ABCC7 p.Gly91Arg
[switch to full view]Comments [show]
None has been submitted yet.
PMID: 16442101
[PubMed]
Frelet A et al: "Insight in eukaryotic ABC transporter function by mutation analysis."
No.
Sentence
Comment
359
G85E and G91R affected folding by insertion of a charged residue within the plane of the bilayer [169].
X
ABCC7 p.Gly91Arg 16442101:359:9
status: NEW
PMID: 10720935
[PubMed]
Skach WR et al: "Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator."
No.
Sentence
Comment
52
The post-translational pathway is utilized by most (Ͼ60%) of WT chains and essentially all G85E and G91R mutant chains.
X
ABCC7 p.Gly91Arg 10720935:52:106
status: NEW76 While it is often tempting Two CF mutations, G85E and G91R, each introduce to view the acquisition of protein function as a criteria an additional charged residue within the hydrophobic for "normal" folding, in the case of CFTR this is not core of TM1.
X
ABCC7 p.Gly91Arg 10720935:76:54
status: NEW79 This suggested that G85E and G91R CFTR mutants [35].
X
ABCC7 p.Gly91Arg 10720935:79:29
status: NEW
PMID: 11115444
[PubMed]
Desmarquest P et al: "Genotype analysis and phenotypic manifestations of children with intermediate sweat chloride test results."
No.
Sentence
Comment
92
Genotype Poly T 1 -/- 7T/7T 2 R117C/- 7T/7T 3 R75X-D1270H/- 7T/7T 4 -/- 7T/7T 5 G91R/- 7T/5T 6 ⌬F508/- 7T/9T 7 -/- 7T/7T 8 -/- 7T/7T 9 S1235R/G551D 5T/7T 10 ⌬F508/- 9T/9T 11 7T/7T 12 ⌬F508/⌬F508 9T/9T 13 ⌬F508/- 7T/9T 14 -/- 7T/7T 15 ⌬F508/- 7T/9T 16 -/- 7T/5T 17 -/- 7T/7T 18 -/- 7T/7T 19 -/- 7T/9T 20 ⌬F508/- 7T/9T 21 -/- 7T/7T 22 W1282X/- 7T/5T 23 -/- 7T/7T 24 ⌬F508/3849 ϩ 10 kb C 3 T 7T/7T 1594 Clinical Investigations reported in the general population (frequency of the 5T allele in the general population, 5.2%).26 Based on the results of DNA analysis and according to the consensus statement on the diagnosis of CF, three patients (patients 9, 12, and 24) met the criteria of both respiratory manifestations and identification of two CF mutations.21 For patient 6, there was a diagnostic dilemma.
X
ABCC7 p.Gly91Arg 11115444:92:80
status: NEW
PMID: 11388756
[PubMed]
Heim RA et al: "Improved detection of cystic fibrosis mutations in the heterogeneous U.S. population using an expanded, pan-ethnic mutation panel."
No.
Sentence
Comment
87
These were G91R, 711 ϩ 5GϾA, T338I, 712-1GϾT, Q359K/T360K, 1161delC, 1609delCA, S549I, Q552X, 1949del84, 1989 ϩ 5GϾT, S1251N, and R1283M.
X
ABCC7 p.Gly91Arg 11388756:87:11
status: NEW
PMID: 12070257
[PubMed]
Scotet V et al: "Prenatal detection of cystic fibrosis by ultrasonography: a retrospective study of more than 346 000 pregnancies."
No.
Sentence
Comment
246
Therefore, the spectrum of mutations identified in this fetal population is not representative of that identified in our CF population, in which we found a significant number of mild mutations or mutations for which the clinical consequences are not yet established (for example, G91R, R117H, R347L, R560K).34 35 These findings provide the foundation for further investigations towards understanding the pathogenesis of early bowel disease, but also why it results in manifestations in the bowel rather than in the lungs during the fetal period.
X
ABCC7 p.Gly91Arg 12070257:246:280
status: NEW
PMID: 12124743
[PubMed]
Salvatore F et al: "Genotype-phenotype correlation in cystic fibrosis: the role of modifier genes."
No.
Sentence
Comment
46
A series of mutations usually associated with pancreatic sufficiency have been identified and defined as ''mild`` with reference to pancreatic status [Kerem et al., 1989c]: G85E, G91R, R117H, E193K, P205S, R334W, T338I, R347H, R347L, R347P, R352Q, A455E, S492F, S549N, P574H, D579G, 711 þ 5 G > A, C866Y, F1052V, H1054D, R1066H, R1068H, H1085R, D1152H, S1159P, S1251N, F1286S, G1349D, 2789 þ 5 G > A, and 3849 þ 10kb C > T [Dean et al., 1990; Cutting et al., 1990a; Cremonesi et al., 1992; Highsmith et al., 1994].
X
ABCC7 p.Gly91Arg 12124743:46:179
status: NEW
PMID: 12215837
[PubMed]
Scotet V et al: "Spatial and temporal distribution of cystic fibrosis and of its mutations in Brittany, France: a retrospective study from 1960."
No.
Sentence
Comment
118
His genotype was ∆F508/∆F508 Mutation Exon Basse-Bretagne Haute-Bretagne Brittanya ∆F508 10 446 75.6% 224 73.7% 672 75.0% 1078delT 7 31 5.3% 3 1.0% 34 3.8% G551D 11 21 3.6% 12 3.9% 33 3.7% N1303K 21 3 0.5% 9 3.0% 12 1.3% W846X 14a 9 1.5% 1 0.3% 10 1.1% 2789+5G→A 14b 3 0.5% 6 2.0% 9 1.0% 1717-1G→A 11 5 0.8% 3 1.0% 8 0.9% Y1092X 17b 1 0.2% 6 2.0% 7 0.8% 4005+1G→A 20 6 1.0% 1 0.3% 7 0.8% E60X 3 3 0.5% 3 1.0% 6 0.7% 621+1G→T 4 3 0.5% 3 1.0% 6 0.7% R347H 7 6 1.0% 0 0.0% 6 0.7% S492F 10 2 0.3% 3 1.0% 5 0.6% G542X 11 4 0.7% 1 0.3% 5 0.6% 3272-26A→G 17b 2 0.3% 3 1.0% 5 0.6% R117H 4 3 0.5% 1 0.3% 4 0.4% G91R 3 3 0.5% 0 0.0% 3 0.3% ∆I507 10 1 0.2% 2 0.7% 3 0.3% R553X 11 3 0.5% 0 0.0% 3 0.3% W1282X 20 2 0.3% 1 0.3% 3 0.3% A72D 3 0 0.0% 2 0.7% 2 0.2% G85E 3 0 0.0% 2 0.7% 2 0.2% F311L 7 0 0.0% 2 0.7% 2 0.2% 1221delCT 7 2 0.3% 0 0.0% 2 0.2% R560K 11 0 0.0% 2 0.7% 2 0.2% 2622+1G→A 13 2 0.3% 0 0.0% 2 0.2% S945L 15 0 0.0% 2 0.7% 2 0.2% I1234V 19 2 0.3% 0 0.0% 2 0.2% G1249R 20 2 0.3% 0 0.0% 2 0.2% 3905insT 20 2 0.3% 0 0.0% 2 0.2% Unidentified - 3 0.5% 0 0.0% 3 0.3% Total - 590 65.7% 304 34.3% 896 100% IVS17bTA, IVS17bCA) of Irish, Scottish, English, Breton and Czech subjects who were carriers of this mutation, and showed that all these alleles carried a unique haplotype (16-7-17), testifying to the Celtic origin of this mutation (Cashman et al. 1995).
X
ABCC7 p.Gly91Arg 12215837:118:658
status: NEW
PMID: 12815607
[PubMed]
Scotet V et al: "Comparison of the CFTR mutation spectrum in three cohorts of patients of Celtic origin from Brittany (France) and Ireland."
No.
Sentence
Comment
64
Spectrum of the CFTR Mutations Identified in the Cohorts from Brittany, Dublin Centre, and Cork Area Nucleotide Amino acid change * change Exon Number Frequency Number Frequency Number Frequency 211delG 2 1 0.1% 310G>T E60X 3 5 0.6% 4 0.3% 347C>A A72D 3 1 0.1% 368G>A W79X 3 1 0.1% 386G>A G85E 3 2 0.3% 3 0.2% 403G>A G91R 3 2 0.3% 482G>A R117H 4 4 0.5% 38 3.0% 4 1.4% 498T>A Y122X 4 1 0.1% 574delA 4 1 0.1% 577G>A G149R 4 1 0.1% 621+1G>T int 4 5 0.6% 21 1.7% 790C>T Q220X 6a 1 0.1% 875+1G>C int 6a 1 0.4% 905delG 6b 1 0.1% 1065C>G F311L 7 2 0.3% 1078delT 7 28 3.6% 1132C>T R334W 7 1 0.1% 1172G>A R347H 7 5 0.6% 1172G>T R347L 7 1 0.1% 1172G>C R347P 7 1 0.1% 1187G>A R352Q 7 3 0.2% 2 0.7% 1208A>G Q359R 7 1 0.1% 1154insTC 7 2 0.2% 1221delCT 7 2 0.3% 1248+1G>A int 7 1 0.1% 1249-27delTA int 7 1 0.4% 1334G>A W401X 8 1 0.1% 1461ins4 9 5 0.4% 1471delA 9 2 0.2% 1607C>T S492F 10 2 0.3% 1609C>T Q493X 10 1 0.1% 1648_1653delATC I507del 10 3 0.4% 10 0.8% 1 0.4% 1652_1655del 3 bp F508del 10 582 74.8% 966 76.5% 226 81.3% 1690G>T V520F 10 4 0.3% 1717-1G>A int 10 8 1.0% 9 0.7% 1756G>T G542X 11 5 0.6% 8 0.6% 1779T>G S549R 11 1 0.1% 1784G>A G551D 11 29 3.7% 82 6.5% 27 9.7% 1789C>G R553G 11 1 0.1% 1789C>T R553X 11 3 0.4% 1 0.1% 1806delA 11 1 0.1% 1811G>A R560K 11 2 0.3% 1811G>C R560T 11 30 2.4% 2 0.7% 1819T>A Y563N 12 1 0.1% 1853C>A P574H 12 1 0.1% 1898+1G>A int 12 1 0.1% 2184delA 13 1 0.1% 1 0.1% 2184insA 13 1 0.1% 2622+1G>A int 13 1 0.1% 2 0.2% 2622+1G>T int 13 1 0.1% 2623-2A>G ** int 13 1 0.1% 2670G>A W846X2 14a 8 1.0% 2752-1G>T int 14a 1 0.1% 2752-26A>G int 14a 2 0.2% 2789+5G>A int 14b 6 0.8% 2966C>T S945L 15 2 0.3% 3007delG 15 4 0.3% 3040G>C G970R 15 1 0.1% 3062C>T S977F 16 1 0.1% 3120+1G>A int 16 1 0.1% 3272-26A>G int 17a 4 0.5% 2 0.2% 2 0.7% 3320dupli(CTATG) 17b 1 0.1% 3329G>A R1066H 17b 1 0.1% 3340C>T R1070W 17b 1 0.1% 3408C>A Y1092X 17b 7 0.9% 3442G>T E1104X 17b 1 0.1% 3446T>G ** M1105R 17b 1 0.1% 3586G>C D1152H 18 1 0.1% 3601-17T>C + 1367delC int 18 + 9 1 0.1% 3616C>T R1162X 19 1 0.1% 2 0.2% 3659delC 19 2 0.2% 3832A>G I1234V 19 2 0.3% 3849+4A>G int 19 1 0.1% 3849+10kbC>T int 19 3 0.2% 3877G>A G1249R 20 1 0.1% 3884G>A S1251N 20 1 0.1% 3898insC 20 1 0.1% 3905insT 20 2 0.3% 3978G>A W1282X 20 3 0.4% 4005+1G>A int 20 6 0.8% 4016insT 21 1 0.1% 4041C>G N1303K 21 11 1.4% 5 0.4% 4136T>C L1335P 22 1 0.1% 1 0.4% 4279insA 23 1 0.1% Unidentified Unidentified - 3 0.4% 41 3.2% 11 4.0% Total 778 100.0% 1262 100.0% 278 100.0% * All nucleotide changes correspond to cDNA numbering.
X
ABCC7 p.Gly91Arg 12815607:64:317
status: NEW
PMID: 12955726
[PubMed]
Feldmann D et al: "CFTR genotypes in patients with normal or borderline sweat chloride levels."
No.
Sentence
Comment
44
Table 1 : Genotypes and Phenotypes of Patients with Normal or BordIerline Sweat Tests Patient Age at diagnosis (years) CFTR GENOTYPE* Allele 1 Allele 2 SWEAT CL- MEAN (MMOL/L) PHENOTYPE 1 0.2 F508del G149R 38 P+PI, neonatal hypertrypsinemia, 2 0.3 G551D R117H-7T 31 neonatal hypertrypsinemia 3 0.4 F508del R1070W 30.5 neonatal hypertrypsinemia 4 0.4 F508del R117H-7T 52 P 5 0.6 F508del 3849+10kbC>T 48 P 6 0.11 F508del S945L 58 P+PI 7 1 F508del 5T 40 P+CBAVD 8 2 F508del L206W 53 P 9 2 W1282X 5T 42.5 P 10 5 F508del 3849+10kbC>T 55.5 P 11 5 F508del L206W 55 P 12 5 G91R 5T 47.5 P 13 6 G551D S1235R+5T 49.5 P, neonatal hypertrypsinemia 14 7 F508del 3849+10kb 50 P, nasal popyposis 15 13 F508del R117H-7T 58 P, nasal polyposis 16 18 F508del 5T 60.5 P 17 20 G542X 3849+10kbC>T 52 P+PI 18 21 I507del 3849+10kbC>T 54 P, bronchiectasis 19 30 R347P 3849+10kbC>T 43 P, Pseudomonas colonisation 20 30 I507del L206W 57.5 CBAVD, chronic cough 21 31 F508del R117H-7T 60 CBAVD 22 32 G542X 3849+10kbC>T 30 P, Pseudomonas colonisation 23 34 F508del 3272-26A>G 64 P, CBAVD 24 37 R1070Q D1152H 56 CBAVD, bronchectasis 25 46 F508del D1152H 43 P 26 55 F508del D1152H 48 P, Pseudomonas colonisation 27 56 I507del S1235R 53 P 28 >18 F508del D1152H 60 P+PI 29 >20 F508del 3849+10kbC>T 18 P, bronchiectasis 30 >20 F508del 3272-26A>G 61 P *All mutations are named in accordance with the numbering used in the CFTR Mutation Database: http://www.genet.sickkids.on.ca/cftr/.
