild-typeCFFR and Mutants of theInvariant Glycinein NBFI ((;,551)orNBF2 (G1349) CFTR Activation Deactivation klon KA (k,,n+ k,,n) (10 ~miu-1 k,,n kos latency *k,,t~ (raM) n (10-~min l) raM-l) (10-3min 1) (10 ~rain-j) n (min) (10-s min-I) wt 0.65 + 0.08 26 664 _+51 118 _+9 588 +-45 76 + 6 20 6.0 _+0.3 88 -+6 16 G551A 3.0 -+0.5*r 6 104 _+5"r 13 _+0.6*r 65 + 3*z 39 -+2* 5 7.7 +_0.5: 70 -+13: 4 G551S 4.7 +-0.5* 5 82 _+6*r 8 -+0.6*: 42 -+3*: 40 -+3*r 10 3.9 +_0.3*** 88 +-6: 6 G551D 9.3 -+0.01" 6 57 _+9*r 4 -+0.6*: 20 -+3*: 37 -+6"r 5 1.8 _+0.2"~ 84 -+10~ 6 G1349A 1.1 + 0.07*: 5 210 _+24"~ 35 -+4*: 172 -+20*: 38 +-4* 4 1.7 _+0.3"~ 184 + 20*: 5 G1349S 3.5 +-0.3* 4 199 _+46*: 23 -+5*: 117 -+27*r 82 -+19+ 6 2.3 _+0.5*+ 144 -+15": 6 G1349D 9.3 + 0.01" 8 114 _+16*++ 8 -+1": 40 +-6*r 74 -+11~ 5 0.6 -+0.1*++ 286 -+37*: 4 Valuesweredetermined as describedin Methods.The symbols(*) and (~) indicatesignificantdifferencesfrom wild-typeCFFRand the analogousmu- tant, respectively(P< 0.05).
X
ABCC7 p.Gly551Ser 8741733:150:568
status: NEW176 In NBF1, substitution to alanine (G551A), the most conservative change possible, reduced the relaxation rate by more than sixfold, and the less conservative substitutions to serine (G551S) and aspartic acid (G551D) progressively reduced the relaxation rate.
X
ABCC7 p.Gly551Ser 8741733:176:182
status: NEW178 Substitutions to serine (G1349S) and aspartic acid (G1349D) produced progressive reductions such that the relaxation rate for the least conservative mutation, G1349D, was about twice that for the comparable mutation in NBF1.
X
ABCC7 p.Gly551Ser 8741733:178:182
status: NEW194 ""'"~"NBF1 NBF2 ,~j:~ ,pit'-" 9 G551S o G1349S 20 jl~ 9 G551 D o G1349D o i, ,,,i,0, ,i,,,,i,,, ,i,, ,,i , ~ ,, B o lO 20 30 40 50 60 ,~ 100 80 E 60 or 40 2o ~ 0 c I0o- 80 " 6o - 40 .z- 20 - o- ictOOO'~ .D-O*'Q / ;~ / Eof 9 .
X
ABCC7 p.Gly551Ser 8741733:194:32
status: NEW222 The less conservative substitutions (G551S, G551D) progressively decreased the latency, but the reductions were always less than those induced by the corresponding mutations (G1349S, G1349D) in NBF2.
X
ABCC7 p.Gly551Ser 8741733:222:37
status: NEW223 The progressive destabilization of the active state suggested by the decreased latency seen with the G551S and G551D substitutions was not evident, however, in the subsequent phase of exponential decline.
X
ABCC7 p.Gly551Ser 8741733:223:101
status: NEW270 Here, however, mutations in the binding pocket clearly hastened deactivation, evidenced by decreases in the latency and increases in *kom while the mutations of glycine 551 moderately decreased *kom The latency was also decreased progressively by the less conservative mutations, G551S and G551D.
X
ABCC7 p.Gly551Ser 8741733:270:280
status: NEW275 For mutants of the NBF1 glycine (G551S and G551D), the values of *kon.
X
ABCC7 p.Gly551Ser 8741733:275:33
status: NEW277 Similarly, although the K1250R and D1370N mutants exhibited an increased latency, the values of *ko~ were not significantly different from that of wild type CFTR.
X
ABCC7 p.Gly551Ser 8741733:277:33
status: NEW340 Role of the Invariant Glycine The functional importance of the invariant glycine in NBF1 (G551) or NBF2 (G1349) is evident from the existence of mutations (G551S, G551D, and G1349D) that are associated with cystic fibrosis in humans (Cutting et al., 1990; Kerem et al., 1990; Strong et al., 1991).
X
ABCC7 p.Gly551Ser 8741733:340:156
status: NEW346 On the other hand, the results of Anderson and Welsh (1992) suggested that the mutations G551S and G1349D reduced the open probability of CFTR C1- channels without changing the K~/2 for the effect of ATP concentration on open probability.
X
ABCC7 p.Gly551Ser 8741733:346:89
status: NEW406 The conserved glycines in NBF1 (G551) and NBF2 (G1349) are both sites of mutations that cause either mild (G551S) or severe (G551D, G1349D) cystic fibrosis (Smitet al., 1993) but have not been associated with protein processing defects such as those that characterize the AF508 mutation.
X
ABCC7 p.Gly551Ser 8741733:406:107
status: NEW152 The values listed in Table I show that NBF mutations generally reduced the value of (ko,, + ko~), in some cases by more TABLE I Summary ofActivation and DeactivationDatafor Wild-typeCFFR and Mutants of theInvariant Glycinein NBFI ((;,551)orNBF2 (G1349) CFTR Activation Deactivation klon KA (k,,n+ k,,n) (10 ~miu-1 k,,n kos latency *k,,t~ (raM) n (10-~min l) raM-l) (10-3min 1) (10 ~rain-j) n (min) (10-s min-I) wt 0.65 + 0.08 26 664 _+51 118 _+9 588 +-45 76 + 6 20 6.0 _+0.3 88 -+6 16 G551A 3.0 -+0.5*r 6 104 _+5"r 13 _+0.6*r 65 + 3*z 39 -+2* 5 7.7 +_0.5: 70 -+13: 4 G551S 4.7 +-0.5* 5 82 _+6*r 8 -+0.6*: 42 -+3*: 40 -+3*r 10 3.9 +_0.3*** 88 +-6: 6 G551D 9.3 -+0.01" 6 57 _+9*r 4 -+0.6*: 20 -+3*: 37 -+6"r 5 1.8 _+0.2"~ 84 -+10~ 6 G1349A 1.1 + 0.07*: 5 210 _+24"~ 35 -+4*: 172 -+20*: 38 +-4* 4 1.7 _+0.3"~ 184 + 20*: 5 G1349S 3.5 +-0.3* 4 199 _+46*: 23 -+5*: 117 -+27*r 82 -+19+ 6 2.3 _+0.5*+ 144 -+15": 6 G1349D 9.3 + 0.01" 8 114 _+16* + + 8 -+1": 40 +-6*r 74 -+11~ 5 0.6 -+0.1* + + 286 -+37*: 4 Valuesweredetermined as describedin Methods.The symbols(*) and (~) indicatesignificantdifferencesfrom wild-typeCFFRand the analogousmu- tant, respectively(P< 0.05).
X
ABCC7 p.Gly551Ser 8741733:152:568
status: NEW197 ""'"~" NBF1 NBF2 ,~j:~ ,pit'-" 9 G551S o G1349S 20 jl~ 9 G551 D o G1349D o i, ,,,i,0, ,i,,,,i,,, ,i,, ,,i , ~ ,, B o lO 20 30 40 50 60 ,~ 100 80 E 60 o r 40 2o ~ 0 c I0o- 80 " 6o - 40 .z20 - o- ictOOO'~ .D-O*'Q / ;~ / Eof 9 .
X
ABCC7 p.Gly551Ser 8741733:197:33
status: NEW224 The less conservative substitutions (G551S, G551D) progressively decreased the latency, but the reductions were always less than those induced by the corresponding mutations (G1349S, G1349D) in NBF2.
X
ABCC7 p.Gly551Ser 8741733:224:37
status: NEW225 The progressive destabilization of the active state suggested by the decreased latency seen with the G551S and G551D substitutions was not evident, however, in the subsequent phase of exponential decline.
X
ABCC7 p.Gly551Ser 8741733:225:101
status: NEW272 Here, however, mutations in the binding pocket clearly hastened deactivation, evidenced by decreases in the latency and increases in *kom while the mutations of glycine 551 moderately decreased *kom The latency was also decreased progressively by the less conservative mutations, G551S and G551D.
X
ABCC7 p.Gly551Ser 8741733:272:280
status: NEW342 Role of the Invariant Glycine The functional importance of the invariant glycine in NBF1 (G551) or NBF2 (G1349) is evident from the existence of mutations (G551S, G551D, and G1349D) that are associated with cystic fibrosis in humans (Cutting et al., 1990; Kerem et al., 1990; Strong et al., 1991).
X
ABCC7 p.Gly551Ser 8741733:342:156
status: NEW348 On the other hand, the results of Anderson and Welsh (1992) suggested that the mutations G551S and G1349D reduced the open probability of CFTR C1-channels without changing the K~/2 for the effect of ATP concentration on open probability.
X
ABCC7 p.Gly551Ser 8741733:348:89
status: NEW408 The conserved glycines in NBF1 (G551) and NBF2 (G1349) are both sites of mutations that cause either mild (G551S) or severe (G551D, G1349D) cystic fibrosis (Smitet al., 1993) but have not been associated with protein processing defects such as those that characterize the AF508 mutation.
X
ABCC7 p.Gly551Ser 8741733:408:107
status: NEW[hide] Screening Young syndrome patients for CFTR mutatio... Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 1):1353-7. Friedman KJ, Teichtahl H, De Kretser DM, Temple-Smith P, Southwick GJ, Silverman LM, Highsmith WE Jr, Boucher RC, Knowles MR
Screening Young syndrome patients for CFTR mutations.
Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 1):1353-7., [PMID:7551394]
Abstract [show]
Young syndrome is characterized by obstructive azoospermia associated with chronic sinobronchial disease of an infectious nature, but normal sweat-gland and pancreatic function as well as normal nasal potential differences. Congenital bilateral absence of the vas deferens (CBAVD) in some patients arises from mutations within the cystic fibrosis (CF) transmembrane regulator (CFTR) gene. Because of some similarities between Young syndrome, CF, and CBAVD, we evaluated 13 patients with Young syndrome, including screening for more than 30 different mutations within the CFTR gene. The mean age of the patients was 43 yr (range, 32 to 50 yr), and all were of northern European extraction. The sweat chloride concentration was normal in all patients (mean = 29 mEq/L; range, 8 to 43 mEq/L). Most had intermittent bronchial and sinus infections, but none was chronically colonized with Staphylococcus aureus or Pseudomonas aeruginosa. The FEV1 was normal or only mildly reduced in most patients (mean = 74%; range, 48 to 100% predicted). Of 26 Young syndrome chromosomes, we identified one with the recognized CF mutation delta F508. The incidence of CFTR mutations (1 in 26) did not differ significantly from the expected carrier frequency in this population. In summary, it is unlikely that the typical Young syndrome patient has a clinical disease associated with CFTR mutation on both alleles.
Comments [show]
None has been submitted yet.
No. Sentence Comment
78 Of the 13 Young syndrome patients, we identified one (Patient 5) who was het- CBAVD Dl152H D1270N G576A* R75Q* P67L Rl17H 3849 + 10 KB C > T G551S Rl17H Pancreatic Sufficient, Moderate Pulmonary Symptoms, Normal Sweat Chloride Concentrations Pancreatic Sufficient, Moderate Pulmonary Symptoms R347P 2789 + 5 G > A R334W G85E R347H R347L Rl17H G91R A455E S945L Y563N Q1291H R297Q R352Q L1065P 3850-3 T > G F1286S 3849 + 10 KB C > T TABLE 1 CFTR MUTATION SCREENING PANEL Severe M508 G551D R553X N1303K W1282X G542X 1717-1 G > A ~1507 R560T 3659deiC 621 + 1 G > T S549N TABLE 2 CLINICAL FEATURES OF YOUNG SYNDROME PATIENTS Patient Age Sweat CI- FEV, Paranasal Sputum No.
