ABCC7 p.Leu1077Pro
Admin's notes: | Class II-III-VI (maturation defect, gating defect, reduced stability) Veit et al. |
ClinVar: |
c.3230T>C
,
p.Leu1077Pro
D
, Pathogenic
|
CF databases: |
c.3230T>C
,
p.Leu1077Pro
D
, CF-causing ; CFTR1: The change was found in a Toronto family (#55). The mutation is on the maternal chromosome with haplotype IIIc.
|
Predicted by SNAP2: | A: D (71%), C: D (66%), D: D (91%), E: D (85%), F: D (80%), G: D (91%), H: D (85%), I: D (59%), K: D (91%), M: D (71%), N: D (85%), P: D (63%), Q: D (85%), R: D (91%), S: D (80%), T: D (71%), V: D (59%), W: D (91%), Y: D (85%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, F: N, G: N, H: N, I: N, K: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
[hide] Genotype-phenotype correlation in three homozygote... J Med Genet. 2000 Apr;37(4):307-9. Kilinc MO, Ninis VN, Tolun A, Estivill X, Casals T, Savov A, Dagli E, Karakoc F, Demirkol M, Huner G, Ozkinay F, Demir E, Seculi JL, Pena J, Bousono C, Ferrer-Calvete J, Calvo C, Glover G, Kremenski I
Genotype-phenotype correlation in three homozygotes for the cystic fibrosis mutation 2183AA-->G shows a severe phenotype.
J Med Genet. 2000 Apr;37(4):307-9., [PMID:10819640]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
468 Identification of four new mutations in the cystic fibrosis transmembrane conductance regulator gene: I148T, L1077P, Y1092X, 2183AA→G. Hum Mutat 1994;3:330-2. 3 Cystic Fibrosis Genetic Analysis Consortium.
X
ABCC7 p.Leu1077Pro 10819640:468:109
status: NEW[hide] Genetic, andrological and clinical characteristics... Int J Androl. 2001 Apr;24(2):73-9. Attardo T, Vicari E, Mollica F, Grazioso C, Burrello N, Garofalo MR, Lizzio MN, Garigali G, Cannizzaro M, Ruvolo G, D'Agata R, Calogero AE
Genetic, andrological and clinical characteristics of patients with congenital bilateral absence of the vas deferens.
Int J Androl. 2001 Apr;24(2):73-9., [PMID:11298840]
Abstract [show]
The possibility of retrieving spermatozoa from the epididymis allows patients with congenital bilateral absence of the vas deferens (CBAVD) to father a child by means of assisted reproduction techniques. This has, however, increased the chance of transmitting a mutated allele of the cystic fibrosis transmembrane conductance regulator (CFTR) gene which increases the risk of generating offspring with cystic fibrosis (CF). Because of the increased heterogeneity of the CFTR locus, the study of a discrete number of mutations, as usually carried out in a diagnostic work-up, is unable to ascertain the presence of a mutation in a relatively high proportion of the patients screened. In an attempt to increase the chance of detecting the presence of CFTR gene abnormalities, 37 patients with CBAVD and one patient with congenital unilateral agenesis of the vas deferens (CUAVD) underwent an enlarged diagnostic protocol, which included screening for the most expected mutations of the CFTR gene in our population, evaluation of the five thymidine (5T) allelic variant, sweat test, respiratory function tests, evaluation of steatocrit, and an accurate evaluation of the history of the patient to search for symptoms commonly found in patients with CF. A single CFTR gene mutation was found in 18 patients (48.6%) with CBAVD and in the patient with CUAVD. The most frequent mutation observed was the Delta F508. Eleven patients (45.8%) had the 5T variant and in five of them it was not associated with any detectable mutation of the CFTR gene. Two female partners were found to be carriers of a mutation, whereas 5 (18.5%) had the 5T variant. As many as 71% of CBVAD patients had the simultaneous presence of at least two signs and/or symptoms suggestive of CF, albeit they were of mild intensity and the patients felt fit and healthy. In conclusion, these results suggested that some patients with CBAVD without CFTR gene mutation or 5T variant, even when their sweat test is negative, may show clinical suspicion of carrying a CFTR gene mutation and therefore are at risk of generating children affected by CF if the partner carries a mutation as well. The screening for mutations and a careful clinical examination may contribute to better identification of patients with CFTR-related CBAVD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
49 We investigated the following 11 CFTR mutations: DF508, G542X, R553X, N1303K, W1282X, R347P, L1077P, 2183AA ® G, 1717±1G > A, R1162X, and R117H.