X
ABCC7 p.Gly91Arg 12955726:44:565
status: NEW
PMID: 15274098
[PubMed]
Davis PB et al: "Relation of sweat chloride concentration to severity of lung disease in cystic fibrosis."
No.
Sentence
Comment
27
T; G91R; E92K; P205S; G551S; Y563N; and P574H.23,24 Note that there are 36 mild alleles in 34 subjects, because two subjects had both the 3848 þ 10 kb C !
X
ABCC7 p.Gly91Arg 15274098:27:3
status: NEW
PMID: 15371903
[PubMed]
Sugarman EA et al: "CFTR mutation distribution among U.S. Hispanic and African American individuals: evaluation in cystic fibrosis patient and carrier screening populations."
No.
Sentence
Comment
35
87 mutation panel The following mutations were included in the panel: ⌬F508, ⌬F311, ⌬I507, A455E, A559T, C524X, D1152H, D1270N, E60X, G178R, G330X, G480C, G542X, G551D, G85E, G91R, I148T, K710X, L206W, M1101K, N1303K, P574H, Q1238X, Q359K/T360K, Q493X, Q552X, Q890X, R1066C, R1158X, R1162X, R117C, R117H, R1283M, R334W, R347H, R347P, R352Q, R553X, R560T, S1196X, S1251N, S1255X, S364P, S549I, S549N, S549R, T338I, V520F, W1089X, W1282X, Y1092X, Y563D, 1078delT, 1161delC, 1609delCA, 1677delTA, 1717-1GϾA, 1812-1GϾA, 1898ϩ1GϾA, 1898ϩ5GϾT, 1949del84, 2043delG, 2143delT, 2183delAAϾG, 2184delA, 2307insA, 2789ϩ5GϾA, 2869insG, 3120ϩ1GϾA, 3120GϾA, 3659delC, 3662delA, 3791delC, 3821delT, 3849ϩ10kbCϾT, 3849ϩ4AϾG, 3905insT, 394delTT, 405ϩ1GϾA, 405ϩ3AϾC, 444delA, 574delA, 621ϩ1GϾT, 711ϩ1GϾT, 711ϩ5GϾA, 712-1GϾT, 3876delA CFTR mutation analysis Genomic DNA was extracted from peripheral blood lymphocytes, buccal cell swabs, or bloodspots by Qiagen QIAmp 96 DNA Blood Kit. Specimens were tested for 87 mutations by a pooled allele-specific oligonucleotide (ASO) hybridization method as previously described.16,17 Two multiplex chain reactions (PCR) were used to amplify 19 regions of the CFTR gene.
X
ABCC7 p.Gly91Arg 15371903:35:196
status: NEW
PMID: 15611333
[PubMed]
Younger JM et al: "A foldable CFTR{Delta}F508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase."
No.
Sentence
Comment
451
Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin.
X
ABCC7 p.Gly91Arg 15611333:451:74
status: NEW
PMID: 15619636
[PubMed]
Thibodeau PH et al: "Side chain and backbone contributions of Phe508 to CFTR folding."
No.
Sentence
Comment
337
Xiong, X., Bragin, A., Widdicombe, J.H., Cohn, J. & Skach, W.R. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin.
X
ABCC7 p.Gly91Arg 15619636:337:138
status: NEW336 Xiong, X., Bragin, A., Widdicombe, J.H., Cohn, J. & Skach, W.R. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin.
X
ABCC7 p.Gly91Arg 15619636:336:138
status: NEW
PMID: 15880796
[PubMed]
Kerem E et al: "Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy."
No.
Sentence
Comment
58
C-D565G II DF508 D1507 S549R S549I S549N S549R S945D S945L H1054D G1061R L1065P R1066C R1066M L1077P H1085R N1303K G85E III G551D S492F V520F R553G R560T R560S Y569D IV R117H, R117C, R117P, R117L D1152H, L88S, G91R, E92K, Q98R, P205S, L206W, L227R, F311L, G314E, R334W, R334Q, I336K, T338I, L346P, R347C, R347H, R347L, R347P, L927P, R1070W, R1070Q V 3849 þ 10 kb C !
X
ABCC7 p.Gly91Arg 15880796:58:210
status: NEW
No.
Sentence
Comment
119
Like ∆F508, several other clinically important mutations - such as N1303K, G85E, and G91R - lead to misfolded CFTR protein that is prematurely degraded.
X
ABCC7 p.Gly91Arg 15888700:119:92
status: NEW
No.
Sentence
Comment
50
In effect, virtually no func- Table 2 Unusually Common Cystic Fibrosis Mutations in Specific Populationsa Total Exon/ Number Number Frequency Mutation Intron Ethnic Origin Observed Screened (%) 296+12T→C intron 02 Pakistani 02 24 8.33 E60X exon 03 Belgian 06 394 1.52 G91R exon 03 French 04 266 1.50 394delTT exon 03 Scandinavian 78 1588 4.91 457TAT→G exon 04 Austrian 04 334 1.20 Y122X exon 04 Réunion Island 14 29 48.27 I148T exon 04 French Canadian 06 66 9.09 711+5G→A intron 05 Italian (North East) 06 225 2.67 1078delT exon 07 Celtic 27 475 5.68 1161delC exon 07 Pakistani 02 24 8.33 T338I exon 07 Italian, Sardinian 04 86 4.65 Q359K/T360K exon 07 Georgian Jews 07 8 87.50 R347H exon 07 Turkish 04 134 2.98 1609delCA exon 10 Spanish 03 96 3.12 1677delTA exon 10 Bulgarian 05 222 2.25 S549I exon 11 Arabs 02 40 5.00 Q552X exon 11 Italian (North East) 03 225 1.33 A559T exon 11 African-American 02 79 2.53 1811+1.2kbA→G intron 11 Spanish 22 1068 2.06 1898+5G→T intron 12 Chinese 03 10 30.00 1949del84 exon 13 Spanish 02 136 1.47 2143delT exon 13 Russian 04 118 3.39 2183AA→G exon 13 Italian (North East) 21 225 9.33 2184insA exon 13 Russian 03 118 2.54 3120+1G→A intron 16 African-American 14 112 12.50 3272-26A→G intron 17a Portugese, French 06 386 1.55 R1066C exon 17b Portugese 05 105 4.76 R1070Q exon 17b Bulgarian 04 166 2.41 Y1092X exon 17b French Canadian, 11 725 1.52 French M1101K exon 17b Hutterite 22 32 68.75 3821delT exon 19 Russian 03 118 2.54 S1235R exon 19 French (South) 04 340 1.18 S1251N exon 20 Dutch, Belgian 11 792 1.39 S1255X exon 20 African-American 02 79 2.53 3905insT exon 20 Swiss 45 982 4.58 Amish, Arcadian 13 86 15.12 W1282X Exon 20 Jewish-Ashkenazi 50 95 52.63 R1283M exon 20 Welsh 03 183 1.64 aAccording to the Cystic Fibrosis Genetic Analysis Consortium, http://www.genet.sickkids.on.ca/cftr/.
X
ABCC7 p.Gly91Arg 16088579:50:275
status: NEW
No.
Sentence
Comment
34
Other identified class II disease-causing mutations in CFTR include N1303K, G85E and G91R [18].
X
ABCC7 p.Gly91Arg 18047735:34:85
status: NEW36 The exact mechanism by which these mutations disrupt folding is not completely clear [21], but both the G85E and G91R mutations have been shown to affect folding due to the insertion of a charged residue in the plane of the lipid bilayer [9].
X
ABCC7 p.Gly91Arg 18047735:36:113
status: NEW
PMID: 18716059
[PubMed]
Rosser MF et al: "Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2."
No.
Sentence
Comment
239
Yet, the fact that the G91R mutation, and to a lesser extent, inhibition of calnexin function also hinder NBD2 folding suggests that general disruption of MSD assembly prevents proper folding of NBD2.
X
ABCC7 p.Gly91Arg 18716059:239:23
status: NEW
No.
Sentence
Comment
37
MATERIALS AND METHODS Cell Lines Baby hamster kidney (BHK) cells, stably expressing the wt and mutant (G91R, L346P, L1093P, N1303K, ⌬F508, 4D, 1218X, 1158X, and 823X) CFTR with three tandem hemagglutinin (HA)-epitope (3HA) inserted into the fourth extracellular loop, were isolated and maintained as described previously (Sharma et al., 2004; Du et al., 2005).
X
ABCC7 p.Gly91Arg 19176754:37:103
status: NEW252 Four CF mutations, G91R (Xiong et al., 1997), L346P (Choi et al., 2005), L1093P (Seibert et al., 1996), and N1303K (Gregory et al., 1991), localized to the transmembrane (TM) 1 and TM6 in MSD1, the cytosolic loop (CL) 4, and in the NBD2, respectively (Figure 7a).
X
ABCC7 p.Gly91Arg 19176754:252:19
status: NEW274 Remarkably, the G91R, L346P, ⌬F508, 4D, and L1093P mutations, regardless of their location, profoundly augmented the protease susceptibility of the NBD2 (ϳ30 kDa), probed with the M3A7 Ab (Figure 7g and Supplemental Figure S7c).
X
ABCC7 p.Gly91Arg 19176754:274:16
status: NEW301 One of the most important observations of this study is that the NBD2 conformational stability was dramatically impaired regardless the localization of mutations (G91R, L346P, ⌬F508, 4D, and L1093P) in the NBD1, TM1, TM6, or CL4 (Figure 6e).
X
ABCC7 p.Gly91Arg 19176754:301:163
status: NEW
PMID: 19625452
[PubMed]
Grove DE et al: "Mechanisms for rescue of correctable folding defects in CFTRDelta F508."
No.
Sentence
Comment
183
Thus, we asked to what extent can disease related folding defects caused by mutations in MSD1 (G85E, G91R, and V232D), MSD2 (M1137R), and NBD2 (N1303K) be corrected relative to those caused by deletion of F508 in NBD1 (Figure 4A).
X
ABCC7 p.Gly91Arg 19625452:183:101
status: NEW184 The G85E, G91R, M1137R, and N1303K mutations all hinder folding of the nascent B-form of CFTR via a mechanism that involves insertion of a charged amino acid into an inappropriate region (Gregory et al., 1991; Xiong et al., 1997; Vankeerberghen et al., 1998).
X
ABCC7 p.Gly91Arg 19625452:184:10
status: NEW189 The CFTR G85E and G91R point mutations are contained within TM1, whereas the V232D mutation lies within TM4 of CFTR`s MSD1 domain.
X
ABCC7 p.Gly91Arg 19625452:189:18
status: NEW192 Furthermore, chemical treatment of CFTR G91R or CFTR M1137R did not significantly affect the accumulation of the immature B-form; however, the mature C-forms of both CFTR G91R and CFTR M1137R were apparent.
X
ABCC7 p.Gly91Arg 19625452:192:40
status: NEWX
ABCC7 p.Gly91Arg 19625452:192:171
status: NEW316 Corr-4a-dependent rescue of MSD biogenic mutants G91R and M1137R was no greater than that observed with corrector-treated CFTR⌬F508.
X
ABCC7 p.Gly91Arg 19625452:316:49
status: NEW
PMID: 21567408
[PubMed]
Nakagawa H et al: "Ubiquitin-mediated proteasomal degradation of ABC transporters: a new aspect of genetic polymorphisms and clinical impacts."
No.
Sentence
Comment
155
Effect of Mutations and Nonsynonymous SNPs on Protein Trafficking, Maturation, or ERAD of ABC Transporters Protein AA Mutation/SNP Effect on Protein Reference ABCA1 W590S Mutation Functional defect 115 R587W Mutation Impaired glycol processing 115 Q597R Mutation Impaired glycol processing, ERAD 115,116 Y1532C Mutation Altered protein trafficking 117 R1925Q Mutation Altered protein trafficking 118 ABCA3 R43L Mutation Altered protein trafficking 119 L101P Mutation Altered protein trafficking 119 R280C Mutation Altered protein trafficking 119 ABCA4 L541P Mutation Mislocalization 120 R602W Mutation Mislocalization 120 A1038V Mutation Mislocalization 120 C1490Y Mutation Mislocalization 120 ABCB1a G268V Mutation ERAD 121 G341C Mutation ERAD 121 I1196S Mutation Reduced glycosylation 122 ABCB4 I541F Mutation Accumulation in ER 123 ABCB11a E135K Mutation Reduced level of mature protein 124 L198P Mutation Reduced level of mature protein 124 E297G Mutation Reduced level of mature protein 124 L413W Mutation Reduced level of mature protein 124 R432T Mutation Reduced level of mature protein 124 D482G Mutation Immature protein in ER 124,125 N490D Mutation Reduced level of mature protein 124 A570T Mutation Reduced level of mature protein 124 T655I Mutation Reduced level of mature protein 124 Y818F SNP Moderate reduction of protein 124 G982R Mutation Retention in ER 125 R1153C Mutation ERAD 125 R1286Q Mutation Retention in ER 125 ABCC2a R768W Mutation Impaired protein trafficking 126 I1173F Mutation Impaired protein maturation 127 R1392 Mutation Impaired protein maturation 128 M1393 Mutation Impaired protein maturation 129 ABCC4a E757K SNP Altered protein trafficking 23 ABCC7 F508 Mutation Misfolding, ERAD 36-39,130 G85E Mutation Impaired protein maturation 130-132 G91R Mutation Impaired protein maturation 130-132 N1303K Mutation Impaired protein maturation 130-132 ABCC8 WT Wild type Ubiquitin-proteasome degradation 133 A116P Mutation Ubiquitin-proteasome degradation 133 V187D Mutation Ubiquitin-proteasome degradation 133 F1388 Mutation Impaired protein trafficking 134 L1544P Mutation Impaired protein trafficking 135,136 ABCC11a G180R SNP Ubiquitin-proteasome degradation 50 27 Mutation Ubiquitin-proteasome degradation 50 ABCG2a V12M SNP Altered protein localization 96 Q141K SNP Ubiquitin-proteasome degradation 102 F208S SNP Ubiquitin-proteasome degradation 78,99 S441N SNP Ubiquitin-proteasome degradation 78,99 Mutations of ABCA1, ABCA3, ABCA4, ABCB4, ABCB11, ABCC2, ABCC7 (CFTR), and ABCC8 are associated with Tangier disease, fatal surfactant deficiency, Stargardt disease, progressive familial intrahepatic cholestasis type 3 (PFIC-3), progressive familial intrahepatic cholestasis type 2 (PFIC-2), Dubin-Johnson syndrome, cystic fibrosis, and familial hyperinsulinism, respectively.