X
ABCC7 p.Gly551Ser 7551394:78:141
status: NEW[hide] Mechanism of dysfunction of two nucleotide binding... EMBO J. 1995 Mar 1;14(5):876-83. Sheppard DN, Ostedgaard LS, Winter MC, Welsh MJ
Mechanism of dysfunction of two nucleotide binding domain mutations in cystic fibrosis transmembrane conductance regulator that are associated with pancreatic sufficiency.
EMBO J. 1995 Mar 1;14(5):876-83., [PMID:7534226]
Abstract [show]
Variability in the severity of cystic fibrosis (CF) is in part due to specific mutations in the CF transmembrane conductance regulator (CFTR) gene. To understand better how mutations in CFTR disrupt Cl- channel function and to learn about the relationship between genotype and phenotype, we studied two CF mutants, A455E and P574H, that are associated with pancreatic sufficiency. A455E and P574H are located close to conserved ATP binding motifs in CFTR. Both mutants generated cAMP-stimulated apical membrane Cl- currents in heterologous epithelial cells, but current magnitudes were reduced compared with wild-type. Patch-clamp analysis revealed that both mutants had normal conductive properties and regulation by phosphorylation and nucleotides. These mutants had normal or increased Cl- channel activity: A455E had an open-state probability (Po) similar to wild-type, and P574H had an increased Po because bursts of activity were prolonged. However, both mutants produced less mature glycosylated protein, although levels were greater than observed with the delta F508 mutant. These changes in channel activity and processing provide a quantitative explanation for the reduced apical Cl- current. These data also dissociate structural requirements for channel function from features that determine processing. Finally, the results suggest that the residual function associated with these two mutants is sufficient to confer a milder clinical phenotype and infer approaches to developing treatments.
Comments [show]
None has been submitted yet.
No. Sentence Comment
126 For example, G551S, G1244E, S1255P and G1349D had a markedly reduced PO at all concentrations of MgATP tested, and S1255P was less potently stimulated by MgATP (Anderson and Welsh, 1992; Smit et al., 1993).
X
ABCC7 p.Gly551Ser 7534226:126:13
status: NEW127 Therefore, we tested the hypothesis that ATP-dependent regulation of A455E and P574H was altered.
X
ABCC7 p.Gly551Ser 7534226:127:13
status: NEW[hide] Cystic fibrosis: genotypic and phenotypic variatio... Annu Rev Genet. 1995;29:777-807. Zielenski J, Tsui LC
Cystic fibrosis: genotypic and phenotypic variations.
Annu Rev Genet. 1995;29:777-807., [PMID:8825494]
Abstract [show]
Cystic fibrosis (CF) is a common genetic disorder in the Caucasian population. The gene was identified in 1989 on the basis of its map location on chromosome 7. The encoded gene product, named cystic fibrosis transmembrane conductance regulator (CFTR), corresponds to a cAMP-regulated chloride channel found almost exclusively in the secretory epithelial cells. Although the major mutation that results in a single amino acid deletion (F508) accounts for 70% of the disease alleles, more than 550 additional mutant alleles of different forms have been detected. Many of these mutations can be divided into five general classes in terms of their demonstrated or presumed molecular consequences. In addition, a good correlation has been found between CFTR genotype and one of the clinical variables--pancreatic function status. An unexpected finding, however, is the documentation of CFTR mutations in patients with atypical CF disease presentations, including congenital absence of vas deferens and several pulmonary diseases. Thus, the implication of CFTR mutation is more profound than CF alone.
Comments [show]
None has been submitted yet.
No. Sentence Comment
631 The range of effects of dysregulation of the channel includes those with a severe lack of function (such as that for G551D), reduced response to ATP stimulation (S1255P), and slight reduction of absolute activity (G551S, G1244E, and G1349D) (7, 63).
X
ABCC7 p.Gly551Ser 8825494:631:214
status: NEW[hide] Association of pancreatic adenocarcinoma, mild lun... Clin Chem. 1994 Oct;40(10):1972-4. Tsongalis GJ, Faber G, Dalldorf FG, Friedman KJ, Silverman LM, Yankaskas JR
Association of pancreatic adenocarcinoma, mild lung disease, and delta F508 mutation in a cystic fibrosis patient.
Clin Chem. 1994 Oct;40(10):1972-4., [PMID:7522998]
Abstract [show]
A case of adenocarcinoma of the pancreas and mild lung disease in a 39-year-old man homozygous for the delta F508 cystic fibrosis mutation is presented. Cystic fibrosis is the most common lethal genetic disease in Caucasians, and is most commonly associated with severe obstructive lung disease. To our knowledge, this is only the fifth case of adenocarcinoma of the pancreas in a CF patient to be reported and the first case for which molecular data are available. The rare incidence of this type of malignancy in the general population suggests a possible association of CF with this malignant disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
44 CorrelatIon of phenotype and genotype of CFTR mutations Key phenotypic Lung disease SweatC1 Exocnne pancreas function Vasdeferens Associated CFTR mutations Pancreatic InsuffIcIent Pancreatic sufficient Normalsweat C1 Severe Less severe Relatively mild Elevated Elevated Normal Insufficient Sufficient Sufficient Absent Absent Absent SF508, G542X, R553X, G5510, Ni 303K, Wi 282X, RI 17H, and others 2789 + 5G>A, R117H, R334W, R347P, A455E, P574H, S945L, G85E, and others G551S, R117H, 3849 + 10kb C>T, and others Congenitalabsence of the vas deferens None Normal or elevated Sufficient Absent F508C, Ri 17H, Di D1152H, and others FIg. 2.
X
ABCC7 p.Gly551Ser 7522998:44:470
status: NEW[hide] Mutation analysis in 600 French cystic fibrosis pa... J Med Genet. 1994 Jul;31(7):541-4. Chevalier-Porst F, Bonardot AM, Gilly R, Chazalette JP, Mathieu M, Bozon D
Mutation analysis in 600 French cystic fibrosis patients.
J Med Genet. 1994 Jul;31(7):541-4., [PMID:7525963]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR) gene of 600 unrelated cystic fibrosis (CF) patients living in France (excluding Brittany) was screened for 105 different mutations. This analysis resulted in the identification of 86% of the CF alleles and complete genotyping of 76% of the patients. The most frequent mutations in this population after delta F508 (69% of the CF chromosomes) are G542X (3.3%), N1303K (1.8%), W1282X (1.5%), 1717-1G-->A (1.3%), 2184delA + 2183 A-->G (0.9%), and R553X (0.8%).
Comments [show]
None has been submitted yet.
No. Sentence Comment
21 Among the 104 other CFTR mutations tested on the 373 non-AF508 CF chromosomes, none of the following 58 mutations were found: G91R, 435 insA, 444delA, D11OH, 556delA, 557delT, R297Q, 1154insTC, R347L, R352Q, Q359K/T360K, 1221delCT, G480C, Q493R, V520F, C524X, 1706dell7, S549R (A-C), S549N, S549I, G551S, 1784delG, Q552X, L558S, A559T, R560T, R560K, Y563N, P574H, 2307insA, 2522insC, 2556insAT, E827X, Q890X, Y913C, 2991de132 (Dork et al, personal communication), L967S, 3320ins5, 3359delCT, H1085R, R1158X, 3662delA, 3667del4, 3667ins4, 3732delA, 3737delA, W1204X, 3750delAG, I 1234V, Q1238X, 3850- 3T-+G, 3860ins31, S1255X, 3898insC, D1270N, R1283M, F1286S, 4005 + I G-A. Forty-six other mutations were found on at Distribution of CFTR mutations found in our sample ofpopulation (1200 CF chromosomes) Mutations tested No of CF chromosomes Haplotypes Method with the mutation XV2C-KM19 (% of total CF alleles) Exon 3: G85E 4 (033) 3C HinfI/ASO394delTT 2 2B PAGEExon 4: R117H 1 B ASOY122X 2 2C MseI/sequenceI148T 1 B ASO621+IG-J* 1 B MseIIASOExon 5: 711+1G--T 8(07) 8A ASOExon 7: AF311 1 C PAGE/sequencelO78delT 5 (0-42) 5C PAGE/ASOR334W 5 (0-42) 2A,2C,ID MspIlASOR347P 5 (042) 5A CfoI/NcoIR347H 1 Cfol/sequenceExon 9: A455E 1 B ASOExon 10: S492F I C DdeI/sequenceQ493X 1 D ASOl609deICA 1 C PAGE/Ddel/sequenceA1507 3 (025) 3D PAGE/ASOAF508 827 (69) 794B,30D,2C,IA PAGEl677delTA 1 A PAGE/sequenceExon I11: 1717-IG--.A 16(1-3) 14B Modified primers + AvaIIG542X 40 (3-3) 29B,5D,2A Modified primers + BstNiS549R(T--*G) 2 2B ASOG551D 3 (025) 3B HincII/Sau3AR553X 10(0-8) 6A,1B,2C,ID Hincll/sequenceExon 12: 1898+IG--A 1 C ASO1898+ IG-C 2 IC ASOExon 13: l9l8deIGC 1 A PAGE/sequence1949de184 I C PAGE/sequenceG628R(G-+A) 2 2A Sequence2118de14 I c PAGE/sequence2143de1T 1 B PAGE/modified primers2184de1A+2183A--*G 11 (0-9) lIB PAGE/ASO2184de1A 1 ASOK710X 3 (025) IC XmnI2372de18 1 B PAGE/sequenceExon 15: S945L 1 C TaqlExon 17b:L1065P I MnlIL1077P 1 A ASOY1092X 3 (025) 2C,IA Rsal/ASOExon 19: RI1162X 6 (0-5) 5C,IA DdeI/ASO3659delC 3 (025) 3C ASOExon 20: G1244E 2 2A MboIIS1251N 2 2C RsaI3905insT 4 (0-33) 4C PAGE/ASOW1282X 18 (105) 15B,1D MnlI/ASOR1283K 1 C Mnll/sequenceExon 21: N1303K 22 (1-8) 18B,lA,ID Modified primers+BstNI 47 mutations 1031 (85 9) least one CF chromosome (table): 21 of them are very rare as they were found on only one CF chromosome in our population.
X
ABCC7 p.Gly551Ser 7525963:21:298
status: NEW[hide] Functional roles of the nucleotide-binding folds i... Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9963-7. Smit LS, Wilkinson DJ, Mansoura MK, Collins FS, Dawson DC
Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator.
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9963-7., [PMID:7694298]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR), a member of the traffic ATPase superfamily, possesses two putative nucleotide-binding folds (NBFs). The NBFs are sufficiently similar that sequence alignment of highly conserved regions can be used to identify analogous residues in the two domains. To determine whether this structural homology is paralleled in function, we compared the activation of chloride conductance by forskolin and 3-isobutyl-1-methylxanthine in Xenopus oocytes expressing CFTRs bearing mutations in NBF1 or NBF2. Mutation of a conserved glycine in the putative linker domain in either NBF produced virtually identical changes in the sensitivity of chloride conductance to activating conditions, and mutation of this site in both NBFs produced additive effects, suggesting that in the two NBFs this region plays a similar and critical role in the activation process. In contrast, amino acid substitutions in the Walker A and B motifs, thought to form an integral part of the nucleotide-binding pockets, produced strikingly different effects in NBF1 and NBF2. Substitutions for the conserved lysine (Walker A) or aspartate (Walker B) in NBF1 resulted in a marked decrease in sensitivity to activation, whereas the same changes in NBF2 produced an increase in sensitivity. These results are consistent with a model for the activation of CFTR in which both NBF1 and NBF2 are required for normal function but in which either the nature or the exact consequences of nucleotide binding differ for the two domains.
Comments [show]
None has been submitted yet.
No. Sentence Comment
66 As previously reported (18), G551S, a mutation associated with mild disease (34), exhibited a moderate reduction in sensitivity (K1l2 = 1.1 mM IBMX) compared to wild-type (Kl2 = 0.3 mM).