X
ABCC7 p.Leu1077Pro 11298840:49:93
status: NEW64 Of the 27 wives tested, 2 (7.4%) were found to be carriers of one CF mutation (L1077P and DF508).
X
ABCC7 p.Leu1077Pro 11298840:64:79
status: NEW[hide] Cystic fibrosis mutation testing in Italy. Genet Test. 2001 Fall;5(3):229-33. Bombieri C, Pignatti PF
Cystic fibrosis mutation testing in Italy.
Genet Test. 2001 Fall;5(3):229-33., [PMID:11788089]
Abstract [show]
In Italy, Cystic fibrosis (CF) mutation frequency differences have been observed in different regions. In the northeastern Veneto and Trentino Alto Adige regions, a complete cystic fibrosis transmembrane conductance regulator (CFTR) gene screening in CF patients detected through a newborn screening program has identified about 90% of the mutations. In these two regions, the current detection rate using a CF screening panel containing the 16 most common mutations is 86.6%. CF mutations in some other Italian regions have not been so thoroughly analysed. Available data indicate that a more general national screening panel comprising 31 mutations may detect about 75% of all CF mutations in Italy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
44 CF GENE MUTATIONS IN ITALY Number of alleles Frequency Cumulative Mutation screened (%) frequency (%) DF508 3442 51.07 51.07 N1303K 3056 4.84 55.91 G542X 3082 4.83 60.75 2183 AA ® G 2596 2.66 63.41 R1162X 2580 2.42 65.83 1717-1 G ® A 2892 2.11 67.94 W1282X 2600 1.23 69.17 R553X 2882 1.15 70.31 T338I 2306 0.69 71.01 R347P 2642 0.61 71.61 711 1 5 G ® A 2454 0.57 72.18 G85E 1980 0.40 72.59 621 1 1 G ® T 2594 0.39 72.97 R334W 2366 0.30 73.27 R352Q 2112 0.24 73.50 S549N 2118 0.24 73.74 R347H 2184 0.18 73.92 L1077P 1840 0.16 74.09 R1158X 1878 0.16 74.25 541del C 1884 0.16 74.40 R1066H 1918 0.16 74.56 E585X 1922 0.16 74.72 Q552X 2172 0.14 74.86 D1152H 1824 0.11 74.97 2790-2 A ® G 1862 0.11 75.07 3132 del TG 1862 0.11 75.18 3667ins 4 1876 0.11 75.29 DI507 1914 0.10 75.39 1898 1 3 A ® G 1920 0.10 75.50 G1244E 1960 0.10 75.60 1784 del G 2052 0.10 75.69 From Rendine et al. (1997).
X
ABCC7 p.Leu1077Pro 11788089:44:528
status: NEW[hide] Genetic and clinical features of false-negative in... Acta Paediatr. 2002;91(1):82-7. Padoan R, Genoni S, Moretti E, Seia M, Giunta A, Corbetta C
Genetic and clinical features of false-negative infants in a neonatal screening programme for cystic fibrosis.
Acta Paediatr. 2002;91(1):82-7., [PMID:11883825]
Abstract [show]
A study was performed on the delayed diagnosis of cystic fibrosis (CF) in infants who had false-negative results in a neonatal screening programme. The genetic and clinical features of false-negative infants in this screening programme were assessed together with the efficiency of the screening procedure in the Lombardia region. In total, 774,687 newborns were screened using a two-step immunoreactive trypsinogen (IRT) (in the years 1990-1992), IRT/IRT + delF508 (1993-1998) or IRT/IRT + polymerase chain reaction (PCR) and oligonucleotide ligation assay (OLA) protocol (1998-1999). Out of 196 CF children born in the 10 y period 15 were false negative on screening (7.6%) and molecular analysis showed a high variability in the genotypes. The cystic fibrosis transmembrane regulator (CFTR) gene mutations identified were delF508, D1152H, R1066C, R334W, G542X, N1303K, F1052V, A120T, 3849 + 10kbC --> T, 2789 + 5G --> A, 5T-12TG and the novel mutation D110E. In three patients no mutation was identified after denaturing gradient gel electrophoresis of the majority of CFTR gene exons. Conclusion: The clinical phenotypes of CF children diagnosed by their symptoms at different ages were very mild. None of them presented with a severe lung disease. The majority of them did not seem to have been damaged by the delayed diagnosis. The combination of IRT assay plus genotype analysis (1998-1999) appears to be a more reliable method of detecting CF than IRT measurement alone or combined with only the delF508 mutation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
40 Mutation Frequency (%) DelF508 54 N1303K 8 G542X 6.25 1717-1G ® A 2.50 R334W 1.75 2183AA ® G 1.50 R117H, L1077P, W1282X 1.25 D110E, R347P, E585X, 2789 ‡ 5G ® A 0.75 R352Q, R553X, R1066H, D1152H, R1158X, 1782delA, 1898 ‡ 1G ® A, 3659delC 0.50 G85E, R117L, G178R, D579G, H609R, Y1032C, V1153E, R1162X, 621 ‡ 1G ® T, 711 ‡ 1G ® T, 1845delAG o 1846delGA, 2143delT 0.25 Table2.Differencesinthethreestrategiesofneonatalscreening(audit1990-1999).