X
ABCC7 p.Gly91Arg 21567408:155:1779
status: NEW
No.
Sentence
Comment
590
In addi-lectivity (see sect. IV), and in view of the roles of arginines in anion binding in other proteins (see sect. VE2), it is tion, Mansoura et al. (101) found that neutral (G91A), acidic (G91E), and basic (G91R) substitutions in this TMtempting to suggest that this TM might actually line the pore as suggested by the voltage-dependent accessibility had no effect on SCN binding or the sensitivity of the constructs to activation by IBMX, although the shape ofof some TM6 residues to MTS reagents (see sect. VF).
X
ABCC7 p.Gly91Arg 9922376:590:211
status: NEW591 Linsdell and Hanrahan (92, 93) suggested that the cyto- the i-V plot was altered for G91R.
X
ABCC7 p.Gly91Arg 9922376:591:85
status: NEW
PMID: 19236881
[PubMed]
Enquist K et al: "Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein."
No.
Sentence
Comment
113
For CFTR, we chose mutations located in TM1CFTR (F87L, G91R), TM3CFTR (P205S, L206W), TM4CFTR (C225R), TM5CFTR (DF311, G314E), TM6CFTR (R334L/W, I336K/R/D, I340N/S, L346P, R347L/H), TM8CFTR (S909I, S912L), TM9CFTR (I1005R, A1006E), TM10CFTR (Y1032N), and TM12CFTR (M1137R, ΔM1140, M1140K), or close to the TM region of TM1CFTR (R74W, L102R/P), TMF2CFTR (R117P/L, L137P), and TM11CFTR (M1101K/R).
X
ABCC7 p.Gly91Arg 19236881:113:55
status: NEW264 Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin.
X
ABCC7 p.Gly91Arg 19236881:264:74
status: NEW109 For CFTR, we chose mutations located in TM1CFTR (F87L, G91R), TM3CFTR (P205S, L206W), TM4CFTR (C225R), TM5CFTR (DF311, G314E), TM6CFTR (R334L/W, I336K/R/D, I340N/S, L346P, R347L/H), TM8CFTR (S909I, S912L), TM9CFTR (I1005R, A1006E), TM10CFTR (Y1032N), and TM12CFTR (M1137R, ƊM1140, M1140K), or close to the TM region of TM1CFTR (R74W, L102R/P), TMF2CFTR (R117P/L, L137P), and TM11CFTR (M1101K/R).
X
ABCC7 p.Gly91Arg 19236881:109:55
status: NEW261 Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin.
X
ABCC7 p.Gly91Arg 19236881:261:74
status: NEW
PMID: 16121039
[PubMed]
Maitra R et al: "Arsenite regulates Cystic Fibrosis Transmembrane Conductance Regulator and P-glycoprotein: evidence of pathway independence."
No.
Sentence
Comment
234
J Biol Chem 2000;275:24970-24976 19 Xiong X, Bragin A, Widdicombe JH, Cohn J, Skach WR: Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.
X
ABCC7 p.Gly91Arg 16121039:234:162
status: NEW
PMID: 21998193
[PubMed]
Patrick AE et al: "Alteration of CFTR transmembrane span integration by disease-causing mutations."
No.
Sentence
Comment
3
In this study, the ER luminal integration profiles of TM1 and TM2 were determined using the ER glycosylation machinery, and the effects of the CF-causing mutations G85E and G91R thereon were assessed.
X
ABCC7 p.Gly91Arg 21998193:3:173
status: NEW6 By contrast, temperature-dependent misfolding owing to the G91R mutation depends on the introduction of the basic side chain rather than the loss of the glycine.
X
ABCC7 p.Gly91Arg 21998193:6:59
status: NEW36 The CF-causing mutants G91R and G85E are in the original predicted TM1 span, residues 81-102 (Riordan et al., 1989).
X
ABCC7 p.Gly91Arg 21998193:36:23
status: NEW41 Consistent with reduced stability, full-length G91R CFTR accumulates in the ER, and multiple domains exhibit increased proteolytic susceptibility in mammalian cells (Du and Lukacs, 2009).
X
ABCC7 p.Gly91Arg 21998193:41:47
status: NEW66 In this study, the span boundaries or integration profiles of TM1 and TM2 were determined and the effects of the CF-causing mutations G85E and G91R assessed.
X
ABCC7 p.Gly91Arg 21998193:66:143
status: NEW67 The G91R and G85E mutations Figure 1: Predicted TM1 and TM2 spans.
X
ABCC7 p.Gly91Arg 21998193:67:4
status: NEW69 The positions of the CF-causing mutants G85E and G91R are indicated by triangles.
X
ABCC7 p.Gly91Arg 21998193:69:49
status: NEW71 This work further elucidates CFTR membrane-spanning structures and provides mechanistic insight into the molecular pathology of the G85E and G91R CF-causing mutations.
X
ABCC7 p.Gly91Arg 21998193:71:141
status: NEW76 Moreover, when the CF-causing mutations G85E and G91R were analyzed using these algorithms, variable effects of mutations were predicted, including shortening, no affect, no TM, or shifting TM1 boundaries (Supplemental Table S1).
X
ABCC7 p.Gly91Arg 21998193:76:49
status: NEW114 Core glycosylation analysis of WT, G91R, and G85E CFTR containing the artificial ECL1 site and lacking the ECL4 sites was performed by deletion of residues between the glycosylation site and TM1 (A) or between the glycosylation site and TM2 (B).
X
ABCC7 p.Gly91Arg 21998193:114:35
status: NEW117 Schematics of the experimentally identified ER integration profiles in WT (C) or G91R (D) and G85E (E) mutants.
X
ABCC7 p.Gly91Arg 21998193:117:81
status: NEW130 Determining the ER integration profiles of CF-causing mutants To assess effects of the CF-causing mutants G91R and G85E on the TM1 ER integration profile, these mutations were analyzed using the ECL1 site core glycosylation assay.
X
ABCC7 p.Gly91Arg 21998193:130:106
status: NEW131 The G85E and G91R mutations introduce an ionizable group into or near the predicted TM1 span and might be reasonably expected to alter its ER integration profile (Xiong et al., 1997).
X
ABCC7 p.Gly91Arg 21998193:131:13
status: NEW133 The G91R and G85E mutations in CFTR containing the natural ECL4 sites or the ECL1 site resulted in misfolding and accumulation in the ER (Supplemental Figure S3).
X
ABCC7 p.Gly91Arg 21998193:133:4
status: NEW136 Thus, in the same manner as WT ECL1, glycosylation analysis was used to characterize the TM1 integration profiles for the G91R and G85E mutants.
X
ABCC7 p.Gly91Arg 21998193:136:122
status: NEW137 Cystic fibrosis-causing mutant G91R shifts the ER integrated profile of TM1 The effect of the G91R mutation on the TM1 ER integrated profile was tested by its introduction into the ECL1 core glycosylation assay.
X
ABCC7 p.Gly91Arg 21998193:137:31
status: NEWX
ABCC7 p.Gly91Arg 21998193:137:94
status: NEW139 By contrast, G91R N-terminal deletion constructs were completely core glycosylated until a 14-residue deletion resulted in partial core glycosylation, and a 16-residue deletion was completely nonglycosylated (Figure 4A), indicating the edge of the mutant TM integration profile shifted by two or three residues.
X
ABCC7 p.Gly91Arg 21998193:139:13
status: NEW140 Thus, instead of I86 as in the wild type, L88 is 12 residues from the ECL1 site in the mutant, positioning it at the G91R TM1 ER luminal integration profile edge (Figure 4D).
X
ABCC7 p.Gly91Arg 21998193:140:117
status: NEW148 As is the case for G91R, the L88 TM1 integration profile edge is slightly shifted from WT.
X
ABCC7 p.Gly91Arg 21998193:148:19
status: NEW163 The reaction of C76 with AMS in the presence of G91R and G85E was also tested.
X
ABCC7 p.Gly91Arg 21998193:163:48
status: NEW164 In WT and G91R, no shift is observed, indicating that position 76 is protected by the membrane (Figure 5, B and C).
X
ABCC7 p.Gly91Arg 21998193:164:10
status: NEW166 This result is consistent with glycosylation scanning results and an initial positioning of TM1 in the presence of G85E that is more C-terminal than for either WT or G91R.
X
ABCC7 p.Gly91Arg 21998193:166:168
status: NEW168 Role of the ionizable side chain in altered G91R and G85E TM1 ER integration profiles In the G91R and G85E mutants, an ionizable side chain replaces the glycine Cα hydrogen.
X
ABCC7 p.Gly91Arg 21998193:168:44
status: NEWX
ABCC7 p.Gly91Arg 21998193:168:93
status: NEW174 This integration profile is the same as the G91R TM1integration profile and one of the two extreme G85E TM1 integration profiles.
X
ABCC7 p.Gly91Arg 21998193:174:44
status: NEW176 Role of the ionizable side chain in trafficking of G91R and G85E The data from the glycosylation assay demonstrate that the G85E mutant splits the integration profile of TM1, whereas the G91R, G85A, and G91A mutants do not.
X
ABCC7 p.Gly91Arg 21998193:176:51
status: NEWX
ABCC7 p.Gly91Arg 21998193:176:187
status: NEW179 G91A is both core and complex glycosylated and traffics to the cell surface, indicating that introduction of arginine rather than loss of glycine causes G91R ER accumulation.
X
ABCC7 p.Gly91Arg 21998193:179:153
status: NEW186 At the lower temperature, both G91R and G85A mutants partially traffic from the ER and are thus temperature sensitive, similar to ΔF508.
X
ABCC7 p.Gly91Arg 21998193:186:31
status: NEW194 This study determined the TM1 and TM2 ER luminal integration profile edges and CF-causing mutant G91R and G85E effects on TM1, using the mammalian ER luminal core glycosylation machinery.
X
ABCC7 p.Gly91Arg 21998193:194:97
status: NEW204 (B) A CFTR construct containing C76 with G91R or G85E was exposed to AMS and examined for the presence of an interaction by gel shift.
X
ABCC7 p.Gly91Arg 21998193:204:41
status: NEW206 (C) Schematics of G91R and G85E mutant CFTR three-TM constructs with the relative positions of C76 and the mutants labeled.
X
ABCC7 p.Gly91Arg 21998193:206:18
status: NEW235 HeLa cell trafficking of WT, ΔF508, G85E, G85A, G91R, and G91A mutant CFTR at 37°C was analyzed by Western blot analysis (A).
X
ABCC7 p.Gly91Arg 21998193:235:54
status: NEW249 Thus CF mutations, such as G91R, in the C-terminal region may be within or exposed to the ER lumen during translation and integration.
X
ABCC7 p.Gly91Arg 21998193:249:27
status: NEW250 Consistent with this is the modest shift in the G91R-CFTR TM1 ER integration profile.
X
ABCC7 p.Gly91Arg 21998193:250:48
status: NEW251 The data here and in previous reports indicate that G91R, but not G91A, disrupts CFTR trafficking in the cell and has significant effects on the stability and assembly of full-length CFTR (Xiong et al., 1997; Younger et al., 2006; Rosser et al., 2008; Du and Lukacs, 2009).
X
ABCC7 p.Gly91Arg 21998193:251:52
status: NEW270 Previous work demonstrated that the G85E and G91R mutations also disrupt later steps in CFTR folding, particularly interdomain interactions, which were proposed to underlie mutant recognition by ER quality control machinery (Xiong et al., 1997).
X
ABCC7 p.Gly91Arg 21998193:270:45
status: NEW273 The G91R mutant was predicted to have a similar effect on CFTR (Xiong et al., 1997).
X
ABCC7 p.Gly91Arg 21998193:273:4
status: NEW274 Yet the experimental evidence presented here distinguishes G91R from G85E with respect to perturbations from the ionizable side chain, the role of glycine, and temperature sensitivity.
X
ABCC7 p.Gly91Arg 21998193:274:59
status: NEW277 It is striking that the corrector compound 4 exhibited mutant-specific effects, partially rescuing the G91R but not G85E CFTR (Grove et al., 2009).
X
ABCC7 p.Gly91Arg 21998193:277:103
status: NEW286 The mutations G91R, G91A, G85E, and G85A were introduced into CFTR constructs containing the natural, artificial, and deletion mutants on the artificial site.
X
ABCC7 p.Gly91Arg 21998193:286:14
status: NEW
PMID: 16901789
[PubMed]
Younger JM et al: "Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator."
No.
Sentence
Comment
207
Hence, we compared the ability of RMA1 and CHIP to sense the folding defect caused by the G91R mutation in transmembrane helix I, which prevents proper assembly of CFTR (Xiong et al., 1997).
X
ABCC7 p.Gly91Arg 16901789:207:90
status: NEW208 Indeed, CFTR1162X G91R was found to be sensitive to elevation of RMA1 activity, but not to CHIP.
X
ABCC7 p.Gly91Arg 16901789:208:18
status: NEW221 First, the elevation of RMA1 activity drives the degradation of CFTR biogenic intermediates that have the G91R mutation in MSDI, which is degraded by ERAD due to defects in MSD assembly (Xiong et al., 1997).