X
ABCC7 p.Gly551Ser 7694298:66:29
status: NEW68 G551D, associated with severe CF (35, 36), and G1349D, also a CF mutation (37), both exhibited a dramatic reduction in sensitivity (K1l2 = 2.5 0 0 wt (12) 100 E .E CO) NBF1 A A G551A c O G551S V v G551 D NBF2 (8) A-A G1349A (9) * * G1349S (6) '-V G1349D (4) (6) (8) 0.2 0.5 1 IBMX, mM FIG. 2.
X
ABCC7 p.Gly551Ser 7694298:68:187
status: NEW77 To explore further the relative contributions of the two domains, we measured the activation of Cl- currents in oocytes expressing the double mutants G551S/G1349S and G551D/G1349D.
X
ABCC7 p.Gly551Ser 7694298:77:150
status: NEW86 In NBF1 the substitution resulted in a moderate reduction in the sensitivity of CFTR to activation (K1l2 = 0.8 mM), roughly equivalent to that seen with G551S.
X
ABCC7 p.Gly551Ser 7694298:86:153
status: NEW92 The dose- 100- g 80-E C3) ° 60- V ai) X 40- E co 20 NBF1 O O G551S (9) v-v G551D (6) 0 Owt (12) T 6o NBF1 + NBF2 O--O G551S + G1349S (7) *--* G551 D + G 1 349D (5) Oz0 6 0 / T/ * , * /1 ° T 0 r / / / 3 _ -- ........ 0.02 0.05 0.2 0.5 1 2 IBMX, mM O-O wt (12) V-V K464Q ( 4) 1OOT 9 80E 0I-) I00160- -0 .
X
ABCC7 p.Gly551Ser 7694298:92:66
status: NEWX
ABCC7 p.Gly551Ser 7694298:92:123
status: NEW107 Both glycines were replaced by serines (G551S + G1349S) or aspartates (G551D + G1349D), and the dose-response relationships were constructed as in Fig. 2.
X
ABCC7 p.Gly551Ser 7694298:107:40
status: NEW119 Anderson and Welsh (28) found that in detached patches from transfected cells, mutation of the conserved glycine (G551S or G1349D) dramatically reduced the value ofthe open probability (PO) in the presence ofPKA and MgATP.
X
ABCC7 p.Gly551Ser 7694298:119:114
status: NEW[hide] Molecular mechanisms of CFTR chloride channel dysf... Cell. 1993 Jul 2;73(7):1251-4. Welsh MJ, Smith AE
Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis.
Cell. 1993 Jul 2;73(7):1251-4., [PMID:7686820]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
17 Classes of CFTR Mutations That Cause CF Class Defect Examples Do- Fre- Clin- main quency ical Protein production Nonsense mutations Frameshift Splice Processing Conduction 6542X NBDI 3.4 3905 insT NBD2 2.1 621 + G-T MSDl 1.3 Al507 NBDl AF506 NBDl s5491 NBDl S549R NED1 A559T NED1 N1303K NBDP G551 D NBDl G551S NBDl G1244E NBDP S1255P NBDP G1349D NBDP RI 17H MSDI R334W MSDl R347P MSDl 0.5 67.2 Rare 0.3 Rare 1.a 2.4 Rare Rare Rare Rare 0.6 0.4 0.5 PI PI PI PI PI PI PI PI PS PI PI PI PS PS PS NED, nucleotide-binding domain; MSD, membrane-spanning domain; PI, pancreatic insufficiency; PS, pancreatic sufficiency.
X
ABCC7 p.Gly551Ser 7686820:17:304
status: NEW56 Some nucleotide-binding domain mutants (such as G551D) have very little function, in some (such as S1255P) ATP is less potent at stimulating activity, and the absolute activity of others (such as G551S, G1244E, and G1349D) is reduced (Anderson and Welsh, 1992; Drumm et al., 1991).
X
ABCC7 p.Gly551Ser 7686820:56:196
status: NEW99 Some individuals with class Ill mutants (e.g., G551S) are also pancreatic sufficient (Strong et al., 1991), whereas most others (e.g., G551D) are pancreatic insufficient (Cutting et al., 1990).
X
ABCC7 p.Gly551Ser 7686820:99:47
status: NEW[hide] Genetic determinants of airways' colonisation with... Lancet. 1993 Jan 23;341(8839):189-93. Kubesch P, Dork T, Wulbrand U, Kalin N, Neumann T, Wulf B, Geerlings H, Weissbrodt H, von der Hardt H, Tummler B
Genetic determinants of airways' colonisation with Pseudomonas aeruginosa in cystic fibrosis.
Lancet. 1993 Jan 23;341(8839):189-93., [PMID:7678316]
Abstract [show]
Exocrine pancreatic insufficiency and lung infection with Pseudomonas aeruginosa are major features of cystic fibrosis (CF). This monogenic disease is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. 267 children and adolescents with CF who were regularly seen at the same centre were assessed for an association of the CFTR mutation genotype with exocrine pancreatic function and the age of onset of chronic colonisation with P aeruginosa. The major mutation delta F508 accounted for 74% of CF alleles; 33 further CFTR mutations had been detected on the CF chromosomes of the study population by June, 1992. With the exception of delta F508/R347P compound heterozygotes, patients of the same mutation genotype were either pancreas insufficient (PI) or pancreas sufficient (PS). The age-specific colonisation rates with P aeruginosa were significantly lower in PS than in PI patients. The missense and splice site mutations that are "mild" CF alleles with respect to exocrine pancreatic function were also "low risk" alleles for the acquisition of P aeruginosa. On the other hand, the proportion of P aeruginosa-positive patients increased most rapidly in the PI delta F508 compound heterozygotes who were carrying a termination mutation in the nucleotide binding fold-encoding exons. Pancreatic status and the risk of chronic airways' colonisation with P aeruginosa are predisposed by the CFTR mutation genotype and can be differentiated by the type and location of the mutations in the CFTR gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
71 The NBF gene mutations in the study population were all severe disease alleles with respect to pancreatic function, and none of the rare PS alleles G551S, Y563N, P574H was detected.4,25 Hence, our findings do not necessarily imply that a NBF mutation should a priori be considered a "high risk" allele but rather that the more common "severe" disease alleles cluster in the NBF.
X
ABCC7 p.Gly551Ser 7678316:71:148
status: NEW[hide] The spectrum of cystic fibrosis mutations. Trends Genet. 1992 Nov;8(11):392-8. Tsui LC
The spectrum of cystic fibrosis mutations.
Trends Genet. 1992 Nov;8(11):392-8., [PMID:1279852]
Abstract [show]
Although the major mutation causing cystic fibrosis accounts for almost 70% of mutant chromosomes screened, almost 300 sequence alterations have been identified in the gene during the past two and a half years. At least 230 of these mutations are probably associated with disease. This rapid accumulation of data is in part due to the highly coordinated effort by members of the Cystic Fibrosis Genetic Analysis Consortium. The information is not only essential to genetic diagnosis, but also will aid in understanding the structure and function of the protein, and possibly in correlating genotype with phenotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
123 8 NO. 11 m []~EVIEWS G551D R553Q G551S I L558S aI~7 S5491 I I 1&559T A455F E5040 I&F508 V520F SS49NII IIR560T PS74H I G458V G480C $492F /" • ss,9 II III* oa. / III / NBF1 ~t ~t NBF2 I I I I I III I I I 11234V G1244E IS1255P D1270N II I Q1291H N1303K G1349D S1251N W1282R] F1286S N1303H Q1283M, FIG[] Cystic fibrosis (missense) mutations located within the two presumptive ATP-binding domains (NBF1 and NBF2) of CFTR.
X
ABCC7 p.Gly551Ser 1279852:123:34
status: NEW[hide] Cystic fibrosis gene. Br Med Bull. 1992 Oct;48(4):738-53. Harris A
Cystic fibrosis gene.
Br Med Bull. 1992 Oct;48(4):738-53., [PMID:1281033]
Abstract [show]
The cystic fibrosis gene, located at 7q31, spans about 230 kb of genomic DNA and contains 27 exons. The cDNA of 6.2kb would predict an 1480 amino acid protein, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR has a high degree of homology with members of the ABC-transporter super family. The predicted protein structure consists of two membrane-spanning domains, each of 6 sub-units, anchoring CFTR in the apical membrane of specialized epithelial cells, 2 nucleotide binding folds (NBF) and a regulatory (R) domain. Disease-associated mutations in the CF gene are mainly clustered in the nucleotide-binding folds. The most common mutation, occurring in 70% of CF genes in Northern Europe and North America, is the deletion of amino acid phenylalanine at position 508 in the first NBF (ie delta F508).
Comments [show]
None has been submitted yet.
No. Sentence Comment
114 In one case two siblings with mild pulmonary disease and normal sweat electrolyte concentrations were found to be homozygous for a glycine to serine substitution at amino acid 551 in the first NBF of CFTR.31 Other patients with this phenotype were found to carry a 750 CYSTIC FIBROSIS GENE mutation in intron 19 that caused the insertion of 83bp into the CFTR mRNA32 or to be compound heterozygotes for other denned mutations in CFTR.™ Another interesting phenotype that may be associated with mutations in CFTR is that of congenital absence of the vas deferens.
X
ABCC7 p.Gly551Ser 1281033:114:131
status: NEW[hide] Cystic fibrosis transmembrane conductance regulato... FASEB J. 1992 Jul;6(10):2775-82. McIntosh I, Cutting GR
Cystic fibrosis transmembrane conductance regulator and the etiology and pathogenesis of cystic fibrosis.
FASEB J. 1992 Jul;6(10):2775-82., [PMID:1378801]
Abstract [show]
Cystic fibrosis (CF) is an inherited disorder causing pancreatic, pulmonary, and sinus disease in children and young adults. Abnormal viscosity of mucous secretions is a hallmark of the disease, and is believed to be the result of altered electrolyte transport across epithelial cell membranes. The monogenic etiology of this disease has been apparent for more than 40 years, but the defective gene has only recently been identified. This was made possible because of a revolution in genetic technology, called positional cloning, which can pinpoint disease genes without previous knowledge of the abnormal protein product. The protein encoded by the gene defective in CF has been termed the CF transmembrane conductance regulator (CFTR) because of its postulated role in electrolyte transport. Studies investigating the normal function of CFTR and how mutations affect that function, thereby causing CF, have required the combined skills of clinicians, geneticists, molecular biologists, and physiologists. From this collaborative effort a greater understanding of the pathogenesis of this disorder is now emerging. It may soon be possible to introduce novel therapies derived from this new knowledge that will be aimed directly at the basic defect. An ever-increasing number of genes of unknown function will be identified by continuing advances in molecular genetic technology and the advent of the genome sequencing project. The experience in cystic fibrosis research may prove to be a paradigm for investigation of the function of genes isolated by positional cloning methods.
Comments [show]
None has been submitted yet.
No. Sentence Comment
173 Furthermore, CFTR mutants (AF508, G551D, and G551S) expressed in Xenopus oocytes demonstrate partial function after stimulation of cAMP levels with high concentrations of the phosphodiesterase inhibitor, IBMX (60).
X
ABCC7 p.Gly551Ser 1378801:173:45
status: NEW[hide] Cystic fibrosis: the 'bicarbonate before chloride'... Curr Biol. 2001 Jun 26;11(12):R463-6. Wine JJ
Cystic fibrosis: the 'bicarbonate before chloride' hypothesis.
Curr Biol. 2001 Jun 26;11(12):R463-6., [PMID:11448786]
Abstract [show]
The specific effects of some mutations that cause cystic fibrosis suggest that reduced HCO(3)(-) transport is the key to understanding cystic fibrosis pathology. But there is a puzzling discrepancy between measures of CFTR-mediated chloride conductance in expression systems and the sweat chloride values of patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
52 Ion transport (% WT) 42 41 69 75 >100 >100 98 + 103 100 + + 120 Pancreatic sufficient Pancreatic insufficient Bicarbonate Chloride - intermediate Chloride - high Unknown WT D648V R117H R1070Q H949Y G551S H620Q I148T A1067T G178R G970R S1255P G1244E G551D G1349D 0 0.5 1 1.5 2 2.5 Current Biology ࢞F508 Dispatch R absence of the vas deferens [16].