X
ABCC7 p.Leu1077Pro 11883825:40:115
status: NEW[hide] DHPLC screening of cystic fibrosis gene mutations. Hum Mutat. 2002 Apr;19(4):374-83. Ravnik-Glavac M, Atkinson A, Glavac D, Dean M
DHPLC screening of cystic fibrosis gene mutations.
Hum Mutat. 2002 Apr;19(4):374-83., [PMID:11933191]
Abstract [show]
Denaturing high performance liquid chromatography (DHPLC) using ion-pairing reverse phase chromatography (IPRPC) columns is a technique for the screening of gene mutations. In order to evaluate the potential utility of this assay method in a clinical laboratory setting, we subjected the PCR products of 73 CF patients known to bear CFTR mutations to this analytic technique. We used thermal denaturation profile parameters specified by the MELT program tool, made available by Stanford University. Using this strategy, we determined an initial analytic sensitivity of 90.4% for any of 73 known CFTR mutations. Most of the mutations not detected by DHPLC under these conditions are alpha-substitutions. This information may eventually help to improve the MELT algorithm. Increasing column denaturation temperatures for one or two degrees above those recommended by the MELT program allowed 100% detection of CFTR mutations tested. By comparing DHPLC methodology used in this study with the recently reported study based on Wavemaker 3.4.4 software (Transgenomic, Omaha, NE) [Le Marechal et al., 2001) and with previous SSCP analysis of CFTR mutations [Ravnik-Glavac et al., 1994] we emphasized differences and similarities in order to refine the DHPLC system and discuss the relationship to the alternative approaches. We conclude that the DHPLC method, under optimized conditions, is highly accurate, rapid, and efficient in detecting mutations in the CFTR gene and may find high utility in screening individuals for CFTR mutations. Hum Mutat 19:374-383, 2002. Published 2002 Wiley-Liss, Inc.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 The following mutations have been studied: exon 3: W57G, R74W, R75Q, G85E, 394delTT, 405+ 1G>A; exon 4: E92X, P99L, 441delA, 444delA, 457TAT>G, D110H, R117C, R117H, A120T, 541delC, 544delCA, Q151X, 621+1G>T, 662- 2A>C; exon 7: 1078delT, F331L, R334W, I336K, R347C, R347P, A349V, R352Q, 1221delCT; exon 10: S492F, Q493X, 1609delCA, deltaI507, deltaF508; exon 11: G542X, S549N, G551D, R553X, A559T, R560K, R560T; exon 13: K716X, Q685X, G628R, L719X; exon 17b: H1054D, G1061R, 3320ins5, R1066H, R1066L, R1070Q, 3359delCT, L1077P, H1085R, Y1092X; exon 19: R1162X, 3659delC, 3662delA, 3667del4, 3737delA, I1234V, S1235R, 3849G>A; exon 20: 3860ins31,S1255X,3898insC,3905insT,D1270N, W1282X, Q1291R; and exon 21: N1303H, N1303K, W1316X.
X
ABCC7 p.Leu1077Pro 11933191:42:519
status: NEW[hide] Analysis by mass spectrometry of 100 cystic fibros... Hum Reprod. 2002 Aug;17(8):2066-72. Wang Z, Milunsky J, Yamin M, Maher T, Oates R, Milunsky A
Analysis by mass spectrometry of 100 cystic fibrosis gene mutations in 92 patients with congenital bilateral absence of the vas deferens.