X
ABCC7 p.Gly91Arg 16901789:221:106
status: NEW
PMID: 16049310
[PubMed]
Schrijver I et al: "Genotyping microarray for the detection of more than 200 CFTR mutations in ethnically diverse populations."
No.
Sentence
Comment
51
Complete List of Mutations Detectable with the CF APEX Assay CFTR location Amino acid change Nucleotide change 1 E 1 Frameshift 175delC 2 E 2,3 Frameshift del E2, E3 3 E 2 W19C 189 GϾT 4 E 2 Q39X 247 CϾT 5 IVS 2 Possible splicing defect 296 ϩ 12 TϾC 6 E 3 Frameshift 359insT 7 E 3 Frameshift 394delTT 8 E 3 W57X (TAG) 302GϾA 9 E 3 W57X (TGA) 303GϾA 10 E 3 E60X 310GϾT 11 E 3 P67L 332CϾT 12 E 3 R74Q 353GϾA 13 E 3 R75X 355CϾT 14 E 3 G85E 386GϾA 15 E 3 G91R 403GϾA 16 IVS 3 Splicing defect 405 ϩ 1GϾA 17 IVS 3 Possible splicing defect 405 ϩ 3AϾC 18 IVS 3 Splicing defect 406 - 1GϾA 19 E 4 E92X 406GϾT 20 E 4 E92K 406GϾA 21 E 4 Q98R 425AϾG 22 E 4 Q98P 425AϾC 23 E 4 Frameshift 444delA 24 E 4 Frameshift 457TATϾG 25 E 4 R117C 481CϾT 26 E 4 R117H 482GϾA 27 E 4 R117P 482GϾC 28 E 4 R117L 482GϾT 29 E 4 Y122X 498TϾA 30 E 4 Frameshift 574delA 31 E 4 I148T 575TϾC 32 E 4 Splicing defect 621GϾA 33 IVS 4 Splicing defect 621 ϩ 1GϾT 34 IVS 4 Splicing defect 621 ϩ 3AϾG 35 E 5 Frameshift 624delT 36 E 5 Frameshift 663delT 37 E 5 G178R 664GϾA 38 E 5 Q179K 667CϾA 39 IVS 5 Splicing defect 711 ϩ 1GϾT 40 IVS 5 Splicing defect 711 ϩ 1GϾA 41 IVS 5 Splicing defect 712 - 1GϾT 42 E 6a H199Y 727CϾT 43 E 6a P205S 745CϾT 44 E 6a L206W 749TϾG 45 E 6a Q220X 790CϾT 46 E 6b Frameshift 935delA 47 E 6b Frameshift 936delTA 48 E 6b N287Y 991AϾT 49 IVS 6b Splicing defect 1002 - 3TϾG 50 E 7 ⌬F311 3-bp del between nucleotides 1059 and 1069 51 E 7 Frameshift 1078delT 52 E 7 Frameshift 1119delA 53 E 7 G330X 1120GϾT 54 E 7 R334W 1132CϾT 55 E 7 I336K 1139TϾA 56 E 7 T338I 1145CϾT 57 E 7 Frameshift 1154insTC 58 E 7 Frameshift 1161delC 59 E 7 L346P 1169TϾC 60 E 7 R347H 1172GϾA 61 E 7 R347P 1172GϾC 62 E 7 R347L 1172GϾT 63 E 7 R352Q 1187GϾA 64 E 7 Q359K/T360K 1207CϾA and 1211CϾA 65 E 7 S364P 1222TϾC 66 E 8 Frameshift 1259insA 67 E 8 W401X (TAG) 1334GϾA 68 E 8 W401X (TGA) 1335GϾA 69 IVS 8 Splicing changes 1342 - 6 poly(T) variants 5T/7T/9T 70 IVS 8 Splicing defect 1342 - 2AϾC Table 1. Continued CFTR location Amino acid change Nucleotide change 71 E 9 A455E 1496CϾA 72 E 9 Frameshift 1504delG 73 E 10 G480C 1570GϾT 74 E 10 Q493X 1609CϾT 75 E 10 Frameshift 1609delCA 76 E 10 ⌬I507 3-bp del between nucleotides 1648 and 1653 77 E 10 ⌬F508 3-bp del between nucleotides 1652 and 1655 78 E 10 Frameshift 1677delTA 79 E 10 V520F 1690GϾT 80 E 10 C524X 1704CϾA 81 IVS 10 Possible splicing defect 1717 - 8GϾA 82 IVS 10 Splicing defect 1717 - 1GϾA 83 E 11 G542X 1756GϾT 84 E 11 G551D 1784GϾA 85 E 11 Frameshift 1784delG 86 E 11 S549R (AϾC) 1777AϾC 87 E 11 S549I 1778GϾT 88 E 11 S549N 1778GϾA 89 E 11 S549R (TϾG) 1779TϾG 90 E 11 Q552X 1786CϾT 91 E 11 R553X 1789CϾT 92 E 11 R553G 1789CϾG 93 E 11 R553Q 1790GϾA 94 E 11 L558S 1805TϾC 95 E 11 A559T 1807GϾA 96 E 11 R560T 1811GϾC 97 E 11 R560K 1811GϾA 98 IVS 11 Splicing defect 1811 ϩ 1.6 kb AϾG 99 IVS 11 Splicing defect 1812 - 1GϾA 100 E 12 Y563D 1819TϾG 101 E 12 Y563N 1819TϾA 102 E 12 Frameshift 1833delT 103 E 12 D572N 1846GϾA 104 E 12 P574H 1853CϾA 105 E 12 T582R 1877CϾG 106 E 12 E585X 1885GϾT 107 IVS 12 Splicing defect 1898 ϩ 5GϾT 108 IVS 12 Splicing defect 1898 ϩ 1GϾA 109 IVS 12 Splicing defect 1898 ϩ 1GϾC 110 IVS 12 Splicing defect 1898 ϩ 1GϾT 111 E 13 Frameshift 1924del7 112 E 13 del of 28 amino acids 1949del84 113 E 13 I618T 1985TϾC 114 E 13 Frameshift 2183AAϾG 115 E 13 Frameshift 2043delG 116 E 13 Frameshift 2055del9ϾA 117 E 13 D648V 2075TϾA 118 E 13 Frameshift 2105-2117 del13insAGAA 119 E 13 Frameshift 2108delA 120 E 13 R668C 2134CϾT 121 E 13 Frameshift 2143delT 122 E 13 Frameshift 2176insC 123 E 13 Frameshift 2184delA 124 E 13 Frameshift 2184insA 125 E 13 Q685X 2185CϾT 126 E 13 R709X 2257CϾT 127 E 13 K710X 2260AϾT 128 E 13 Frameshift 2307insA 129 E 13 V754M 2392GϾA 130 E 13 R764X 2422CϾT 131 E 14a W846X 2670GϾA 132 E 14a Frameshift 2734delGinsAT 133 E 14b Frameshift 2766del8 134 IVS 14b Splicing defect 2789 ϩ 5GϾA 135 IVS 14b Splicing defect 2790 - 2AϾG 136 E 15 Q890X 2800CϾT 137 E 15 Frameshift 2869insG 138 E 15 S945L 2966CϾT 139 E 15 Frameshift 2991del32 140 E 16 Splicing defect 3120GϾA interrogation: ACCAACATGTTTTCTTTGATCTTAC 3121-2A3G,T S; 5Ј-ACCAACATGTTTTCTTTGATCTTAC A GTTGTTATTAATTGTGATTGGAGCTATAG-3Ј; CAACAA- TAATTAACACTAACCTCGA 3121-2A3G,T AS.
X
ABCC7 p.Gly91Arg 16049310:51:517
status: NEW150 Primers Generated to Create Synthetic Templates That Serve As Positive Mutation Controls Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј 175delC synt F T(15)ATTTTTTTCAGGTGAGAAGGTGGCCA 175delC synt R T(15)ATTTGGAGACAACGCTGGCCTTTTCC W19C synt F T(15)TACCAGACCAATTTTGAGGAAAGGAT W19C synt R T(15)ACAGCTAAAATAAAGAGAGGAGGAAC Q39X synt F T(15)TAAATCCCTTCTGTTGATTCTGCTGA Q39X synt R T(15)AGTATATGTCTGACAATTCCAGGCGC 296 ϩ 12TϾC synt F T(15)CACATTGTTTAGTTGAAGAGAGAAAT 296 ϩ 12TϾC synt R T(15)GCATGAACATACCTTTCCAATTTTTC 359insT synt F T(15)TTTTTTTCTGGAGATTTATGTTCTAT 359insT synt R T(15)AAAAAAACATCGCCGAAGGGCATTAA E60X synt F T(15)TAGCTGGCTTCAAAGAAAAATCCTAA E60X synt R T(15)ATCTATCCCATTCTCTGCAAAAGAAT P67L synt F T(15)TTAAACTCATTAATGCCCTTCGGCGA P67L synt R T(15)AGATTTTTCTTTGAAGCCAGCTCTCT R74Q synt F T(15)AGCGATGTTTTTTCTGGAGATTTATG R74Q synt R T(15)TGAAGGGCATTAATGAGTTTAGGATT R75X synt F T(15)TGATGTTTTTTCTGGAGATTTATGTT R75X synt R T(15)ACCGAAGGGCATTAATGAGTTTAGGA W57X(TAG) synt F T(15)AGGATAGAGAGCTGGCTTCAAAGAAA W57X(TAG) synt R T(15)TATTCTCTGCAAAAGAATAAAAAGTG W57X(TGA) synt F T(15)AGATAGAGAGCTGGCTTCAAAGAAAA W57X(TGA) synt R T(15)TCATTCTCTGCAAAAGAATAAAAAGT G91R synt F T(15)AGGGTAAGGATCTCATTTGTACATTC G91R synt R T(15)TTAAATATAAAAAGATTCCATAGAAC 405 ϩ 1GϾA synt F T(15)ATAAGGATCTCATTTGTACATTCATT 405 ϩ 1GϾA synt R T(15)TCCCTAAATATAAAAAGATTCCATAG 405 ϩ 3AϾC synt F T(15)CAGGATCTCATTTGTACATTCATTAT 405 ϩ 3AϾC synt R T(15)GACCCCTAAATATAAAAAGATTCCAT 406 - 1GϾA synt F T(15)AGAAGTCACCAAAGCAGTACAGCCTC 406 - 1GϾA synt R T(15)TTACAAAAGGGGAAAAACAGAGAAAT E92X synt F T(15)TAAGTCACCAAAGCAGTACAGCCTCT E92X synt R T(15)ACTACAAAAGGGGAAAAACAGAGAAA E92K synt F T(15)AAAGTCACCAAAGCAGTACAGCCTCT E92K synt R T(15)TCTACAAAAGGGGAAAAACAGAGAAA 444delA synt F T(15)GATCATAGCTTCCTATGACCCGGATA 444delA synt R T(15)ATCTTCCCAGTAAGAGAGGCTGTACT 574delA synt F T(15)CTTGGAATGCAGATGAGAATAGCTAT 574delA synt R T(15)AGTGATGAAGGCCAAAAATGGCTGGG 621GϾA synt F T(15)AGTAATACTTCCTTGCACAGGCCCCA 621GϾA synt R T(15)TTTCTTATAAATCAAACTAAACATAG Q98P synt F T(15)CGCCTCTCTTACTGGGAAGAATCATA Q98P synt R T(15)GGTACTGCTTTGGTGACTTCCTACAA 457TATϾG synt F T(15)GGACCCGGATAACAAGGAGGAACGCT 457TATϾG synt R T(15)CGGAAGCTATGATTCTTCCCAGTAAG I148T synt F T(15)CTGGAATGCAGATGAGAATAGCTATG I148T synt R T(15)GTGTGATGAAGGCCAAAAATGGCTGG 624delT synt F T(15)CTTAAAGCTGTCAAGCCGTGTTCTAG 624delT synt R T(15)TAAGTCTAAAAGAAAAATGGAAAGTT 663delT synt F T(15)ATGGACAACTTGTTAGTCTCCTTTCC 663delT synt R T(15)CATACTTATTTTATCTAGAACACGGC G178R synt F T(15)AGACAACTTGTTAGTCTCCTTTCCAA G178R synt R T(15)TAATACTTATTTTATCTAGAACACGG Q179K synt F T(15)AAACTTGTTAGTCTCCTTTCCAACAA Q179K synt R T(15)TTCCAATACTTATTTTATCTAGAACA 711 ϩ 5GϾA synt F T(15)ATACCTATTGATTTAATCTTTTAGGC 711 ϩ 5GϾA synt R T(15)TTATACTTCATCAAATTTGTTCAGGT 712 - 1GϾT synt F T(15)TGGACTTGCATTGGCACATTTCGTGT 712 - 1GϾT synt R T(15)TATGGAAAATAAAAGCACAGCAAAAAC H199Y synt F T(15)TATTTCGTGTGGATCGCTCCTTTGCA H199Y synt R T(15)TATGCCAATGCTAGTCCCTGGAAAATA P205S synt F T(15)TCTTTGCAAGTGGCACTCCTCATGGG P205S synt R T(15)TAAGCGATCCACACGAAATGTGCCAAT L206W synt F T(15)GGCAAGTGGCACTCCTCATGGGGCTA L206W synt R T(15)TCAAGGAGCGATCCACACGAAATGTGC Q220X synt F T(15)TAGGCGTCTGCTTTCTGTGGACTTGG Q220X synt R T(15)TATAACAACTCCCAGATTAGCCCCATG 936delTA synt F T(15)AATCCAATCTGTTAAGGCATACTGCT 936delTA synt R T(15)TGATTTTCAATCATTTCTGAGGTAATC 935delA synt F T(15)GAAATATCCAATCTGTTAAGGCATAC 935delA synt R T(15)TATTTCAATCATTTCTGAGGTAATCAC N287Y synt F T(15)TACTTAAGACAGTAAGTTGTTCCAAT N287Y synt R T(15)TATTCAATCATTTTTTCCATTGCTTCT 1002 - 3TϾG synt F T(15)GAGAACAGAACTGAAACTGACTCGGA 1002 - 3TϾG synt R T(15)TCTAAAAAACAATAACAATAAAATTCA 1154insTC syntwt F T(15)ATCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntwt R T(15)TTGAGATGGTGGTGAATATTTTCCGGA 1154insTC syntmt F T(15)TCTCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntmt R T(15)TAGAGATGGTGGTGAATATTTTCCGGA DF311 mt syntV1 F T(15)CCTTCTTCTCAGGGTTCTTTGTGGTG dF311 mt syntV1 R T(15)GAGAAGAAGGCTGAGCTATTGAAGTATC G330X synt F T(15)TGAATCATCCTCCGGAAAATATTCAC G330X synt R T(15)ATTTGATTAGTGCATAGGGAAGCACA S364P synt F T(15)CCTCTTGGAGCAATAAACAAAATACA S364P synt R T(15)GGTCATACCATGTTTGTACAGCCCAG Q359K/T360K mt synt F T(15)AAAAAATGGTATGACTCTCTTGGAGC Q359K/T360K mt synt R T(15)TTTTTTACAGCCCAGGGAAATTGCCG 1078delT synt F T(15)CTTGTGGTGTTTTTATCTGTGCTTCC 1078delT synt R T(15)CAAGAACCCTGAGAAGAAGAAGGCTG 1119delA synt F T(15)CAAGGAATCATCCTCCGGAAAATATT 1119delA synt R T(15)CTTGATTAGTGCATAGGGAAGCACAG 1161delC synt F T(15)GATTGTTCTGCGCATGGCGGTCACTC 