X
ABCC7 p.Gly551Ser 11448786:52:198
status: NEW57 The clinical status and cystic-fibrosis-related physiology of a woman homozygous for the mutation G551S has been described in detail [17].
X
ABCC7 p.Gly551Ser 11448786:57:98
status: NEW63 That relationship cannot be understood by their model, nor can the evidence for low chloride permeability in the nasal epithelium of the subject homozygous for the G551S mutation.
X
ABCC7 p.Gly551Ser 11448786:63:164
status: NEW77 Published values were found for H949Y [22] and G551S [17] and I148T [13].
X
ABCC7 p.Gly551Ser 11448786:77:47
status: NEW[hide] Therapeutic strategies to correct malfunction of C... Paediatr Respir Rev. 2001 Jun;2(2):159-64. Lim M, Zeitlin PL
Therapeutic strategies to correct malfunction of CFTR.
Paediatr Respir Rev. 2001 Jun;2(2):159-64., [PMID:12531063]
Abstract [show]
Cystic fibrosis (CF) is a systemic autosomal recessive inherited disorder that results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although the gene was cloned 11 years ago, there still is no definitive treatment to correct the functional deficit. Current treatment strategies focus on pancreatic enzyme replacement and control of pulmonary inflammation and infection. This review examines novel strategies still in preclinical development or phase 1 clinical trials. Gene therapy is an evolving area of study that offers the potential for a cure for cystic fibrosis. CF lung disease is a significant barrier to effective gene delivery and transfer, but new vectors show promise in overcoming these limitations. There are also new pharmacological therapies aimed at correcting defects in CFTR processing and function. These are tailored to the specific class of mutation but may offer therapeutic benefit to many patients. They include phenylbutyrate, flavonoids, aminoglycosides and xanthines.
Comments [show]
None has been submitted yet.
No. Sentence Comment
60 Type Genotype Phenotypea Defect Potential therapeutics Class I G542X PI No CFTR synthesis, aminoglycosides 621 + 1 G T No cell surface Cl- 3905insT transport W1282X R553X 1717-1 G A Class II F508b PI Defective CFTR 4-PBA, flavonoids, N1303K trafficking and chemical chaperones, P574Hb processing xanthines A455Eb Class III G551D PI Defective channel flavonoids, milrinone G551S regulation, reduced or absent Cl-transport Class IV R117H PS Reduced Cl-transport 4-PBA, xanthines, R334W flavonoids G314E R347P F508b P574Hb ClassV 3849 + 10 kb CT PS Reduced number of flavonoids, milrinone, 2789 + 5 G A normal CFTR proteins 4-PBA 3272 - 26 A G Reduced Cl-transport A455Eb 3120+1 GA 1811 + 1.6 kb A G a PI indicates pancreatic insufficiency; PS indicates pancreatic sufficiency.
X
ABCC7 p.Gly551Ser 12531063:60:387
status: NEW[hide] Diagnosis of cystic fibrosis in adults with diffus... J Cyst Fibros. 2004 Mar;3(1):15-22. Hubert D, Fajac I, Bienvenu T, Desmazes-Dufeu N, Ellaffi M, Dall'ava-Santucci J, Dusser D
Diagnosis of cystic fibrosis in adults with diffuse bronchiectasis.
J Cyst Fibros. 2004 Mar;3(1):15-22., [PMID:15463882]
Abstract [show]
We assessed the contribution of the sweat test, genotyping and nasal potential difference (NPD) in the diagnosis of cystic fibrosis (CF) in adults with diffuse bronchiectasis (DB). Among 601 adults referred for DB from 1992 to 2001, 46 were diagnosed with CF. The sweat test was positive in 37 patients and normal or intermediate in nine patients. Two CF mutations were identified in 18 patients (39%) by screening for 31 mutations and in 36 patients (78%) after complete genetic analysis. NPD was suggestive of CF in 71% of the patients. The combination of the sweat test and genetic analysis led to the diagnosis of CF in 45 patients. In the nine patients with normal or intermediate sweat test, the diagnosis was confirmed by screening for 31 mutations in five, by complete genetic screening in three, and by NPD in the remaining patient. Searching for CF should start with sweat test. If the sweat test is normal or intermediate, screening for 31 mutations may help to diagnose CF. A complete genetic analysis is indicated when only one mutation is detected and/or when other clinical features, such as obstructive azoospermia or pancreatic insufficiency, are suggestive of CF. NPD measurement is indicated in controversial cases.
Comments [show]
None has been submitted yet.
No. Sentence Comment
135 However, it is now clear that some CF mutations are associated with normal sweat chloride values, as described for the 3849q10kbCࡊT w22x and G551S mutations w23x.
X
ABCC7 p.Gly551Ser 15463882:135:147
status: NEW[hide] CFTR gene analysis in Latin American CF patients: ... J Cyst Fibros. 2007 May;6(3):194-208. Epub 2006 Sep 11. Perez MM, Luna MC, Pivetta OH, Keyeux G
CFTR gene analysis in Latin American CF patients: heterogeneous origin and distribution of mutations across the continent.
J Cyst Fibros. 2007 May;6(3):194-208. Epub 2006 Sep 11., [PMID:16963320]
Abstract [show]
BACKGROUND: Cystic Fibrosis (CF) is the most prevalent Mendelian disorder in European populations. Despite the fact that many Latin American countries have a predominant population of European-descent, CF has remained an unknown entity until recently. Argentina and Brazil have detected the first patients around three decades ago, but in most countries this disease has remained poorly documented. Recently, other countries started publishing their results. METHODS: We present a compilation and statistical analysis of the data obtained in 10 countries (Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, Mexico, Uruguay and Venezuela), with a total of 4354 unrelated CF chromosomes studied. RESULTS: The results show a wide distribution of 89 different mutations, with a maximum coverage of 62.8% of CF chromosomes/alleles in the patient's sample. Most of these mutations are frequent in Spain, Italy, and Portugal, consistent with the origin of the European settlers. A few African mutations are also present in those countries which were part of the slave trade. New mutations were also found, possibly originating in America. CONCLUSION: The profile of mutations in the CFTR gene, which reflects the heterogeneity of its inhabitants, shows the complexity of the molecular diagnosis of CF mutations in most of the Latin American countries.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 Some have concentrated in the search of specific mutations that are Table 1 Mutations found in the Latin American CF patients Exon 1 p.L6VÌe; Exon 3 p.W57X, p.R75X, p.G85E Exon 4 p.R117H Exon 6a p.H199Y, p.V201M, p.L206W, p.Q220X, p.V232D, c.846delTÌe; Exon 6b p.Y275XÌe;, c.935delA Exon 7 p.R334W, p.R347P, p.Y362XÌe;, c.1078delT, c.1215delG Exon 8 c.1323_1324insAÌe; Exon 9 c.1460_1461delATÌe;, c.1353_1354insTÌe;,# Exon 10 p.I506T, p.I507del, p.F508del Exon 11 p.G542X, p.S549N, p.S549R, p.G551D, p.G551S, p.R553X, p.L558S, p.A559T, c.1782delA Exon 12 p.S589I Exon 13 p.H609RÌe;, p.P750L, p.V754M, c.1924_1930del, c.2055_2063del, c.2183AA NG;c.2184delA, c.2184delA, c.2185_2186insC, c.2347delG, c.2566_2567insTÌe;, c.2594_2595delGTÌe; Exon 14a p.R851L, c.2686_2687insTÌe; Exon 15 c.2869_2870insG Exon 16 c.3120+1GNA Exon 17a p.I1027T, c.3171delC, c.3199_3204del Exon 17b p.G1061R, p.R1066C, p.W1069X#, p.W1089X, p.Y1092X, p.W1098CÌe; Exon 19 p.R1162X, p.W1204X, p.Q1238X, c.3617_3618delGAÌe;#, c.3659delC Exon 20 p.W1282X, p.R1283M Exon 21 p.N1303K, c.4016_4017insT Exon 22 c.4160_4161insGGGGÌe; 5' flanking c.-834GNT Intron 2 c.297-1GNAÌe;, c.297-2ANG Intron 3 c.406-1GNA Intron 4 c.621+1GNT Intron 5 c.711+1GNT Intron 8 c.IVS8-5T Intron 10 c.1716GNA, c.1717-1GNA Intron 11 c.1811+1.6KbANG, c.1812-1GNA Intron 12 c.1898+1GNA, c.1898+3ANG Intron 14 c.2789+2_2789+3insA, c.2789+5GNA Intron 17a c.3272-26ANG Intron 17b c.3500-2ANGÌe; Intron 19 c.3849+1GNA, c.3849+10KbCNT Intron 20 c.4005+1GNA, c.4005-1GNA# Mutations are listed according to their position in the gene.
X
ABCC7 p.Gly551Ser 16963320:42:530
status: NEW51 Table 2 p.I507del p.S549N p.S549R p.G551D p.G551S p.R553X p.L558S p.A559T p.S589I p.H609RÌe; p.P750L p.V754M p.R851L p.I1027T p.G1061R p.R1066C p.W1069X# p.W1089X p.Y1092X p.W1098CÌe; p.W1204X 3 0 1 0 1 1 1 1 1 0 4 1 2 3 1 3 0.24 1 0.08 1 0.08 6 0.48 2 0.16 1 0.08 1 0.08 4 0.32 1 0.08 1 4 1 2 1 1 0 0 0 1 0 0 0 1 1 0 1 0 2 0 1 3 0 0 0 0 0 0 1 0.05 1 0.05 1 0.05 10 0.54 1 0.05 2 0.11 3 0.16 3 0 0 0 1 0 1 1 2 0.79 4 1.58 4 1 1 1 1 4 1.83 1 0.46 1 0.46 1 0.46 1 0.46 0 0 0 0 0 0 0 5 5 1 1 1 1 1 1 1 1 1 1 1 5 1.82 6 2.19 1 0.36 1 0.36 1 0.36 1 0.36 1 0.36 1 0.36 1 0.36 1 0.36 1 0.36 1 0.36 1 1.31 1 1.31 1 1.31 10 6 6 6 1 22 1 1 2 1 1 1 1 1 1 6 1 3 5 1 1 0.23 0.14 0.14 0.14 0.02 0.51 0.02 0.02 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.14 0.02 0.07 0.11 0.02 0.02 (continued on next page) Table 2 Mutation frequencies in Latin American CF patients Country p.Q1238X p.R1283M c.-834GNT c.297-1GNA* c.297-2ANG c.406-1GNA c.621+1GNT c.711+1GNT c.846delT* c.935delA c.1078delT c.1215delG c.1323_1324insA* c.1353_1354insT*# c.1460_1461delAT* Argentina 1 3 1 1 1 1 1 Subtotal and frequency (%) 1 0.08 1 0.08 4 0.32 1 0.08 1 0.08 1 0.08 Brazil 1 1 1 1 0 0 Subtotal and frequency (%) 1 0.05 2 0.11 1 0.05 Chile 0 0 Subtotal and frequency (%) Colombia 1 1 Subtotal and frequency (%) 1 0.46 1 0.46 Costa Rica Frequency (%) 0 Cuba Frequency (%) Ecuador Subtotal and frequency (%) Mexico 1 3 1 2 1 1 Subtotal and frequency (%) 1 0.36 3 1.09 1 0.36 1 0.36 2 0.73 1 0.36 Uruguay Frequency (%) 1 1.31 Venezuela Subtotal and frequency (%) Total 1 1 1 1 1 3 7 2 1 2 1 1 1 1 1 Frequency (%) 0.02 0.02 0.02 0.02 0.02 0.07 0.16 0.05 0.02 0.05 0.02 0.02 0.02 0.02 0.02 (continued ) Table 2 c.1716GNA c.1717-1GNA c.1782delA c.1811+1,6KbANG c.1812-1GNA c.1898+1GNA c.1898+3ANG c.1924_1930del c.2055_2063del c.2183AANG;c.2184delA c.2184delA c.2185_2186insC 5 1 4 1 1 1 0 1 2 2 6 0.48 1 0.08 6 0.48 2 0.16 1 0.08 1 0.08 1 0.08 1 0 6 5 1 3 0 0 0 0 7 0.37 5 0.27 1 0.05 3 0.16 0 0 12 1 12 5.50 1 0.46 0 0 1 1 2 2 1 0.36 1 0.36 2 0.73 2 0.73 1 1.31 1 14 1 18 5 3 1 1 2 6 1 1 0.02 0.32 0.02 0.41 0.11 0.07 0.02 0.02 0.05 0.14 0.02 0.02 (continued on next page) Table 2 Mutation frequencies in Latin American CF patients Country c.2347delG c.2566_2567insT* c.2594_2595delGT* c.2686_2687insT* c.2789+2_2789+3insA c.2789+5GNA c.2869_2870insG c.3120+1GNA c.3171delC c.3199_3204del c.3272-26ANG c.3500-2ANG* Argentina 2 1 2 2 3 3 1 1 2 Subtotal and frequency (%) 2 0.16 1 0.08 2 0.16 2 0.16 6 0.48 1 0.08 1 0.08 2 0.16 Brazil 2 1 1 1 6 0 0 4 0 Subtotal and frequency (%) 2 0.11 1 0.05 1 0.05 10 0.54 1 0.05 Chile Subtotal and frequency (%) Colombia 1 1 1 Subtotal and frequency (%) 1 0.46 1 0.46 1 0.46 Costa Rica Frequency (%) Cuba Frequency (%) Ecuador Subtotal and frequency (%) Mexico 2 Subtotal and frequency (%) 2 0.73 Uruguay Frequency (%) 1 1.31 Venezuela Subtotal and frequency (%) Total 2 2 1 3 2 9 1 12 1 2 2 1 Frequency (%) 0.05 0.05 0.02 0.07 0.05 0.21 0.02 0.28 0.02 0.05 0.05 0.02 (continued ) Table 2 c.3617_3618delGA*,# c.3659delC c.3849+1GNA c.3849+10kbCNT c.4005+1GNA c.4005-1GNA# c.4016_4017insT c.4160_4161insGGGG* c.IVS8-5T Unknown Authors 37 Aulehla-Scholz [17] 2 4 1 2 4 76 Visich [12] 1 78 Iba&#f1;ez [18] 54 Varela 2004 8 Prieto [19] 2 1 1 1 18 Oller-Ramirez 2004 4 0.32 6 0.48 1 0.08 1 0.08 2 0.16 5 0.40 271 21.75 205 Raskin [20] 32 Chiba [21] 1 89 Bernardino [22] 60 Marostica [23] 69 Parizotto [24] 99 Cabello [25,26] 33 Martins [27] 70 Streit [28] 0 5 120 Raskin [15] 0 0 12 Goloni-Bertollo [29] 1 0.05 5 0.27 789 42.46 48 Rios [30] 22 Molina [31] 1 11 Navarro [32] 0 3 34 Repetto [33] 4 1.58 115 45.63 1 67 Keyeux [14] 17 Restrepo [34] 1 0.46 84 38.53 0 25 52.08 Venegas [35] 95 65.97 Collazo [36] 20 Merino [37] 30 Cassiman 2004 15 Paz-y-Mino [38] 65 63.72 1 1 53 Orozco [13] 2 35 Villalobos [39] 3 1.09 1 0.36 88 32.11 11 14.47 Luzardo [40,41] 36 Restrepo [34] 41 Alvarado [42] 77 56.62 1 4 1 18 1 1 2 1 5 1620 0.02 0.09 0.02 0.41 0.02 0.02 0.05 0.02 0.11 37.21 Mutation frequencies in Latin American CF patients most frequently found in Caucasians, by allele specific polymerase chain reaction (AS-PCR), enzymatic digestion, allele specific oligonucleotide hybridization (ASO), or using mainly commercial kits, whereas other studies used a systematic approach to analyse the promoter, coding and exon/ intron boundaries of the CFTR region in the search for any possible mutation.
X
ABCC7 p.Gly551Ser 16963320:51:44
status: NEW98 As an example, in the case of Argentina and Uruguay, the p.F508del mutation shows the highest frequencies (59% and Table 5 Mutations with frequencies less than 0.1% Panel A Mutation Number of chromosomes % Country p.R75X 3 0.07 Mexico c.W1089X 3 0.07 Argentina, Brazil c.406-1GNA 3 0.07 Mexico c.1898+1GNA 3 0.07 Argentina, Brazil c.2686_2687insTÌe; 3 0.07 Argentina, Brazil p.L206W 2 0.05 Brazil p.I506T 2 0.05 Mexico p.S589I 2 0.05 Argentina c.711+1GNT 2 0.05 Argentina c.935delA 2 0.05 Mexico c.2055_2063del 2 0.05 Mexico c.2347delG 2 0.05 Brazil c.2566_2567insTÌe; 2 0.05 Argentina c.2789+2_2789+3insA 2 0.05 Argentina c.3199_3204del 2 0.05 Mexico c.3272-26ANG 2 0.05 Argentina c.4016_4017insT 2 0.05 Argentina Panel B Mutation N % each Country p.L6VÌe;, p.W57X, p.Q220X, p.Y362XÌe;, p.I1027T, p.G1061R, p.R1283M, c.297-2ANG, c.1353_1354insTÌe;, c.1460_1461delATÌe;, c.1782delA, c.1898+3ANG, c.2184delA, c.2594_2595delGTÌe;, c.2869_2870insG, c.4005Ìe;1GNA, c.4005-1GNA# 17 0.02 Argentina p.R117H, p.H199Y, p.G551S, p.L558S, p.P750L, p.V754M, p.W1069X#, p.W1098CÌe;, p.W1204X, c.297-1GNAÌe;, c.846delTÌe;, c.1078delT, c.1716GNA, c.1924_1930del, c.4160_4161insGGGGÌe; 15 0.02 Mexico p.V201M, p.V232D, p.Y275XÌe;, p.R347P, p.R851L, p.Q1238X, c.3171delC, c.3617_3618delGAÌe;# 8 0.02 Brazil p.A559T, p.H609RÌe;, c.1215delG, c.1323_1324insAÌe;, c.2185_2186insC, c.3500-2ANGÌe;, c.3849+1GNA, 7 0.02 Colombia c.-834GNT 1 0.02 Uruguay The upper part (Panel A) shows the mutations found in more than one patient, whereas the lower part (Panel B) of the table shows all the mutations that are present only once in each country.
X
ABCC7 p.Gly551Ser 16963320:98:1044
status: NEW[hide] [Mucoviscidosis: CFTR mutation-specific therapy: a... Arch Pediatr. 2013 Jan;20(1):63-73. doi: 10.1016/j.arcped.2012.10.018. Epub 2012 Nov 27. Leonard A, Leal T, Lebecque P
[Mucoviscidosis: CFTR mutation-specific therapy: a ray of sunshine in a cloudy sky].
Arch Pediatr. 2013 Jan;20(1):63-73. doi: 10.1016/j.arcped.2012.10.018. Epub 2012 Nov 27., [PMID:23199563]
Abstract [show]
There is a need to find a cure for pulmonary disease in cystic fibrosis (CF), though full benefit of this approach will be restricted to those patients with well-preserved lungs. The most promising route is currently that of a pharmacological mutation-specific approach aiming at correcting the mechanism by which mutations lead to impairment of chloride conductance across respiratory epithelial cells. In the past 14years, 7 candidate drugs (CPX, 4PBA, gentamicin, PTC124, VX-770 or Ivacaftor, VX-809 or Lumacaftor, and Miglustat) have been investigated in CF patients. A postulate of 14 out of the 15 published studies has been that an effective agent had to improve total chloride secretion as assessed in vivo by nasal potential difference measurements. The present review casts a critical look at these studies. Apparent inconsistencies are discussed as well as possible limitations of nasal potential difference measurements as outcome parameters in these trials. Primarily targeting a mutation carried by less than 2% of French CF patients, the 2 Ivacaftor studies could well be a milestone on the long road toward a cure for CF. However, further data on safety and long-term efficacy are obviously needed and the current price of this medication in the US would make it unaffordable for European patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
178 De re &#b4;centes donne &#b4;es in vitro sugge `rent que cette me &#b4;dication soit e &#b4;galement efficace sur 9 autres mutations de la me c6;me classe (G178R, S549N, S549R, G551S, G970R, G1244E, S1251N, G1349D) [50,51].
X
ABCC7 p.Gly551Ser 23199563:178:180
status: NEW[hide] PGD for cystic fibrosis patients and couples at ri... Reprod Biomed Online. 2013 May;26(5):420-30. doi: 10.1016/j.rbmo.2013.01.006. Epub 2013 Jan 29. Rechitsky S, Verlinsky O, Kuliev A
PGD for cystic fibrosis patients and couples at risk of an additional genetic disorder combined with 24-chromosome aneuploidy testing.
Reprod Biomed Online. 2013 May;26(5):420-30. doi: 10.1016/j.rbmo.2013.01.006. Epub 2013 Jan 29., [PMID:23523379]
Abstract [show]
Preimplantation genetic diagnosis (PGD) for inherited disorders is presently applied for more than 300 different conditions. The most frequent PGD indication is cystic fibrosis (CF), the largest series of which is reviewed here, totalling 404 PGD cycles. This involved testing for 52 different CFTR mutations with almost half of the cases (195/404 cycles) performed for DeltaF508 mutation, one-quarter (103/404 cycles) for six other frequent mutations and only a few for the remaining 45 CFTR mutations. There were 44 PGD cycles performed for 25 CF-affected homozygous or double-heterozygous CF patients (18 male and seven female partners), which involved testing simultaneously for three mutations, resulting in birth of 13 healthy CF-free children and no misdiagnosis. PGD was also performed for six couples at a combined risk of producing offspring with CF and another genetic disorder. Concomitant testing for CFTR and other mutations resulted in birth of six healthy children, free of both CF and another genetic disorder in all but one cycle. A total of 96 PGD cycles for CF were performed with simultaneous aneuploidy testing, including microarray-based 24-chromosome analysis, as a comprehensive PGD for two or more conditions in the same biopsy material.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 [1075C>A; 1079C>A] p.[Gln359Lys; Thr360Lys] Exon 8 1 1 1 4 1 1 R297Q c.890G>A p.Arg297Gln Exon 8 1 1 1 2 0 0 R347P c.1040G>C p.Arg347Pro Exon 8 3 5 2 4 1 1 T338I c.1013C>T p.Thr338Ile Exon 8 1 1 1 2 1 1 DF508 c.1521_1523delCTT p.Phe508del Exon 11 130 195 172 345 88 (4) 92 DI507 c.1519_1521delATC p.Ile507del Exon 11 1 5 5 11 2 1 Q493R c.1478A>G p.Gln493Arg Exon 11 5 5 2 2 2 2 1717-1G-A c.1585-1G>A - Intron 11 6 10 9 18 6 8 G542X c.1624G>T p.Gly542X Exon 12 14 17 15 34 10 10 G551S c.1651G>A p.Gly551Ser Exon 12 1 1 1 2 1 1 G551D c.1652G>A p.Gly551Asp Exon 12 12 22 19 33 7 8 I556V c.1666A>G p.Ile556Val Exon 12 1 2 2 4 1 1 R553X c.1657C>T p.Arg553X Exon 12 3 4 2 4 0 0 R560T c.1679G>C p.Arg560Thr Exon 12 1 1 1 2 1 2 1898+1G-A c.1766 &#b1; 1G>A - Intron 13 1 1 1 2 1 1 2184delA c.2052delA p.Lys684AsnfsX38 Exon 14 1 1 0 0 0 0 G622D c.1865G>A p.Gly622Asp Exon 14 1 1 1 3 0 0 N703S c.2108A>G p.Asn703Ser Exon 14 1 2 2 3 2 2 S737F c.2210C>T p.Ser737Phe Exon 14 1 1 0 0 0 0 2622+1G-A c.2490 &#b1; 1G>A - Intron 14 1 5 5 13 1 1 2752-26A-G c.2620-26A>G - Intron 15 1 2 2 4 0 0 2789+5G-A c.2657 &#b1; 5G>A - Intron 16 3 5 4 8 0 0 3120G-A c.2988G>A - Exon 18 2 2 1 2 1 0 3067-72del c.3067_3072del p.Ile1023_Val1024del Exon 19 1 1 1 1 0 0 I1027T c.3080T>C p.Ile1027Thr Exon 19 1 1 1 1 0 0 L997F c.2991G>C p.Leu997Phe Exon 19 1 2 2 4 1 (1) 0 M1028R c.3083T>G p.Met1028Arg Exon 19 1 1 1 2 1 2 F1052V c.3154T>G p.Phe1052Val Exon 20 1 1 0 0 0 0 Y1092X c.3276C>A p.Tyr1092X Exon 20 1 2 1 2 1 1 A1136T c.3406G>A p.Ala1136Thr Exon 21 1 2 1 2 1 0 D1152H c.3454G>C p.Asp1152His Exon 21 3 7 7 15 1 1 3659 del C c.3528delC p.Lys1177SerfsX15 Exon 22 2 4 3 7 3 3 R1162X c.3484C>T p.Arg1162X Exon 22 1 3 2 5 2 2 S1235R c.3705T>G p.Ser1235Arg Exon 22 2 3 3 5 2 1 3849+10kbC>T c.3717 &#b1; 12191C>T - Intron 22 2 4 4 5 0 0 W1282X c.3846G>A p.Trp1282X Exon 23 15 20 20 42 11 11 N1303K c.3909C>G p.Asn1303Lys Exon 24 9 12 11 24 4 5 Q1352H c.4056G>C p.Gln1352His Exon 25 1 1 1 1 1 1 Total 265 404 345 685 172 (6a ) 175 Values are n unless otherwise stated.