1161delC synt R T(15)TCAGAATGAGATGGTGGTGAATATTT T338I synt F T(15)TCACCATCTCATTCTGCATTGTTCTG T338I synt R T(15)ATGAATATTTTCCGGAGGATGATTCC R352Q synt F T(15)AGCAATTTCCCTGGGCTGTACAAACA R352Q synt R T(15)TGAGTGACCGCCATGCGCAGAACAAT L346P synt F T(15)CGCGCATGGCGGTCACTCGGCAATTT L346P synt R T(15)GGAACAATGCAGAATGAGATGGTGGT 1259insA synt F T(15)AAAAAGCAAGAATATAAGACATTGGA 1259insA synt R T(15)TTTTTGTAAGAAATCCTATTTATAAA W401X(TAG)mtsynt F T(15)AGGAGGAGGTCAGAATTTTTAAAAAA W401X(TAG)mtsynt R T(15)TAGAAGGCTGTTACATTCTCCATCAC W401X(TGA) synt F T(15)AGAGGAGGTCAGAATTTTTAAAAAAT W401X(TGA) synt R T(15)TCAGAAGGCTGTTACATTCTCCATCA 1342 - 2AϾC synt F T(15)CGGGATTTGGGGAATTATTTGAGAAA 1342 - 2AϾC synt R T(15)GGTTAAAAAAACACACACACACACAC 1504delG synt F T(15)TGATCCACTGTAGCAGGCAAGGTAGT 1504delG synt R T(15)TCAGCAACCGCCAACAACTGTCCTCT G480C synt F T(15)TGTAAAATTAAGCACAGTGGAAGAAT G480C synt R T(15)ACTCTGAAGGCTCCAGTTCTCCCATA C524X synt F T(15)ACAACTAGAAGAGGTAAGAAACTATG C524X synt R T(15)TCATGCTTTGATGACGCTTCTGTATC V520F synt F T(15)TTCATCAAAGCAAGCCAACTAGAAGA V520F synt R T(15)AGCTTCTGTATCTATATTCATCATAG 1609delCA synt F T(15)TGTTTTCCTGGATTATGCCTGGCACC 1609delCA synt R T(15)CAGAACAGAATGAAATTCTTCCACTG 1717 - 8GϾA synt F T(15)AGTAATAGGACATCTCCAAGTTTGCA 1717 - 8GϾA synt R T(15)TAAAAATAGAAAATTAGAGAGTCACT 1784delG synt F T(15)AGTCAACGAGCAAGAATTTCTTTAGC 1784delG synt R T(15)ACTCCACTCAGTGTGATTCCACCTTC A559T synt F T(15)ACAAGGTGAATAACTAATTATTGGTC A559T synt R T(15)TTAAAGAAATTCTTGCTCGTTGACCT Q552X synt F T(15)TAACGAGCAAGAATTTCTTTAGCAAG Q552X synt R T(15)AACCTCCACTCAGTGTGATTCCACCT S549R(AϾC) synt F T(15)CGTGGAGGTCAACGAGCAAGAATTTC S549R(AϾC) synt R T(15)GCAGTGTGATTCTACCTTCTCCAAGA S549R(TϾG) synt F T(15)GGGAGGTCAACGAGCAAGTATTTC S549R(TϾG) synt R T(15)CCTCAGTGTGATTCCACCTTCTCCAA L558S synt F T(15)CAGCAAGGTGAATAACTAATTATTGG L558S synt R T(15)GAAGAAATTCTCGCTCGTTGACCTCC 1811 ϩ 1.6 kb AϾG synt F T(15)GTAAGTAAGGTTACTATCAATCACAC 1811 ϩ 1.6 kb AϾG synt R T(15)CATCTCAAGTACATAGGATTCTCTGT 1812 - 1GϾA synt F T(15)AAGCAGTATACAAAGATGCTGATTTG 1812 - 1GϾA synt R T(15)TTAAAAAGAAAATGGAAATTAAATTA D572N synt F T(15)AACTCTCCTTTTGGATACCTAGATGT D572N synt R T(15)TTAATAAATACAAATCAGCATCTTTG P574H synt F T(15)ATTTTGGATACCTAGATGTTTTAACA P574H synt R T(15)TGAGAGTCTAATAAATACAAATCAGC 1833delT synt F T(15)ATTGTATTTATTAGACTCTCCTTTTG 1833delT synt R T(15)CAATCAGCATCTTTGTATACTGCTCT Table 4. Continued Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј Y563D synt F T(15)GACAAAGATGCTGATTTGTATTTATT Y563D synt R T(15)CTACTGCTCTAAAAAGAAAATGGAAA T582R synt F T(15)GAGAAAAAGAAATATTTGAAAGGTAT T582R synt R T(15)CTTAAAACATCTAGGTATCCAAAAGG E585X synt F T(15)TAAATATTTGAAAGGTATGTTCTTTG E585X synt R T(15)ATTTTTCTGTTAAAACATCTAGGTAT 1898 ϩ 5GϾT synt F T(15)TTTCTTTGAATACCTTACTTATATTG 1898 ϩ 5GϾT synt R T(15)AATACCTTTCAAATATTTCTTTTTCT 1924del7 synt F T(15)CAGGATTTTGGTCACTTCTAAAATGG 1924del7 synt R T(15)CTGTTAGCCATCAGTTTACAGACACA 2055del9ϾA synt F T(15)ACATGGGATGTGATTCTTTCGACCAA 2055del9ϾA synt R T(15)TCTAAAGTCTGGCTGTAGATTTTGGA D648V synt F T(15)TTTCTTTCGACCAATTTAGTGCAGAA D648V synt R T(15)ACACATCCCATGAGTTTTGAGCTAAA K710X synt F T(15)TAATTTTCCATTGTGCAAAAGACTCC K710X synt R T(15)ATCGTATAGAGTTGATTGGATTGAGA I618T synt F T(15)CTTTGCATGAAGGTAGCAGCTATTTT I618T synt R T(15)GTTAATATTTTGTCAGCTTTCTTTAA R764X synt F T(15)TGAAGGAGGCAGTCTGTCCTGAACCT R764X synt R T(15)ATGCCTGAAGCGTGGGGCCAGTGCTG Q685X synt F T(15)TAATCTTTTAAACAGACTGGAGAGTT Q685X synt R T(15)ATTTTTTTGTTTCTGTCCAGGAGACA R709X synt F T(15)TGAAAATTTTCCATTGTGCAAAAGAC R709X synt R T(15)ATATAGAGTTGATTGGATTGAGAATA V754M synt F T(15)ATGATCAGCACTGGCCCCACGCTTCA V754M synt R T(15)TGCTGATGCGAGGCAGTATCGCCTCT 1949del84 synt F T(15)AAAAATCTACAGCCAGACTTTATCTC 1949del84 synt R T(15)TTTTTAGAAGTGACCAAAATCCTAGT 2108delA synt F T(15)GAATTCAATCCTAACTGAGACCTTAC 2108delA synt R T(15)ATTCTTCTTTCTGCACTAAATTGGTC 2176insC synt F T(15)CCAAAAAAACAATCTTTTAAACAGACTGGAGAG 2176insC synt R T(15)GGTTTCTGTCCAGGAGACAGGAGCAT 2184delA synt F T(15)CAAAAAACAATCTTTTAAACAGACTGG 2184delA synt R T(15)GTTTTTTGTTTCTGTCCAGGAGACAG 2105-2117 del13 synt F T(15)AAACTGAGACCTTACACCGTTTCTCA 2105-2117 del13 synt R T(15)TTTCTTTCTGCACTAAATTGGTCGAA 2307insA synt F T(15)AAAGAGGATTCTGATGAGCCTTTAGA 2307insA synt R T(15)TTTCGATGCCATTCATTTGTAAGGGA W846X synt F T(15)AAACACATACCTTCGATATATTACTGTCCAC W846X synt R T(15)TCATGTAGTCACTGCTGGTATGCTCT 2734G/AT synt F T(15)TTAATTTTTCTGGCAGAGGTAAGAAT 2734G/AT synt R T(15)TTAAGCACCAAATTAGCACAAAAATT 2766del8 synt F T(15)GGTGGCTCCTTGGAAAGTGAGTATTC 2766del8 synt R T(15)CACCAAAGAAGCAGCCACCTGGAATGG 2790 - 2AϾG synt F T(15)GGCACTCCTCTTCAAGACAAAGGGAA 2790 - 2AϾG synt R T(15)CGTAAAGCAAATAGGAAATCGTTAAT 2991del32 synt F T(15)TTCAACACGTCGAAAGCAGGTACTTT 2991del32 synt R T(15)AAACATTTTGTGGTGTAAAATTTTCG Q890X synt F T(15)TAAGACAAAGGGAATAGTACTCATAG Q890X synt R T(15)AAAGAGGAGTGCTGTAAAGCAAATAG 2869insG synt F T(15)GATTATGTGTTTTACATTTACGTGGG 2869insG synt R T(15)CACGAACTGGTGCTGGTGATAATCAC 3120GϾA synt F T(15)AGTATGTAAAAATAAGTACCGTTAAG 3120GϾA synt R T(15)TTGGATGAAGTCAAATATGGTAAGAG 3121 - 2AϾT synt F T(15)TGTTGTTATTAATTGTGATTGGAGCT 3121 - 2AϾT synt R T(15)AGTAAGATCAAAGAAAACATGTTGGT 3132delTG synt F T(15)TTGATTGGAGCCATAGCAGTTGTCGC 3132delTG synt R T(15)AATTAATAACAACTGTAAGATCAAAG 3271delGG synt F T(15)ATATGACAGTGAATGTGCGATACTCA 3271delGG synt R T(15)ATTCAGATTCCAGTTGTTTGAGTTGC 3171delC synt F T(15)ACCTACATCTTTGTTGCAACAGTGCC 3171delC synt R T(15)AGGTTGTAAAACTGCGACAACTGCTA 3171insC synt F T(15)CCCCTACATCTTTGTTGCTACAGTGC 3171insC synt R T(15)GGGGTTGTAAAACTGCGACAACTGCT 3199del6 synt F T(15)GAGTGGCTTTTATTATGTTGAGAGCATAT 3199del6 synt R T(15)CCACTGGCACTGTTGCAACAAAGATG M1101K synt F T(15)AGAGAATAGAAATGATTTTTGTCATC M1101K synt R T(15)TTTTGGAACCAGCGCAGTGTTGACAG G1061R synt F T(15)CGACTATGGACACTTCGTGCCTTCGG G1061R synt R T(15)GTTTTAAGCTTGTAACAAGATGAGTG R1066L synt F T(15)TTGCCTTCGGACGGCAGCCTTACTTT R1066L synt R T(15)AGAAGTGTCCATAGTCCTTTTAAGCT R1070P synt F T(15)CGCAGCCTTACTTTGAAACTCTGTTC R1070P synt R T(15)GGTCCGAAGGCACGAAGTGTCCATAG L1077P synt F T(15)CGTTCCACAAAGCTCTGAATTTACAT L1077P synt R T(15)GGAGTTTCAAAGTAAGGCTGCCGTCC W1089X synt F T(15)AGTTCTTGTACCTGTCAACACTGCGC W1089X synt R T(15)TAGTTGGCAGTATGTAAATTCAGAGC L1093P synt F T(15)CGTCAACACTGCGCTGGTTCCAAATG L1093P synt R T(15)GGGTACAAGAACCAGTTGGCAGTATG W1098R synt F T(15)CGGTTCCAAATGAGAATAGAAATGAT W1098R synt R T(15)GGCGCAGTGTTGACAGGTACAAGAAC Q1100P synt F T(15)CAATGAGAATAGAAATGATTTTTGTC Q1100P synt R T(15)GGGAACCAGCGCAGTGTTGACAGGTA D1152H synt F T(15)CATGTGGATAGCTTGGTAAGTCTTAT D1152H synt R T(15)GTATGCTGGAGTTTACAGCCCACTGC R1158X synt F T(15)TGATCTGTGAGCCGAGTCTTTAAGTT R1158X synt R T(15)ACATCTGAAATAAAAATAACAACATT S1196X synt F T(15)GACACGTGAAGAAAGATGACATCTGG S1196X synt R T(15)CAATTCTCAATAATCATAACTTTCGA 3732delA synt F T(15)GGAGATGACATCTGGCCCTCAGGGGG 3732delA synt R T(15)CTCCTTCACGTGTGAATTCTCAATAA 3791delC synt F T(15)AAGAAGGTGGAAATGCCATATTAGAG 3791delC synt R T(15)TTGTATTTTGCTGTGAGATCTTTGAC 3821delT synt F T(15)ATTCCTTCTCAATAAGTCCTGGCCAG 3821delT synt R T(15)GAATGTTCTCTAATATGGCATTTCCA Q1238X synt F T(15)TAGAGGGTGAGATTTGAACACTGCTT Q1238X synt R T(15)AGCCAGGACTTATTGAGAAGGAAATG S1255X (ex19)synt F T(15)GTCTGGCCCTCAGGGGGCCAAATGAC S1255X (ex19) synt R T(15)CGTCATCTTTCTTCACGTGTGAATTC S1255X;L synt F T(15)AAGCTTTTTTGAGACTACTGAACACT S1255X;L synt R T(15)TATAACAAAGTAATCTTCCCTGATCC 3849 ϩ 4AϾG synt F T(15)GGATTTGAACACTGCTTGCTTTGTTA 3849 ϩ 4AϾG synt R T(15)CCACCCTCTGGCCAGGACTTATTGAG 3850 - 1GϾA synt F T(15)AGTGGGCCTCTTGGGAAGAACTGGAT 3850 - 1GϾA synt R T(15)TTATAAGGTAAAAGTGATGGGATCAC 3905insT synt F T(15)TTTTTTTGAGACTACTGAACACTGAA 3905insT synt R T(15)AAAAAAAGCTGATAACAAAGTACTCT 3876delA synt F T(15)CGGGAAGAGTACTTTGTTATCAGCTT 3876delA synt R T(15)CGATCCAGTTCTTCCCAAGAGGCCCA G1244V synt F T(15)TAAGAACTGGATCAGGGAAGAGTACT G1244V synt R T(15)ACCAAGAGGCCCACCTATAAGGTAAA G1249E synt F T(15)AGAAGAGTACTTTGTTATCAGCTTTT G1249E synt R T(15)TCTGATCCAGTTCTTCCCAAGAGGCC S1251N synt F T(15)ATACTTTGTTATCAGCTTTTTTGAGACTACTG S1251N synt R T(15)TTCTTCCCTGATCCAGTTCTTCCCAA S1252P synt F T(15)CCTTTGTTATCAGCTTTTTTGAGACT S1252P synt R T(15)GACTCTTCCCTGATCCAGTTCTTCCC D1270N synt F T(15)AATGGTGTGTCTTGGGATTCAATAAC D1270N synt R T(15)TGATCTGGATTTCTCCTTCAGTGTTC W1282R synt F T(15)CGGAGGAAAGCCTTTGGAGTGATACC W1282R synt R T(15)GCTGTTGCAAAGTTATTGAATCCCAA R1283K synt F T(15)AGAAAGCCTTTGGAGTGATACCACAG R1283K synt R T(15)TTCCACTGTTGCAAAGTTATTGAATC 4005 ϩ 1GϾA synt F T(15)ATGAGCAAAAGGACTTAGCCAGAAAA 4005 ϩ 1GϾA synt R T(15)TCTGTGGTATCACTCCAAAGGCTTTC 4010del4 synt F T(15)GTATTTTTTCTGGAACATTTAGAAAAAACTTGG 4010del4 synt R T(15)AAAATACTTTCTATAGCAAAAAAGAAAAGAAGAA 4016insT synt F T(15)TTTTTTTCTGGAACATTTAGAAAAAACTTGG 4016insT synt R T(15)AAAAAAATAAATACTTTCTATAGCAAAAAAGAAAAGAAGA CFTRdele21 synt F T(15)TAGGTAAGGCTGCTAACTGAAATGAT CFTRdele21 synt R T(15)CCTATAGCAAAAAAGAAAAGAAGAAGAAAGTATG 4382delA synt F T(15)GAGAGAACAAAGTGCGGCAGTACGAT 4382delA synt R T(15)CTCTATGACCTATGGAAATGGCTGTT Bold, mutation allele of interest; bold and italicized, modified nucleotide.