X
ABCC7 p.Gly551Ser 23523379:42:478
status: NEWX
ABCC7 p.Gly551Ser 23523379:42:496
status: NEW[hide] Effect of ivacaftor on CFTR forms with missense mu... J Cyst Fibros. 2014 Jan;13(1):29-36. doi: 10.1016/j.jcf.2013.06.008. Epub 2013 Jul 23. Van Goor F, Yu H, Burton B, Hoffman BJ
Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function.
J Cyst Fibros. 2014 Jan;13(1):29-36. doi: 10.1016/j.jcf.2013.06.008. Epub 2013 Jul 23., [PMID:23891399]
Abstract [show]
BACKGROUND: Ivacaftor (KALYDECO, VX-770) is a CFTR potentiator that increased CFTR channel activity and improved lung function in patients age 6 years and older with CF who have the G551D-CFTR gating mutation. The aim of this in vitro study was to evaluate the effect of ivacaftor on mutant CFTR protein forms with defects in protein processing and/or channel function. METHODS: The effect of ivacaftor on CFTR function was tested in electrophysiological studies using a panel of Fischer rat thyroid (FRT) cells expressing 54 missense CFTR mutations that cause defects in the amount or function of CFTR at the cell surface. RESULTS: Ivacaftor potentiated multiple mutant CFTR protein forms that produce functional CFTR at the cell surface. These included mutant CFTR forms with mild defects in CFTR processing or mild defects in CFTR channel conductance. CONCLUSIONS: These in vitro data indicated that ivacaftor is a broad acting CFTR potentiator and could be used to help stratify patients with CF who have different CFTR genotypes for studies investigating the potential clinical benefit of ivacaftor.
Comments [show]
None has been submitted yet.
No. Sentence Comment
28 These include the most common CFTR gating mutation, G551D, as well as the G178R, S549N, S549R, G551S, G970R, G1244E, S1251N, S1255P, and G1349D mutations [12].
X
ABCC7 p.Gly551Ser 23891399:28:95
status: NEW[hide] The relative frequency of CFTR mutation classes in... J Cyst Fibros. 2014 Jul;13(4):403-9. doi: 10.1016/j.jcf.2013.12.003. Epub 2014 Jan 16. De Boeck K, Zolin A, Cuppens H, Olesen HV, Viviani L
The relative frequency of CFTR mutation classes in European patients with cystic fibrosis.
J Cyst Fibros. 2014 Jul;13(4):403-9. doi: 10.1016/j.jcf.2013.12.003. Epub 2014 Jan 16., [PMID:24440181]
Abstract [show]
More than 1900 different mutations in the CFTR gene have been reported. These are grouped into classes according to their effect on the synthesis and/or function of the CFTR protein. CFTR repair therapies that are mutation or mutation class specific are under development. To progress efficiently in the clinical phase of drug development, knowledge of the relative frequency of CFTR mutation classes in different populations is useful. Therefore, we describe the mutation class spectrum in 25,394 subjects with CF from 23 European countries. In 18/23 countries, 80% or more of the patients had at least one class II mutation, explained by F508del being by far the most frequent mutation. Overall 16.4% of European patients had at least one class I mutation but this varied from 3 countries with more than 30% to 4 countries with less than 10% of subjects. Overall only respectively 3.9, 3.3 and 3.0% of European subjects had at least one mutation of classes III, IV and V with again great variability: 14% of Irish patients had at least one class III mutation, 7% of Portuguese patients had at least one class IV mutation, and in 6 countries more than 5% of patients had at least one class V mutation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 Class Type of defect List of mutations attributed to this class Class I Defective protein production Nonsense mutations Large deletions and insertions 1078delT; 1717-1GA; 3659delC; 621+1GT Class II Defective protein processing G85E, F508del, I507del, R560T, N1303K Class III Defective protein regulation ('gating`) G178R, S549N, S549R, G551D, G551S, G970R, G1244E, S1251N, S1255P, G1349D Class IV Defective protein conductance R117H, R334W, R347P Class V Reduced amount of functioning protein 2789+5GA, 3849+10KbCT, A455E Unclassified All other mutations, including those unknown.
X
ABCC7 p.Gly551Ser 24440181:56:357
status: NEW[hide] Personalised medicine in cystic fibrosis is unaffo... Paediatr Respir Rev. 2014 Jun;15 Suppl 1:2-5. doi: 10.1016/j.prrv.2014.04.003. Epub 2014 Apr 13. Balfour-Lynn IM
Personalised medicine in cystic fibrosis is unaffordable.
Paediatr Respir Rev. 2014 Jun;15 Suppl 1:2-5. doi: 10.1016/j.prrv.2014.04.003. Epub 2014 Apr 13., [PMID:24832698]
Abstract [show]
Personalised medicine refers to a tailored approach to treatment of an individual based on molecular analysis of genes, proteins or metabolites, and commonly involves a companion diagnostic test. It usually applies to small subsets of patients, often with rare diseases. In cystic fibrosis (CF), the best example is the CFTR (CF transmembrane conductance regulator) potentiator, ivacaftor, relevant to the 5% of cystic fibrosis patients with the p.Gly551Asp gene mutation. However the cost of personalised medicine is too high, making it unaffordable in the long term for many healthcare systems. Society needs to find a way to make personalised medicine affordable in order to not deny life-changing treatments from patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
37 It is currently licensed for use only in those with the p.Gly551Asp mutation; but a further license has been recently approved in the USA for use in other rarer gating mutations (G178R, G551S, S549N, S549R, G970R, G1244E, S1251N, S1255P, or G1349D).
X
ABCC7 p.Gly551Ser 24832698:37:186
status: NEW[hide] New pharmacological approaches for cystic fibrosis... Pharmacol Ther. 2015 Jan;145:19-34. doi: 10.1016/j.pharmthera.2014.06.005. Epub 2014 Jun 14. Bell SC, De Boeck K, Amaral MD
New pharmacological approaches for cystic fibrosis: promises, progress, pitfalls.
Pharmacol Ther. 2015 Jan;145:19-34. doi: 10.1016/j.pharmthera.2014.06.005. Epub 2014 Jun 14., [PMID:24932877]
Abstract [show]
With the discovery of the CFTR gene in 1989, the search for therapies to improve the basic defects of cystic fibrosis (CF) commenced. Pharmacological manipulation provides the opportunity to enhance CF transmembrane conductance regulator (CFTR) protein synthesis and/or function. CFTR modulators include potentiators to improve channel gating (class III mutations), correctors to improve abnormal CFTR protein folding and trafficking (class II mutations) and stop codon mutation read-through drugs relevant for patients with premature stop codons (most class I mutations). After several successful clinical trials the potentiator, ivacaftor, is now licenced for use in adults and children (>six years), with CF bearing the class III G551D mutation and FDA licence was recently expanded to include 8 additional class III mutations. Alternative approaches for class I and class II mutations are currently being studied. Combination drug treatment with correctors and potentiators appears to be required to restore CFTR function of F508del, the most common CFTR mutation. Alternative therapies such as gene therapy and pharmacological modulation of other ion channels may be advantageous because they are mutation-class independent, however progress is less well advanced. Clinical trials for CFTR modulators have been enthusiastically embraced by patients with CF and health care providers. Whilst novel trial end-points are being evaluated allowing CFTR modulators to be efficiently tested, many challenges related to the complexity of CFTR and the biology of the epithelium still need to be overcome.
Comments [show]
None has been submitted yet.
No. Sentence Comment
547 Class Type of defect List of mutations attributed to this class Class I Defective protein production Nonsense mutations: G542X, R1162X, RW1282X Deletions and insertions: CFTRdele2,3; 1078delT; 1717-1G A; 3659delC; 621+1G N T Class II Defective protein processing G85E, F508del, I507del, R560T, A561E, R1066C, N1303K Class III Defective protein regulation (gating) G178R, S549N, S549R, G551D, G551S, G970R, G1244E, S1251N, S1255P, G1349D Class IV Defective protein conductance R334W, R347P, R117H Class V Reduced amount of functioning protein 2789+5G A, 3272-26ANG, 3849+10KbC T, A455E Class VI Reduced cell surface stability Rescued F508del, c.120del23 Unclassified All other mutations, including those unknown a F508del-CFTR pocket (at NBD1:ICL4 interface) (Farinha et al., 2013).
X
ABCC7 p.Gly551Ser 24932877:547:400
status: NEW[hide] Mechanisms of CFTR functional variants that impair... PLoS Genet. 2014 Jul 17;10(7):e1004376. doi: 10.1371/journal.pgen.1004376. eCollection 2014 Jul. LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Conwell D, Lawrence C, Romagnuolo J, Baillie J, Alkaade S, Cote G, Gardner TB, Amann ST, Slivka A, Sandhu B, Aloe A, Kienholz ML, Yadav D, Barmada MM, Bahar I, Lee MG, Whitcomb DC
Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.
PLoS Genet. 2014 Jul 17;10(7):e1004376. doi: 10.1371/journal.pgen.1004376. eCollection 2014 Jul., [PMID:25033378]
Abstract [show]
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.
Comments [show]
None has been submitted yet.
No. Sentence Comment
269 67 SNPs (125GtoC, 1716G.A, 1717-1G.A, 1898+1G.A, 2183AA.G, 2184delA, 2789+5G.A, 3120+1G.A, 3659delC, 3849+10kbC.T, 621+ 1G.T, 711+5G.A, A455E, D110H, D1152H, D1270N, D443Y, D579G, F1052V, F1074L, F508C, F508del, G1069R, G1244E, G1349D, G178R, G542X, G551D, G551S, I1131L/V, I148T, I336K/T, I507del, I807M, IVS8T5, K1180T, L1065P, L967S, L997F, M1V, M470V, M952I, M952T, N1303K, P67L, Q1463Q, R1070Q, R1162X, R117C, R117H, R170H, R258G, R297Q, R31C, R352Q, R553X, R668C, R74W, R75Q, S1235R, S1255P, S485R, S977F, T338I, T854T, V201M, W1282X) were multiplexed into 6 wells; 14 SNPs (S492F, S945L, R74Q, R560T, R1162L, G85E, I1027T, R334W, R347P, G576A, 711+1G.T, 1001+11C.T, P1290P, 3199del6) were ascertained separately via TaqMan Gene Expression Assays, with repeat confirmation of all positive results.