X
ABCC7 p.Gly91Arg 16049310:150:1214
status: NEWX
ABCC7 p.Gly91Arg 16049310:150:1258
status: NEW
PMID: 10923036
[PubMed]
Claustres M et al: "Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France."
No.
Sentence
Comment
104
c 4016insT, G1244E, R1158X, 3120+1G>A, 1677delTA, I1234V, E831X, 5T, Q220X, E92K, G91R.
X
ABCC7 p.Gly91Arg 10923036:104:82
status: NEW
PMID: 10597630
[PubMed]
Chevet E et al: "Calnexin family members as modulators of genetic diseases."
No.
Sentence
Comment
85
Potential involvement of calnexin and calreticulin in genetically-inherited diseases Protein Mutation Disease Calnexin Calreticulin Degradation ␣1-antitrypsin null Hong-Kong Emphysema q ref. 54 ᎐ q ref. 34 Ž .Liver disease Z-allele Emphysema q ref. 2 ᎐ q ref. 2 Ž .ref. 2 Lungrliver disease CFTR ⌬F508 ref. 51 Cystic fibrosis q ref. 51 ᎐ ᎐ G85E ref. 55 ND ND G91R ref. 55 ND ND Myeloperoxidase Y173C ref. 56 Decreased q ref. 57 q ref. 57 q ref. 56 W569R ref. 56 microbicidal response Factor VIII R2307Q ref. 58 Haemophilia q ref. 37 q ref. 37 Thyroglobulin Congenital q ref. 59 q ref. 59 ᎐ hyperthyroid goiter Figure 4.
X
ABCC7 p.Gly91Arg 10597630:85:413
status: NEW119 ref. 2 Lungrliver disease CFTR DF508 ref. 51 Cystic fibrosis q ref. 51 ] ] G85E ref. 55 ND ND G91R ref. 55 ND ND Myeloperoxidase Y173C ref. 56 Decreased q ref. 57 q ref. 57 q ref. 56 W569R ref. 56 microbicidal response Factor VIII R2307Q ref. 58 Haemophilia q ref. 37 q ref. 37 Thyroglobulin Congenital q ref. 59 q ref. 59 ] hyperthyroid goiter Figure 4.
X
ABCC7 p.Gly91Arg 10597630:119:94
status: NEW
PMID: 9512029
[PubMed]
Mansoura MK et al: "Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore."
No.
Sentence
Comment
27
Glycine 91 was one of three residues in TM1 identified as being accessible to water-soluble thiol reagents, and this residue is also the site of a patient mutation, G91R, associated with a pancreatic sufficient phenotype (Guillermit et al., 1993).
X
ABCC7 p.Gly91Arg 9512029:27:165
status: NEW62 Expression levels Wild-type and 11 mutant CFTR constructs were used in this study: G91A, G91E, G91R, G314A, G314D, G314E, G314Q, K335R, K335A, K335D, and K335E.
X
ABCC7 p.Gly91Arg 9512029:62:95
status: NEW137 Permeability Ratios Wild type 4-9 3.42 Ϯ 0.28 1.42 Ϯ 0.04 1.22 Ϯ 0.02 0.39 Ϯ 0.01 0.44 Ϯ 0.03 G91A 3-6 3.24 Ϯ 0.26 1.53 Ϯ 0.04 1.27 Ϯ 0.02 0.37 Ϯ 0.04 0.40 Ϯ 0.04 G91E 3-7 3.50 Ϯ 0.54 1.59 Ϯ 0.04 1.27 Ϯ 0.01 0.35 Ϯ 0.01 0.51 Ϯ 0.04 G91R 3-4 5.26 ؎ 0.46* 1.60 Ϯ 0.03 1.40 ؎ 0.01* 0.32 Ϯ 0.04 0.64 ؎ 0.04* G314A 3-4 2.87 Ϯ 0.17 1.45 Ϯ 0.03 1.19 Ϯ 0.02 0.31 Ϯ 0.03 0.33 Ϯ 0.03 G314D 4 3.42 Ϯ 0.34 1.44 Ϯ 0.05 1.25 Ϯ 0.04 0.33 Ϯ 0.03 0.51 Ϯ 0.05 G314E 3-4 3.72 Ϯ 0.56 1.65 ؎ 0.09* 1.35 ؎ 0.03* 0.49 Ϯ 0.04 0.53 Ϯ 0.04 G314Q 3-4 3.89 Ϯ 0.37 1.62 Ϯ 0.11 1.27 Ϯ 0.04 0.36 Ϯ 0.03 0.62 Ϯ 0.05 K335R 3-5 3.44 Ϯ 0.29 1.35 Ϯ 0.04 1.22 Ϯ 0.03 0.40 Ϯ 0.05 0.41 Ϯ 0.07 K335A 5-6 5.34 ؎ 0.58* 1.48 Ϯ 0.06 1.28 Ϯ 0.04 0.37 Ϯ 0.03 0.60 Ϯ 0.06 K335D 4-6 3.02 Ϯ 0.19 1.50 Ϯ 0.03 1.10 ؎ 0.02* 0.54 ؎ 0.04* 0.65 ؎ 0.06* K335E 5-8 3.64 Ϯ 0.21 1.48 Ϯ 0.06 1.29 Ϯ 0.03 0.46 Ϯ 0.04 1.10 ؎ 0.04* B. Conductance Ratios Wild type 4-9 0.14 Ϯ 0.02 0.75 Ϯ 0.02 0.64 Ϯ 0.02 0.52 Ϯ 0.03 0.18 Ϯ 0.03 G91A 3-6 0.14 Ϯ 0.01 0.77 Ϯ 0.02 0.61 Ϯ 0.02 0.47 Ϯ 0.02 0.19 Ϯ 0.02 G91E 3-7 0.15 Ϯ 0.03 0.73 Ϯ 0.02 0.60 Ϯ 0.01 0.50 Ϯ 0.04 0.30 Ϯ 0.02 G91R 3-4 0.14 Ϯ 0.00 0.84 Ϯ 0.01 0.63 Ϯ 0.01 0.32 ؎ 0.01* 0.14 Ϯ 0.01 G314A 3-4 0.30 Ϯ 0.09 0.89 ؎ 0.01* 0.66 Ϯ 0.01 0.48 Ϯ 0.09 0.24 Ϯ 0.01 G314D 4 0.28 Ϯ 0.05 0.82 Ϯ 0.01 0.70 Ϯ 0.02 0.49 Ϯ 0.06 0.27 Ϯ 0.03 G314E 3-4 0.62 ؎ 0.07* 1.18 ؎ 0.04* 0.84 ؎ 0.05* 0.42 Ϯ 0.05 0.29 Ϯ 0.09 G314Q 3-4 0.63 ؎ 0.02* 1.01 ؎ 0.04* 0.82 ؎ 0.03* 0.50 Ϯ 0.02 0.42 ؎ 0.02* K335R 3-5 0.14 Ϯ 0.01 0.76 Ϯ 0.03 0.61 Ϯ 0.02 0.59 Ϯ 0.06 0.16 Ϯ 0.03 K335A 6 0.20 Ϯ 0.03 0.77 Ϯ 0.02 0.61 Ϯ 0.02 0.45 Ϯ 0.03 0.21 Ϯ 0.02 K335D 4-6 0.65 ؎ 0.04* 1.25 ؎ 0.02* 0.89 ؎ 0.02* 0.61 Ϯ 0.06 0.58 ؎ 0.06* K335E 5-8 0.50 ؎ 0.06* 1.19 ؎ 0.03* 0.89 ؎ 0.02* 0.53 Ϯ 0.03 0.48 ؎ 0.03* (A) The apparent permeability ratios (PS/PCl) for each substitute anion were calculated from the shift in reversal potential using the Goldman-Hodgkin-Katz relation (noted in Materials and Methods).
X
ABCC7 p.Gly91Arg 9512029:137:322
status: NEWX
ABCC7 p.Gly91Arg 9512029:137:1553
status: NEW150 Of the three substitutions for G91, the arginine (G91R) altered the RR most dramatically, increasing it nearly sevenfold, although the negatively charged glutamate (G91E) FIGURE 2 The effect of replacement of [Cl- ]o by [SCN- ]o is shown for wtCFTR (A) and G314E (B).
X
ABCC7 p.Gly91Arg 9512029:150:50
status: NEW163 Finally, the mutant that exhibited the most striking shape change (G91R) did not differ from wild type in its dose-dependent activation by IBMX (see below).
X
ABCC7 p.Gly91Arg 9512029:163:67
status: NEW165 Concentration-dependent activation of G91A, G91E, and G91R CFTR was not discernibly different from that of wtCFTR.
X
ABCC7 p.Gly91Arg 9512029:165:54
status: NEW169 TABLE 4 Quantitative analyses of the macroscopic I-V shape changes Mutant ⌬ Net charge n RR g(ϩ30)/g(-30) RR/RRWT Wild type 5 1.220 Ϯ 0.06 1.00 G91A 0 4 1.293 Ϯ 0.06 1.06 G91E -1 5 1.512 ؎ 0.10* 1.24 G91R 1 4 8.041 ؎ 0.87* 6.59 G314A 0 4 1.201 Ϯ 0.09 0.98 G314D -1 4 1.362 Ϯ 0.08 1.12 G314E -1 7 1.405 Ϯ 0.08 1.15 G314Q 0 5 1.376 Ϯ 0.10 1.13 K335R 0 4 1.209 Ϯ 0.06 0.99 K335A -1 4 1.295 Ϯ 0.07 1.06 K335D -2 5 0.762 ؎ 0.02* 0.62 K335E -2 4 0.919 ؎ 0.02* 0.75 The slope conductance was measured at ϩ30 mV and -30 mV with respect to the reversal potential.
X
ABCC7 p.Gly91Arg 9512029:169:231
status: NEWX
ABCC7 p.Gly91Arg 9512029:169:242
status: NEW173 TABLE 5 Concentration-dependent activation of wtCFTR, G91, G314, and K335 variants by IBMX in the presence of 10 M forskolin Mutant n K1/2(IBMX) (mM) Wild type 15 0.35 Ϯ 0.04 G91A 5 0.42 Ϯ 0.06 G91E 8 0.51 ؎ 0.06* G91R 5 0.49 Ϯ 0.09 G314A 10 1.21 ؎ 0.11* G314D 3 1.35 ؎ 0.16* G314E 8 6.39 ؎ 1.35* G314Q 4 14.26 ؎ 6.64* K335R 4 0.46 Ϯ 0.04 K335A 2 0.35 Ϯ 0.15 K335D 7 0.87 ؎ 0.13* K335E 3 0.95 ؎ 0.07* The steady-state slope conductance was measured at -60 mV as increasing concentrations of IBMX (0.02-5.0 mM) were added to the perfusate in the continued presence of 10 mM forskolin.
X
ABCC7 p.Gly91Arg 9512029:173:239
status: NEW198 The results presented here are consistent with the notion that the binding of anions within the CFTR pore is a sensitive indicator of changes in pore structure whereas permeability ratios appear to be rather insensitive to similar TABLE 6 Qualitative summary of the functional consequences of mutations at G91, G314, and K335 Property G91 (TM1) K335 (TM6) G314 (TM5) G91A G91E G91R K335R K335A K335D K335E G314A G314D G314E G314Q I-V shape - - ϩϩϩ - - ϩϩ ϩ - - - - Psub/PCl - - - - - - ϩϩ - - - - gsub/gCl - - - - - ϩϩϩ ϩϩϩ ϩϩ - ϩϩϩ ϩϩϩ SCN- binding - - - - - ϩϩϩ ϩϩϩ ϩϩ - ϩϩϩϩ ϩϩϩϩ Activation - - - - - ϩϩ ϩϩ ϩϩϩ ϩϩϩ ϩϩϩϩ ϩϩϩϩ Results are expressed as follows: -, function of the CFTR construct with the indicated substitution was indistinguishable from wild type; ϩ to ϩϩϩϩ, semiquantitative indication of the magnitude of the change in the function compared with wild type.
X
ABCC7 p.Gly91Arg 9512029:198:377
status: NEW262 One of the most interesting mutants surveyed in this study was the G91R CFTR, which exhibited a dramatic, nearly sevenfold, increase in outward rectification (Table 4) but was identical to wtCFTR with regard to the apparent binding of SCN and dose-dependent activation by IBMX.
X
ABCC7 p.Gly91Arg 9512029:262:67
status: NEW138 Permeability Ratios Wild type 4-9 3.42 afe; 0.28 1.42 afe; 0.04 1.22 afe; 0.02 0.39 afe; 0.01 0.44 afe; 0.03 G91A 3-6 3.24 afe; 0.26 1.53 afe; 0.04 1.27 afe; 0.02 0.37 afe; 0.04 0.40 afe; 0.04 G91E 3-7 3.50 afe; 0.54 1.59 afe; 0.04 1.27 afe; 0.01 0.35 afe; 0.01 0.51 afe; 0.04 G91R 3-4 5.26 d1e; 0.46* 1.60 afe; 0.03 1.40 d1e; 0.01* 0.32 afe; 0.04 0.64 d1e; 0.04* G314A 3-4 2.87 afe; 0.17 1.45 afe; 0.03 1.19 afe; 0.02 0.31 afe; 0.03 0.33 afe; 0.03 G314D 4 3.42 afe; 0.34 1.44 afe; 0.05 1.25 afe; 0.04 0.33 afe; 0.03 0.51 afe; 0.05 G314E 3-4 3.72 afe; 0.56 1.65 d1e; 0.09* 1.35 d1e; 0.03* 0.49 afe; 0.04 0.53 afe; 0.04 G314Q 3-4 3.89 afe; 0.37 1.62 afe; 0.11 1.27 afe; 0.04 0.36 afe; 0.03 0.62 afe; 0.05 K335R 3-5 3.44 afe; 0.29 1.35 afe; 0.04 1.22 afe; 0.03 0.40 afe; 0.05 0.41 afe; 0.07 K335A 5-6 5.34 d1e; 0.58* 1.48 afe; 0.06 1.28 afe; 0.04 0.37 afe; 0.03 0.60 afe; 0.06 K335D 4-6 3.02 afe; 0.19 1.50 afe; 0.03 1.10 d1e; 0.02* 0.54 d1e; 0.04* 0.65 d1e; 0.06* K335E 5-8 3.64 afe; 0.21 1.48 afe; 0.06 1.29 afe; 0.03 0.46 afe; 0.04 1.10 d1e; 0.04* B. Conductance Ratios Wild type 4-9 0.14 afe; 0.02 0.75 afe; 0.02 0.64 afe; 0.02 0.52 afe; 0.03 0.18 afe; 0.03 G91A 3-6 0.14 afe; 0.01 0.77 afe; 0.02 0.61 afe; 0.02 0.47 afe; 0.02 0.19 afe; 0.02 G91E 3-7 0.15 afe; 0.03 0.73 afe; 0.02 0.60 afe; 0.01 0.50 afe; 0.04 0.30 afe; 0.02 G91R 3-4 0.14 afe; 0.00 0.84 afe; 0.01 0.63 afe; 0.01 0.32 d1e; 0.01* 0.14 afe; 0.01 G314A 3-4 0.30 afe; 0.09 0.89 d1e; 0.01* 0.66 afe; 0.01 0.48 afe; 0.09 0.24 afe; 0.01 G314D 4 0.28 afe; 0.05 0.82 afe; 0.01 0.70 afe; 0.02 0.49 afe; 0.06 0.27 afe; 0.03 G314E 3-4 0.62 d1e; 0.07* 1.18 d1e; 0.04* 0.84 d1e; 0.05* 0.42 afe; 0.05 0.29 afe; 0.09 G314Q 3-4 0.63 d1e; 0.02* 1.01 d1e; 0.04* 0.82 d1e; 0.03* 0.50 afe; 0.02 0.42 d1e; 0.02* K335R 3-5 0.14 afe; 0.01 0.76 afe; 0.03 0.61 afe; 0.02 0.59 afe; 0.06 0.16 afe; 0.03 K335A 6 0.20 afe; 0.03 0.77 afe; 0.02 0.61 afe; 0.02 0.45 afe; 0.03 0.21 afe; 0.02 K335D 4-6 0.65 d1e; 0.04* 1.25 d1e; 0.02* 0.89 d1e; 0.02* 0.61 afe; 0.06 0.58 d1e; 0.06* K335E 5-8 0.50 d1e; 0.06* 1.19 d1e; 0.03* 0.89 d1e; 0.02* 0.53 afe; 0.03 0.48 d1e; 0.03* (A) The apparent permeability ratios (PS/PCl) for each substitute anion were calculated from the shift in reversal potential using the Goldman-Hodgkin-Katz relation (noted in Materials and Methods).
X
ABCC7 p.Gly91Arg 9512029:138:322
status: NEWX
ABCC7 p.Gly91Arg 9512029:138:1553
status: NEW151 Of the three substitutions for G91, the arginine (G91R) altered the RR most dramatically, increasing it nearly sevenfold, although the negatively charged glutamate (G91E) FIGURE 2 The effect of replacement of [Clafa; ]o by [SCNafa; ]o is shown for wtCFTR (A) and G314E (B).
X
ABCC7 p.Gly91Arg 9512029:151:50
status: NEW
PMID: 9417117
[PubMed]
Lu Y et al: "Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly."
No.
Sentence
Comment
43
Plasmid pSPCFTR(E92A/ K95A) was generated by PCR amplification of pSPCFTR(E92A) (sense primer (SP6 promoter) ATTTAGGTGACACTATAG, and antisense primer TACTGCAGCGGTGACGGCGCCTAA), digestion of the PCR fragment with AvaI/PstI (PstI encoded in antisense oligonucleotides) and ligation of the fragment into an AvaI/PstI digested pSPCFTRK95A vector. Plasmids pSPCFTR(G85E) and pSPCFTR(G91R) are described elsewhere (33).
X
ABCC7 p.Gly91Arg 9417117:43:378
status: NEW44 Plasmids TM1.P, TM1.P(G85E), TM1.P(G91R), TM1.P(E92A), TM1.P(E95A), and TM1.P(E92A/E95A) were constructed by PCR amplification of WT or corresponding mutant CFTR plasmids (sense primer (SP6 promoter), antisense primer TAGATAGGTCACCATAGAGCGTTCCTCCT) and ligation of HindIII/BstEII-digested PCR fragments into a HindIII/BstEII-digested vector, S.L.ST.gG.P (described in Ref.
X
ABCC7 p.Gly91Arg 9417117:44:35
status: NEW82 In contrast to WT chains, no protease-protected fragments were observed for TM1.P(G85E) or TM1.P(G91R) chains, demonstrating that these inherited cystic fibrosis-related mutations abolished the ability of TM1 to direct translocation of the P reporter (lanes 4-6 and 7-9, respectively).
X
ABCC7 p.Gly91Arg 9417117:82:97
status: NEW95 Plasmids TM1.P, TM1.P(G85E), TM1.P(G91R), TM1.P(E92A), TM1.P(K95A), and TM1.P- (E92A/K95A) were expressed in rabbit reticulocyte lysate supplemented with canine pancreas microsomal membranes (A) or in microinjected Xenopus oocytes (B) as described under "Materials and Methods."
X
ABCC7 p.Gly91Arg 9417117:95:35
status: NEW103 located); (ii) G85E and G91R mutations essentially abolished TM1 signal sequence activity (Ͻ5% of chains translocated); and (iii) E92A and E92A/K95A mutations improved TM1 signal sequence activity (36% and 70% of chains translocated, respectively).
X
ABCC7 p.Gly91Arg 9417117:103:24
status: NEW105 This, however, was not the case because greater than 70% of WT as well as G85E and G91R chains achieved their correct N terminus topology in the ER membrane ((33) and Fig. 4).
X
ABCC7 p.Gly91Arg 9417117:105:83
status: NEW144 Plasmids encoding TM1 mutations, G85E and G91R (33), were also included for comparison.
X
ABCC7 p.Gly91Arg 9417117:144:42
status: NEW191 Furthermore, even chains containing a completely defective TM1 signal sequence (G85E and G91R mutants) were properly oriented in the membrane but only if a functional TM2 signal sequence was present.
X
ABCC7 p.Gly91Arg 9417117:191:89
status: NEW45 Plasmids TM1.P, TM1.P(G85E), TM1.P(G91R), TM1.P(E92A), TM1.P(E95A), and TM1.P(E92A/E95A) were constructed by PCR amplification of WT or corresponding mutant CFTR plasmids (sense primer (SP6 promoter), antisense primer TAGATAGGTCACCATAGAGCGTTCCTCCT) and ligation of HindIII/BstEII-digested PCR fragments into a HindIII/BstEII-digested vector, S.L.ST.gG.P (described in Ref. 18).
X
ABCC7 p.Gly91Arg 9417117:45:35
status: NEW83 In contrast to WT chains, no protease-protected fragments were observed for TM1.P(G85E) or TM1.P(G91R) chains, demonstrating that these inherited cystic fibrosis-related mutations abolished the ability of TM1 to direct translocation of the P reporter (lanes 4-6 and 7-9, respectively).
X
ABCC7 p.Gly91Arg 9417117:83:97
status: NEW96 Plasmids TM1.P, TM1.P(G85E), TM1.P(G91R), TM1.P(E92A), TM1.P(K95A), and TM1.P- (E92A/K95A) were expressed in rabbit reticulocyte lysate supplemented with canine pancreas microsomal membranes (A) or in microinjected Xenopus oocytes (B) as described under "Materials and Methods."
X
ABCC7 p.Gly91Arg 9417117:96:35
status: NEW104 located); (ii) G85E and G91R mutations essentially abolished TM1 signal sequence activity (,5% of chains translocated); and (iii) E92A and E92A/K95A mutations improved TM1 signal sequence activity (36% and 70% of chains translocated, respectively).
X
ABCC7 p.Gly91Arg 9417117:104:24
status: NEW106 This, however, was not the case because greater than 70% of WT as well as G85E and G91R chains achieved their correct N terminus topology in the ER membrane ((33) and Fig. 4).
X
ABCC7 p.Gly91Arg 9417117:106:83
status: NEW
PMID: 9063876
[PubMed]
Ostedgaard LS et al: "Association of domains within the cystic fibrosis transmembrane conductance regulator."
No.
Sentence
Comment
207
We made an N-terminal construct that contained the CF-associated mutation G91R (Guillermit et al., 1993) in M1 (1-835G91R) and expressed it alone or with the C-terminal half, 837-1480.
X
ABCC7 p.Gly91Arg 9063876:207:74
status: NEW
No.
Sentence
Comment
58
SSCP pattern of different probes, screened for exon 3 of the CFTR gene. Line 1: control sample of known mutation (G91R), which is difficult to detect by SSCP analysis. Lines 2-14: original codes of samples, which according to the referral laboratory do not carry mutation in the exon under investigation.
X
ABCC7 p.Gly91Arg 9222762:58:114
status: NEW
PMID: 8844213
[PubMed]
Morral N et al: "Haplotype analysis of 94 cystic fibrosis mutations with seven polymorphic CFTR DNA markers."
No.