X
ABCC7 p.Gly551Ser 25033378:269:257
status: NEW[hide] CFTR Modulators for the Treatment of Cystic Fibros... P T. 2014 Jul;39(7):500-11. Pettit RS, Fellner C
CFTR Modulators for the Treatment of Cystic Fibrosis.
P T. 2014 Jul;39(7):500-11., [PMID:25083129]
Abstract [show]
Defects in a single gene lead to the defective proteins that cause cystic fibrosis, making the disease an ideal candidate for mutation-targeted therapy. Although ivacaftor is currently the only FDA-approved CFTR modifier, others are in development.
Comments [show]
None has been submitted yet.
No. Sentence Comment
36 At 48 weeks, 67% of patients in the ivacaftor group had not had a pulmonary exacerbation compared with 41% in the Table 2 Ivacaftor Clinical Trials Reference Design CFTR Mutation Population Treatment Duration Results Ramsey(2011)30 STRIVE: Randomized, double-blind, placebo-controlled G551D Age 12-53 years N = 161 FEV1 40-90% IVA 150 mg b.i.d. or PBO b.i.d. 48 wks ߦ Percent change in FEV1 from baseline to 24 wks (P < 0.001): IVA, 10.4%; PBO, -0.2% ߦ Percent change in FEV1 from baseline to 48 wks compared with PBO (P < 0.001): IVA, 10.5% ߦ Percent of patients pulmonary exacerbation-free at 48 wks: IVA, 67%; PBO, 41% ߦ Change in body weight from baseline to 48 wks: IVA, 3.1 kg; PBO, 0.4 kg ߦ Sweat chloride change from baseline to 48 wks compared with PBO (P < 0.001): IVA, -48.1 mmol/L ߦ Change in CFQ-R respiratory domain from baseline to 48 wks (P < 0.001): IVA, 5.9 pts; PBO, -2.7 pts Davies (2013)29 ENVISION: Randomized, double-blind, placebo-controlled G551D Age 6-11 years N = 52 FEV1 40-105% IVA 150 mg b.i.d. or PBO b.i.d. 48 wks ߦ Absolute change in FEV1 percentage from baseline at 48 wks compared with PBO (P < 0.001): IVA, 10% ߦ Absolute change in FEV1 percentage from baseline at 24 wks (P < 0.001): IVA, 12.6%; PBO, 0.1% ߦ Mean change in sweat chloride from baseline to 48 wks compared with PBO (P < 0.001): IVA, -54.3 mmol/L ߦ Body weight change from baseline to 48 wks compared with PBO (P < 0.001): IVA, 2.8 kg ߦ Absolute CFQ-R change from baseline to 24 wks compared with PBO (P = 0.109): IVA, 6.1 pts McKone (2013)31 PERSIST: Open-label extension G551D Age ࣙ 6 years Patients had completed 48 wks of either ENVISION or STRIVE IVA 150 mg b.i.d. 96 wks (patients received 96 wks or 144 wks of IVA depending on ENVISION or STRIVE randomization) ߦ Absolute change in percent predicted FEV1: &#b0; &#b0; STRIVE (IVA IVA) Study start (48 wks of prior treatment): 9.4 &#b1; 8.3 &#b0; &#b0; STRIVE (IVA IVA) 144 wks: 9.4 &#b1; 10.8 &#b0; &#b0; STRIVE (PBO IVA) Study start: -1.2 &#b1; 7.8 &#b0; &#b0; STRIVE (PBO IVA) 96 wks: 9.5 &#b1; 11.2 &#b0; &#b0; ENVISION (IVA IVA) Study start (48 wks of prior treatment): 10.2 &#b1; 15.7 &#b0; &#b0; ENVISION (IVA IVA) 144 wks: 10.3 &#b1; 12.4 &#b0; &#b0; ENVISION (PBO IVA) Study start: -0.6 &#b1; 10.1 &#b0; &#b0; ENVISION (PBO IVA) 96 wks: 10.5 &#b1; 11.5 ߦ Absolute change in weight (kg): &#b0; &#b0; STRIVE (IVA IVA) Study start (48 wks of prior treatment): 3.4 &#b1; 4.9 &#b0; &#b0; STRIVE (IVA IVA) 144 wks: 4.1 &#b1; 7.1 &#b0; &#b0; STRIVE (PBO IVA) Study start: 0.3 &#b1; 2.2 &#b0; &#b0; STRIVE (PBO IVA) 96 wks: 3 &#b1; 4.2 &#b0; &#b0; ENVISION (IVA IVA) Study start (48 wks of prior treatment): 6.1 &#b1; 2.9 &#b0; &#b0; ENVISION (IVA IVA) 144 wks: 14.8 &#b1; 5.7 &#b0; &#b0; ENVISION (PBO IVA) Study start: 2.9 &#b1; 1.8 &#b0; &#b0; ENVISION (PBO IVA) 96 wks: 10.1 &#b1; 4.1 ߦ Absolute change in CFQ-R respiratory domain: &#b0; &#b0; STRIVE (IVA IVA) Study start (48 wks of prior treatment): 6.4 &#b1; 16.8 &#b0; &#b0; STRIVE (IVA IVA) 144 wks: 6.8 &#b1; 19.6 &#b0; &#b0; STRIVE (PBO IVA) Study start: -3.6 &#b1; 14.1 &#b0; &#b0; STRIVE (PBO IVA) 96 wks: 9.8 &#b1; 16.2 &#b0; &#b0; ENVISION (IVA IVA) Study start (48 wks of prior treatment): 7.4 &#b1; 17.4 &#b0; &#b0; ENVISION (IVA IVA) 144 wks: 10.6 &#b1; 18.9 &#b0; &#b0; ENVISION (PBO IVA) Study start: 0.8 &#b1; 18.4 &#b0; &#b0; ENVISION (PBO IVA) 96 wks: 10.8 &#b1; 12.8 CFTR Modulators for the Treatment of Cystic Fibrosis Table 2 Ivacaftor Clinical Trials Reference Design CFTR Mutation Population Treatment Duration Results Davies (2013)32 Placebo-controlled, double-blind, crossover study G551D Age > 6 years N = 17 FEV1 > 90% LCI > 7.4 Sequence 1: PBO WO IVA 150 mg b.i.d. Sequence 2: IVA 150 mg b.i.d. WO PBO 28-day treatment and WO periods ߦ Average change in LCI from baseline compared with PBO (P < 0.0001): IVA, -2.16 (95% CI, -2.88 to -1.44) ߦ Average change in FEV1 from baseline compared with PBO (P = 0.0103): IVA, 8.67 (95% CI, 2.36 to 14.97) ߦ Average change in FEF25-75 from baseline compared with PBO (P = 0.0237): IVA, 16.56 (95% CI, 2.30 to 27.71) Barry (2013)34 Retrospective review G551D Age 20-31 in IVA group N = 21 FEV1 < 40% IVA 150 mg b.i.d. (n = 21); matched controls (n = 35) Median duration, 237 days ߦ Absolute FEV1 change from baseline (P = 0.0075): IVA, 0.125 L; CON, 0.01 L ߦ Percent predicted FEV1 change from baseline (P = 0.0092): IVA, 12.7%, CON, 2.2% ߦ Median weight increase from baseline: IVA, 1.8 kg; CON, 0.1 kg ߦ Median inpatient days per year decreased from 23 days to 0 days in the IVA group (P = 0.001) ߦ Median total intravenous antibiotic days per year decreased from 74 days to 38 days in the IVA group (P = 0.002) De Boeck (2013)37 KONNECTION: Randomized, double-blind, crossover, placebo-controlled Non-G551D gating mutations G178R, G551S, S549N, S549R, G970R, G1244E, S1251N, S1255P, G1349D Age ࣙ 6 years N = 39 FEV1 ࣙ 40% Treatment sequence 1: IVA 150 mg b.i.d. WO PBO open-label Treatment sequence 2: PBO WO IVA 150 mg b.i.d. open-label 8 wks of IVA or PBO; 4-8 wks WO period; 16 wks open label ߦ Absolute change from baseline percent predicted FEV1 (P < 0.0001): IVA, 7.49%; PBO, -3.19% ߦ Absolute change from baseline BMI (P < 0.0001): IVA, 0.68; PBO, 0.02 ߦ Absolute change from baseline in CFQ-R respiratory domain (P = 0.0004): IVA, 8.94 pts; PBO, -0.67 pts ߦ Absolute change from baseline in sweat chloride (mmol/L): IVA, -52.28; PBO, -3.11 Flume (2011)35 Randomized, double-blind, placebo-controlled, parallel group with open-label extension Homozygous F508del Age ࣙ 12 years Part 1: N = 140 Part 2: N = 33 42 patients were eligible for part 2 if change in FEV1 ࣙ 10% or sweat chloride decreased by at least 15 mmol/L at day 15 and week 8 Part 1: IVA 150 mg b.i.d. or PBO 16 wks Part 2: Open label IVA 150 mg b.i.d.
X
ABCC7 p.Gly551Ser 25083129:36:5183
status: NEW56 These promising results led to an FDA label expansion to include CF patients with the following eight mutations in addition to G551D: G178R, S549R, S549N, G551S, G1244E, S1251N, S1255P, and G1349D.38 Clinical Considerations Ivacaftor was well tolerated in clinical trials.
X
ABCC7 p.Gly551Ser 25083129:56:155
status: NEW[hide] A cocktail drug therapy for patients with cystic f... J Cyst Fibros. 2014 Sep;13(5):489-90. doi: 10.1016/j.jcf.2014.07.002. Epub 2014 Jul 24. Chen JH
A cocktail drug therapy for patients with cystic fibrosis?
J Cyst Fibros. 2014 Sep;13(5):489-90. doi: 10.1016/j.jcf.2014.07.002. Epub 2014 Jul 24., [PMID:25088968]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
6 More recently, VX-770 has been approved by the FDA (NDA 203188, www.fda.gov) and recommended by the EMA (EMA/CHMP/365663/2014) for use with an additional eight CF gating (class III) mutations (G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P and G1349D), although, including G551D, these mutations still just occur in ~5% of CF patients worldwide.
X
ABCC7 p.Gly551Ser 25088968:6:214
status: NEW[hide] A single amino acid substitution in CFTR converts ... J Gen Physiol. 2014 Oct;144(4):311-20. doi: 10.1085/jgp.201411247. Epub 2014 Sep 15. Lin WY, Jih KY, Hwang TC
A single amino acid substitution in CFTR converts ATP to an inhibitory ligand.
J Gen Physiol. 2014 Oct;144(4):311-20. doi: 10.1085/jgp.201411247. Epub 2014 Sep 15., [PMID:25225552]
Abstract [show]
Cystic fibrosis (CF), one of the most common lethal genetic diseases, is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel that, when phosphorylated, is gated by ATP. The third most common pathogenic mutation, a glycine-to-aspartate mutation at position 551 or G551D, shows a significantly decreased open probability (Po) caused by failure of the mutant channel to respond to ATP. Recently, a CFTR-targeted drug, VX-770 (Ivacaftor), which potentiates G551D-CFTR function in vitro by boosting its Po, has been approved by the FDA to treat CF patients carrying this mutation. Here, we show that, in the presence of VX-770, G551D-CFTR becomes responsive to ATP, albeit with an unusual time course. In marked contrast to wild-type channels, which are stimulated by ATP, sudden removal of ATP in excised inside-out patches elicits an initial increase in macroscopic G551D-CFTR current followed by a slow decrease. Furthermore, decreasing [ATP] from 2 mM to 20 microM resulted in a paradoxical increase in G551D-CFTR current. These results suggest that the two ATP-binding sites in the G551D mutant mediate opposite effects on channel gating. We introduced mutations that specifically alter ATP-binding affinity in either nucleotide-binding domain (NBD1 or NBD2) into the G551D background and determined that this disease-associated mutation converts site 2, formed by the head subdomain of NBD2 and the tail subdomain of NBD1, into an inhibitory site, whereas site 1 remains stimulatory. G551E, but not G551K or G551S, exhibits a similar phenotype, indicating that electrostatic repulsion between the negatively charged side chain of aspartate and the gamma-phosphate of ATP accounts for the observed mutational effects. Understanding the molecular mechanism of this gating defect lays a foundation for rational drug design for the treatment of CF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
21 G551E, but not G551K or G551S, exhibits a similar phenotype, indicating that electrostatic repulsion between the negatively charged side chain of aspartate and the &#e067;-phosphate of ATP accounts for the observed mutational effects.