Sentence
Comment
105
CFTR Haplotypes for Diallelic and Multiallelic DNA Markers for 94 CF Mutations" J44-GATT- 8CA-17BTA- No. of T854-TUB20 17BCA Mutation chromosomes % Normal Laboratory Reference 2-7-1-2 17-47-13 (55.4%) 17-46-13 17-45-13 17-34-13 17-32-13 17-31-14 17-31-13 17-29-14 17-28-13 16-48-13 16-46-14 16-46-13 16-45-13 16-44-13 16-35-13 16-33-13 16-32-13 16-31-14 16-31-13 16-30-13 16-29-13 16-26-13 16-25-13 16-24-13 14-31-13 1-7-2-1 17-7-17 (16.8%) R334W R334W 3860ins31 G1244E R1162X R1162X R1162X G91R MllOlK R347P R334W R117C E92K 3849+lOkbC+T 3293delA 1811+1.6kb A-tG 1811+1.6kb A-tG 2184insA P205S 3659delC G673X 11005R I336K W58S R347P W846X 405+1-A G178R 3905insT R1162X R347H 3100insA E60X 1078delT 4005+1-A K710X 1677delTA H199Y 3601-2AjG 3850-3T+G 3272-26A-tG 3850-1-A 1812-1-A R117H L1059X S492F Y1092X Y569H 3732delA C866Y 711+1G+T 711+1-T G85E 1949del84 2789+5-A H1085R W1282X R1066C 2043delG V456F 2 1 1 1 2 1 6 2 2 1 2 1 1 2 1 1 4 1 1 1 3 2 1 1 1 1 1 1 2 7 1 1 1 1 2 1 1 3 19 3 3 1 1 2 1 1 5 1 1 1 1 3 6 3 5 1 13 2 1 1 - 0.48 0.48 - - - 0.24 - - - 2.65 2.40 1.93 2.65 1.68 2.65 0.72 13.94 13.46 1.93 - 0.72 0.24 3.37 - b b fP fP fP t b,fb.fP h fb t h t h h fP fP b.h b h h b h h h h h fb fb,fP.t fP fP fP9t fP b t fPh b h fb b.fb,h fb*fP b,fP h h t h fb fb,fp,h.t fP fP fb t b.fP,t b,fb,h,t b f b h h fb b,fb.fP,h fP h h Gasparini et al. (1991b) Chilldn et al. (1993a) Devoto et al. (1991) Gasparini et al. (1991b) Dork et al. (1993a) Guillermit et al. (1993) Zielenski et al. (1993) Dean et al. (1990) Dork et al. (1994a) Nunes et al. (1993) Highsmith et al. (1994) Ghanem et al. (1994) Chilldn et al. (1995) Dork et al. (1994a) Dork et al. (1993a) Chilldn et al. (1993b) Kerem et al. (1990) Dork et al. (1994a) Dork et al. (1994a) Cuppenset al. (1993) Fanen et al. (1992) Maggio et al. (personal communication) Audrezet et al. (1993) Vidaud et al. (1990) Dork et al. (1993b) Zielenski et al. (1991a) Chilldn et al. (1994b) Malik et al. (personal communication) Cremonesi et at.
X
ABCC7 p.Gly91Arg 8844213:105:491
status: NEW
PMID: 8530001
[PubMed]
Ferec C et al: "Neonatal screening for cystic fibrosis: result of a pilot study using both immunoreactive trypsinogen and cystic fibrosis gene mutation analyses."
No.
Sentence
Comment
80
Identification of novel mutations The systematic screening of exons 7, 10, and I I performed on each positive Guthrie card during this period has led us to identify five new mutations in the CFTR 30 545 % of non AF508 mutations 20 9 1717-1G->A 10 & & i i Esox G91R I 621+1G->T R117H 6b[ 7 905delG 1078 del T R347H 1221 det CT F311L R347L i10 i11i12 13 14a~l !
X
ABCC7 p.Gly91Arg 8530001:80:261
status: NEW
No.
Sentence
Comment
78
Of the 13 Young syndrome patients, we identified one (Patient 5) who was het- CBAVD Dl152H D1270N G576A* R75Q* P67L Rl17H 3849 + 10 KB C > T G551S Rl17H Pancreatic Sufficient, Moderate Pulmonary Symptoms, Normal Sweat Chloride Concentrations Pancreatic Sufficient, Moderate Pulmonary Symptoms R347P 2789 + 5 G > A R334W G85E R347H R347L Rl17H G91R A455E S945L Y563N Q1291H R297Q R352Q L1065P 3850-3 T > G F1286S 3849 + 10 KB C > T TABLE 1 CFTR MUTATION SCREENING PANEL Severe M508 G551D R553X N1303K W1282X G542X 1717-1 G > A ~1507 R560T 3659deiC 621 + 1 G > T S549N TABLE 2 CLINICAL FEATURES OF YOUNG SYNDROME PATIENTS Patient Age Sweat CI- FEV, Paranasal Sputum No.
X
ABCC7 p.Gly91Arg 7551394:78:343
status: NEW
PMID: 7525963
[PubMed]
Chevalier-Porst F et al: "Mutation analysis in 600 French cystic fibrosis patients."
No.
Sentence
Comment
21
Among the 104 other CFTR mutations tested on the 373 non-AF508 CF chromosomes, none of the following 58 mutations were found: G91R, 435 insA, 444delA, D11OH, 556delA, 557delT, R297Q, 1154insTC, R347L, R352Q, Q359K/T360K, 1221delCT, G480C, Q493R, V520F, C524X, 1706dell7, S549R (A-C), S549N, S549I, G551S, 1784delG, Q552X, L558S, A559T, R560T, R560K, Y563N, P574H, 2307insA, 2522insC, 2556insAT, E827X, Q890X, Y913C, 2991de132 (Dork et al, personal communication), L967S, 3320ins5, 3359delCT, H1085R, R1158X, 3662delA, 3667del4, 3667ins4, 3732delA, 3737delA, W1204X, 3750delAG, I 1234V, Q1238X, 3850- 3T-+G, 3860ins31, S1255X, 3898insC, D1270N, R1283M, F1286S, 4005 + I G-A. Forty-six other mutations were found on at Distribution of CFTR mutations found in our sample ofpopulation (1200 CF chromosomes) Mutations tested No of CF chromosomes Haplotypes Method with the mutation XV2C-KM19 (% of total CF alleles) Exon 3: G85E 4 (033) 3C HinfI/ASO394delTT 2 2B PAGEExon 4: R117H 1 B ASOY122X 2 2C MseI/sequenceI148T 1 B ASO621+IG-J* 1 B MseIIASOExon 5: 711+1G--T 8(07) 8A ASOExon 7: AF311 1 C PAGE/sequencelO78delT 5 (0-42) 5C PAGE/ASOR334W 5 (0-42) 2A,2C,ID MspIlASOR347P 5 (042) 5A CfoI/NcoIR347H 1 Cfol/sequenceExon 9: A455E 1 B ASOExon 10: S492F I C DdeI/sequenceQ493X 1 D ASOl609deICA 1 C PAGE/Ddel/sequenceA1507 3 (025) 3D PAGE/ASOAF508 827 (69) 794B,30D,2C,IA PAGEl677delTA 1 A PAGE/sequenceExon I11: 1717-IG--.A 16(1-3) 14B Modified primers + AvaIIG542X 40 (3-3) 29B,5D,2A Modified primers + BstNiS549R(T--*G) 2 2B ASOG551D 3 (025) 3B HincII/Sau3AR553X 10(0-8) 6A,1B,2C,ID Hincll/sequenceExon 12: 1898+IG--A 1 C ASO1898+ IG-C 2 IC ASOExon 13: l9l8deIGC 1 A PAGE/sequence1949de184 I C PAGE/sequenceG628R(G-+A) 2 2A Sequence2118de14 I c PAGE/sequence2143de1T 1 B PAGE/modified primers2184de1A+2183A--*G 11 (0-9) lIB PAGE/ASO2184de1A 1 ASOK710X 3 (025) IC XmnI2372de18 1 B PAGE/sequenceExon 15: S945L 1 C TaqlExon 17b:L1065P I MnlIL1077P 1 A ASOY1092X 3 (025) 2C,IA Rsal/ASOExon 19: RI1162X 6 (0-5) 5C,IA DdeI/ASO3659delC 3 (025) 3C ASOExon 20: G1244E 2 2A MboIIS1251N 2 2C RsaI3905insT 4 (0-33) 4C PAGE/ASOW1282X 18 (105) 15B,1D MnlI/ASOR1283K 1 C Mnll/sequenceExon 21: N1303K 22 (1-8) 18B,lA,ID Modified primers+BstNI 47 mutations 1031 (85 9) least one CF chromosome (table): 21 of them are very rare as they were found on only one CF chromosome in our population.
X
ABCC7 p.Gly91Arg 7525963:21:126
status: NEW
PMID: 7515047
[PubMed]
Akabas MH et al: "Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator."
No.
Sentence
Comment
122
Although the Arg side chain is somewhat larger than theside chain of Cys modified by MTSEA', the reduction in whole cell current we observed following modification of G91C by MTSEA' suggests that the G91R mutant will have altered single-channel properties.
X
ABCC7 p.Gly91Arg 7515047:122:200
status: NEW
PMID: 7516232
[PubMed]
Bienvenu T et al: "A new missense mutation (G27E) in exon 2 of the CFTR gene in a mildly affected cystic fibrosis patient."
No.
Sentence
Comment
35
This observation is consistent with the mild clinical phenotype already observed in compound heterozygote patients with another missense mutation in exon 3 (G91R) (13) or in homozygous patient for the G85E mutation (14).
X
ABCC7 p.Gly91Arg 7516232:35:157
status: NEW
No.
Sentence
Comment
2
By this process, we have detected a new missense mutation, G91R, which results in an arginine for glycine at codon 91.
X
ABCC7 p.Gly91Arg 7682984:2:59
status: NEWX
ABCC7 p.Gly91Arg 7682984:2:85
status: NEW3 Three affected patients with a AF508/G91R genotype are pancreatic sufficient.
X
ABCC7 p.Gly91Arg 7682984:3:37
status: NEW37 G91R was found on two chromosomes among the 87 analysed and was associated with haplotype C in both cases (KMI9 = 1; XV2c = 2).
X
ABCC7 p.Gly91Arg 7682984:37:0
status: NEW39 Pattern of G91R mutation in denaturing gradient gel electrophoresis (gradient 0/50).
X
ABCC7 p.Gly91Arg 7682984:39:11
status: NEW42 Result of the sequencing of the exon 3 PCR product, the sequence of the mutated allele G91R, by the dideoxy method according to Sanger et al. (1977) displayed this genotype, as one of the above cases had an affected sibling.
X
ABCC7 p.Gly91Arg 7682984:42:87
status: NEW57 In this study, we have reported a new mutation located in exon 3 (G91R) of three patients, two of whom are siblings.
X
ABCC7 p.Gly91Arg 7682984:57:66
status: NEW59 All these patients carry the same genotype, are compound heterozygotes AF508/G91R and are pancreatic sufficient.
X
ABCC7 p.Gly91Arg 7682984:59:77
status: NEW65 Some point mutations located in the transmembrane domain, such as the G91R mutation that we have described in this paper, are good candidates for being associated with mild forms of the disease.
X
ABCC7 p.Gly91Arg 7682984:65:70
status: NEW
No.
Sentence
Comment
98
This notion has also been confirmed by a series of observations of the effects of missense mutations, such as Rl 17H (28), G91R (29) or R347L (this report), which are associated with pancreatic insufficiency and a milder form of the disease.
X
ABCC7 p.Gly91Arg 7683952:98:123
status: NEW
PMID: 1384327
[PubMed]
Scriver CR et al: "Cystic fibrosis genotypes and views on screening are both heterogeneous and population related."
No.
Sentence
Comment
76
of CF chromosomes]) Distribution and Mutation (%) Askhenazi from Israel (Abeliovich et al. 1992 [94]; Shoshani et al. 1992 [95]): W1282X .......................................... AFS08 ............................................. G542X ............................................ 3849 + 10 kb, CT ............................ N1303K ........................................... Total ............................................ Celtic Bretons from France (Ferec et al. 1992 [365]): AF508 ............................................. 1078delT ......................................... G5S1D ............................................ 1717-1 G-A ..................................... W846X ............................................ G91R ..............................................
X
ABCC7 p.Gly91Arg 1384327:76:739
status: NEW
PMID: 25987565
[PubMed]
Loo TW et al: "The Transmission Interfaces Contribute Asymmetrically to the Assembly and Activity of Human P-glycoprotein."
No.
Sentence
Comment
315
The NBD2 transmission interface was also found to be particularly important for CFTR assembly as processing mutations in other domains that cause cystic fibrosis (such as èc;F508 in NBD1, G91R in TMD1, L1093P in TMD2) were found to impair the conformational stability of NBD2 (54).
X
ABCC7 p.Gly91Arg 25987565:315:192
status: NEW
No.
Sentence
Comment
160
An example of mutants similarly located within CFTR with different local mechanisms of misfolding are the G85E and G91R mutations.
X
ABCC7 p.Gly91Arg 22973227:160:115
status: NEW165 The G91R mutant was predicted to have a similar effect on CFTR (Xiong et al., 1997), but this proved not to be true with regards to the TM1 conformation/integration profile (Patrick et al., 2011).
X
ABCC7 p.Gly91Arg 22973227:165:4
status: NEW166 Interestingly, the corrector compound four rescues G91R but not G85E-CFTR (Grove et al., 2009), suggesting the differences in the mutant molecular pathologies may be relevant for their ability to benefit from specific treatments to rescue defective CFTR.
X
ABCC7 p.Gly91Arg 22973227:166:51
status: NEW
No.
Sentence
Comment
66
An important implication of this topogenesis mechanism is highlighted by two CF-causing mutations, G85E and G91R, each of which introduces an additional ionizable residue into TM1.
X
ABCC7 p.Gly91Arg 23248597:66:108
status: NEW68 Despite achieving correct topology, however, G85E and G91R still disrupt CFTR folding and trafficking (Xiong et al., 1997; Patrick et al., 2011).
X
ABCC7 p.Gly91Arg 23248597:68:54
status: NEW
PMID: 24513262
[PubMed]
Sarles J et al: "Neonatal screening for cystic fibrosis: comparing the performances of IRT/DNA and IRT/PAP."
No.
Sentence
Comment
158
IRT d3 Ctrl IRT PAP Cl- Mut 1 Mut 2 1 66 68 0.4 80 ƊF508del ƊF508del 2 87.8 106.5 0.5 137 E1104X E1104X 3 93.2 105.8 0.8 82 G91R ƊF508del 4 71.1 56.7 0.3 80.0 ƊF508del ƊF508del 5 67.9 54.4 1.5 99.0 ƊF508del ƊF508del 6 87.1 82.9 4.5 70.0 E1104X D110H 7 61.5 62 5.0 88.0 R553X A455E 8 62.4 63.0 14.6 110.0 2183AANG 907delCins11 9 117.0 81.5 15.6 130.0 S466X S466X Lines 1-3: false negatives in the IRT/PAP strategy, 6-9: false negatives in the IRT/DNA strategy, due to mutations not detected by the Elucigeneࡊ CF30, 45: false negatives in both strategies.
X
ABCC7 p.Gly91Arg 24513262:158:134
status: NEW
PMID: 24561544
[PubMed]
Pizzo L et al: "An image analysis method to quantify CFTR subcellular localization."
No.
Sentence
Comment
210
Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.
X
ABCC7 p.Gly91Arg 24561544:210:74
status: NEW