X
ABCC7 p.Gly551Ser 25225552:21:24
status: NEW32 Because this inhibitory effect is observed also in G551E, but not in G551K or G551S, a basic chemical mechanism of an electrostatic repulsion between the negatively charged side chain of 551D/E and the &#e067;-phosphate of ATP in shaping the observed mutational effects is proposed.
X
ABCC7 p.Gly551Ser 25225552:32:78
status: NEW162 With a neutral (G551S) or cationic (G551K) side chain at residue 551, the channels respond to ATP in a manner similar to that of WT-CFTR.
X
ABCC7 p.Gly551Ser 25225552:162:16
status: NEW191 (A-C) Responses to ATP withdrawal in different G551 mutants: G551S (A), G551K (B), and G551E (C).
X
ABCC7 p.Gly551Ser 25225552:191:61
status: NEW[hide] Full-open and closed CFTR channels, with lateral t... Cell Mol Life Sci. 2015 Apr;72(7):1377-403. doi: 10.1007/s00018-014-1749-2. Epub 2014 Oct 7. Mornon JP, Hoffmann B, Jonic S, Lehn P, Callebaut I
Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics.
Cell Mol Life Sci. 2015 Apr;72(7):1377-403. doi: 10.1007/s00018-014-1749-2. Epub 2014 Oct 7., [PMID:25287046]
Abstract [show]
In absence of experimental 3D structures, several homology models, based on ABC exporter 3D structures, have provided significant insights into the molecular mechanisms underlying the function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel whose defects are associated with cystic fibrosis (CF). Until now, these models, however, did not furnished much insights into the continuous way that ions could follow from the cytosol to the extracellular milieu in the open form of the channel. Here, we have built a refined model of CFTR, based on the outward-facing Sav1866 experimental 3D structure and integrating the evolutionary and structural information available today. Molecular dynamics simulations revealed significant conformational changes, resulting in a full-open channel, accessible from the cytosol through lateral tunnels displayed in the long intracellular loops (ICLs). At the same time, the region of nucleotide-binding domain 1 in contact with one of the ICLs and carrying amino acid F508, the deletion of which is the most common CF-causing mutation, was found to adopt an alternative but stable position. Then, in a second step, this first stable full-open conformation evolved toward another stable state, in which only a limited displacement of the upper part of the transmembrane helices leads to a closure of the channel, in a conformation very close to that adopted by the Atm1 ABC exporter, in an inward-facing conformation. These models, supported by experimental data, provide significant new insights into the CFTR structure-function relationships and into the possible impact of CF-causing mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
359 Third, at the level of the NBD1:NBD2 heterodimer, CF-causing mutations are concentrated within the canonical ATP-binding site (S549N, S549R, G551D/G551S, G1244E, S1251N, and S1255P) (Fig. 7d).
X
ABCC7 p.Gly551Ser 25287046:359:147
status: NEW[hide] Functional reconstitution and channel activity mea... J Vis Exp. 2015 Mar 9;(97). doi: 10.3791/52427. Eckford PD, Li C, Bear CE
Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.
J Vis Exp. 2015 Mar 9;(97). doi: 10.3791/52427., [PMID:25867140]
Abstract [show]
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.
Comments [show]
None has been submitted yet.
No. Sentence Comment
30 While the correctors VX-809 and VX-661 (are not yet approved for use in patients, the potentiator Kalydeco (ivacaftor; VX-770) is being used at 150 mg every 12 hr in CF patients >6 years with at least one G551D-CFTR mutation, and more recently for patients with one of G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P and G1349D.
X
ABCC7 p.Gly551Ser 25867140:30:290
status: NEW[hide] Translating the genetics of cystic fibrosis to per... Transl Res. 2015 Apr 15. pii: S1931-5244(15)00131-0. doi: 10.1016/j.trsl.2015.04.008. Corvol H, Thompson KE, Tabary O, le Rouzic P, Guillot L
Translating the genetics of cystic fibrosis to personalized medicine.
Transl Res. 2015 Apr 15. pii: S1931-5244(15)00131-0. doi: 10.1016/j.trsl.2015.04.008., [PMID:25940043]
Abstract [show]
Cystic fibrosis (CF) is the most common life-threatening recessive genetic disease in the Caucasian population. This multiorgan disease is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, a chloride channel recognized as regulating several apical ion channels. The gene mutations result either in the lack of the protein at the apical surface or in an improperly functioning protein. Morbidity and mortality because of the mutation of CFTR are mainly attributable to lung disease resulting from chronic infection and inflammation. Since its discovery as the causative gene in 1989, much progress has been achieved not only in clinical genetics but also in basic science studies. Recently, combinations of these efforts have been successfully translated into development and availability for patients of new therapies targeting specific CFTR mutations to correct the CFTR at the protein level. Current technologies such as next gene sequencing and novel genomic editing tools may offer new strategies to identify new CFTR variants and modifier genes, and to correct CFTR to pursue personalized medicine, which is already developed in some patient subsets. Personalized medicine or P4 medicine ("personalized," "predictive," "preventive," and "participatory") is currently booming for CF. The various current and future challenges of personalized medicine as they apply to the issues faced in CF are discussed in this review.
Comments [show]
None has been submitted yet.
No. Sentence Comment
155 Furthermore, Kalydeco has been tested in patients carrying other class III mutations, or targeted class IVand V mutations (sharing functional similarities with the class III).58 The new trials led to an extension of the FDA and European Medical Agency approval to 8 additional gating mutations: p.Gly178Arg (p.G178R), p.Ser549Asn (p.S549N), p.Ser549Arg (p.S549R), p.Gly551Ser (p.G551S), p.Gly1244Glu (p.G1244E), p.Ser1251Asn (p.S1251N), p.Ser1255Pro (pS1255P), and p.Gly1349Asp (p.G1349D).59 Recently, ivacaftor has also been shown to benefit patients carrying the c.350G .
X
ABCC7 p.Gly551Ser 25940043:155:366
status: NEWX
ABCC7 p.Gly551Ser 25940043:155:379
status: NEW[hide] [Challenges of personalized medicine for cystic fi... Arch Pediatr. 2015 Jul;22(7):778-86. doi: 10.1016/j.arcped.2015.04.015. Epub 2015 May 26. Corvol H, Taytard J, Tabary O, Le Rouzic P, Guillot L, Clement A
[Challenges of personalized medicine for cystic fibrosis].
Arch Pediatr. 2015 Jul;22(7):778-86. doi: 10.1016/j.arcped.2015.04.015. Epub 2015 May 26., [PMID:26021452]
Abstract [show]
Personalized medicine, or P4 medicine for "Personalized", "Predictive", "Preventive" and "Participatory", is currently booming for cystic fibrosis, with the development of therapies targeting specific CFTR mutations. The various challenges of personalized medicine applied to cystic fibrosis issues are discussed in this paper.
Comments [show]
None has been submitted yet.
No. Sentence Comment
135 Compte tenu de l`efficacite &#b4; de KalydecoW chez ces patients, le laboratoire VertexW a ensuite teste &#b4;, puis de &#b4;montre &#b4; son efficacite &#b4; chez des patients porteurs d`autres mutations de classe III, ce qui a permis cette anne &#b4;e une extension d`autorisation de mise sur le marche &#b4; (AMM) pour 8 mutations supple &#b4;mentaires : G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N et S549R [37].
X
ABCC7 p.Gly551Ser 26021452:135:381
status: NEW[hide] Targeting ion channels in cystic fibrosis. J Cyst Fibros. 2015 Sep;14(5):561-70. doi: 10.1016/j.jcf.2015.06.002. Epub 2015 Jun 23. Mall MA, Galietta LJ
Targeting ion channels in cystic fibrosis.
J Cyst Fibros. 2015 Sep;14(5):561-70. doi: 10.1016/j.jcf.2015.06.002. Epub 2015 Jun 23., [PMID:26115565]
Abstract [show]
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause a characteristic defect in epithelial ion transport that plays a central role in the pathogenesis of cystic fibrosis (CF). Hence, pharmacological correction of this ion transport defect by targeting of mutant CFTR, or alternative ion channels that may compensate for CFTR dysfunction, has long been considered as an attractive approach to a causal therapy of this life-limiting disease. The recent introduction of the CFTR potentiator ivacaftor into the therapy of a subgroup of patients with specific CFTR mutations was a major milestone and enormous stimulus for seeking effective ion transport modulators for all patients with CF. In this review, we discuss recent breakthroughs and setbacks with CFTR modulators designed to rescue mutant CFTR including the common mutation F508del. Further, we examine the alternative chloride channels TMEM16A and SLC26A9, as well as the epithelial sodium channel ENaC as alternative targets in CF lung disease, which remains the major cause of morbidity and mortality in patients with CF. Finally, we will focus on the hurdles that still need to be overcome to make effective ion transport modulation therapies available for all patients with CF irrespective of their CFTR genotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
604 When tested in clinical trials, the potentiator ivacaftor (also known as VX-770) showed a marked clinical benefit, with substantial improvement of lung function, reduction of pulmonary exacerbations, and increase in body weight in CF patients with G551D and 8 additional Class III mutations (G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P and G1349D) [32-35].
X
ABCC7 p.Gly551Ser 26115565:604:313
status: NEW[hide] Hallmarks of therapeutic management of the cystic ... J Cyst Fibros. 2015 Nov;14(6):687-99. doi: 10.1016/j.jcf.2015.09.006. Epub 2015 Oct 29. Amaral MD, Balch WE
Hallmarks of therapeutic management of the cystic fibrosis functional landscape.
J Cyst Fibros. 2015 Nov;14(6):687-99. doi: 10.1016/j.jcf.2015.09.006. Epub 2015 Oct 29., [PMID:26526359]
Abstract [show]
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein does not operate in isolation, rather in a dynamic network of interacting components that impact its synthesis, folding, stability, intracellular location and function, referred to herein as the 'CFTR Functional Landscape (CFFL)'. For the prominent F508del mutation, many of these interactors are deeply connected to a protein fold management system, the proteostasis network (PN). However, CF encompasses an additional 2000 CFTR variants distributed along its entire coding sequence (referred to as CFTR2), and each variant contributes a differential liability to PN management of CFTR and to a protein 'social network' (SN) that directs the probability of the (patho)physiologic events that impact ion transport in each cell, tissue and patient in health and disease. Recognition of the importance of the PN and SN in driving the unique patient CFFL leading to disease highlights the importance of precision medicine in therapeutic management of disease progression. We take the view herein that it is not CFTR, rather the PN/SN, and their impact on the CFFL, that are the key physiologic forces driving onset and clinical progression of CF. We posit that a deep understanding of each patients PN/SN gained by merging genomic, proteomic (mass spectrometry (MS)), and high-content microscopy (HCM) technologies in the context of novel network learning algorithms will lead to a paradigm shift in CF clinical management. This should allow for generation of new classes of patient specific PN/SN directed therapeutics for personalized management of the CFFL in the clinic.
Comments [show]
None has been submitted yet.
No. Sentence Comment
656 The FDA approval of Ivacaftor for multiple G551D like phenotypic variants including G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P and G1349D [159,160] found at the cell surface with gating defects [161,162], and the FDA-approval of a combination of Lumacaftor and Ivacaftor for treatment of F508del [156] are examples of successful application of these technologies.
X
ABCC7 p.Gly551Ser 26526359:656:105
status: NEW
admin on 2016-08-19 15:16:22