Hum Reprod. 2002 Aug;17(8):2066-72., [PMID:12151438]
Abstract [show]
BACKGROUND: Limited mutation analysis for congenital bilateral absence of the vas deferens (CBAVD) has revealed only a minority of men in whom two distinct mutations were detected. We aimed to determine whether a more extensive mutation analysis would be of benefit in genetic counselling and prenatal diagnosis. METHODS: We studied a cohort of 92 men with CBAVD using mass spectrometry and primer oligonucleotide base extension to analyse an approximately hierarchical set of the most common 100 CF mutations. RESULTS: Analysis of 100 CF mutations identified 33/92 (35.9%) patients with two mutations and 29/92 (31.5%) with one mutation, compound heterozygosity accounting for 94% (31/33) of those with two mutations. This panel detected 12.0% more CBAVD men with at least one mutation and identified a second mutation in >50% of those considered to be heterozygotes under the two routine 25 mutation panel analyses. CONCLUSION: Compound heterozygosity of severe/mild mutations accounted for the vast majority of the CBAVD patients with two mutations, and underscores the value of a more extensive CF mutation panel for men with CBAVD. The CF100 panel enables higher carrier detection rates especially for men with CBAVD, their partners, partners of known CF carriers, and those with 'mild' CF with rarer mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
20 Given the frequency of CF mutations, especially in the Caucasian population ( in 25), and the common request by CBAVD men to sire their own offspring by using surgical Table I. The 100 most common cystic fibrosis mutations listed by exon Mutationa Exonb Frequency (%)c G85E 3 0.1 394delTT 3 Swedish E60X 3 Belgium R75X 3 405ϩ1G→A Int 3 R117H 4 0.30 Y122X 4 French 457TAT→G 4 Austria I148T 4 Canada (French Canadian) 574delA 4 444delA 4 R117L 4 621ϩ1G→T Int 4 0.72 711ϩ1G→T Int 5 Ͼ0.1 712-1G→T Int 5 711ϩ5G→A Int 5 Italy (Caucasian) L206W 6a R347P 7 0.24 1078delT 7 Ͼ0.1 R334W 7 Ͼ0.1 1154InsTC 7 T338I 7 Italy R347H 7 Turkey Q359K/T360K 7 Israel (Georgian Jews) I336K 7 R352Q 7 G330X 7 S364P 7 A455E 9 0.20 I507 10 0.21 F508 10 66.02 1609delCA 10 Spain (Caucasian) V520F 10 Q493X 10 C524X 10 G480C 10 Q493R 10 1717-1G→A Int 10 0.58 R553X 11 0.73 G551D 11 1.64 G542X 11 2.42 R560T 11 Ͼ0.1 S549N 11 Q552X 11 Italy S549I 11 Israel (Arabs) A559T 11 African American R553G 11 R560K 11 1812-1G→A Int 11 A561E 12 E585X 12 Y563D 12 Y563N 12 1898ϩ1G→A Int 12 0.22 1898ϩ1G→C Int 12 2183AA→G 13 Italian 2184delA 13 Ͻ0.1 K710X 13 2143delT 13 Moscow (Russian) 2184InsA 13 1949del84 13 Spain (Spanish) 2176InsC 13 2043delG 13 2307insA 13 2789ϩ5G→A Int 14b Ͼ0.1 2869insG 15 S945L 15 Q890X 15 3120G→A 16 2067 Table I. continued Mutationa Exonb Frequency (%)c 3120ϩ1G→A Int 16 African American 3272-26A→G Int 17a R1066C 17b Portugal (Portugese) L1077P 17b R1070Q 17b Bulgarian W1089X 17b M1101K 17b Canada (Hutterite) R1070P 17b R1162X 19 0.29 3659delC 19 Ͼ0.1 3849G→A 19 3662delA 19 3791delC 19 3821delT 19 Russian Q1238X 19 S1235R 19 France, South S1196X 19 K1177R 19 3849ϩ10kbC→T Int 19 0.24 3849ϩ4A→G Int 19 W1282X 20 1.22 S1251N 20 Dutch, Belgian 3905insT 20 Swiss, Acadian, Amish G1244E 20 R1283M 20 Welsh W1282R 20 D1270N 20 S1255X 20 African American 4005ϩ1G→A Int 20 N1303K 21 1.34 W1316X 21 aMutations were chosen according to their frequencies (Cystic Fibrosis Genetic Analysis Consortium, 1994; Zielenski and Tsui, 1995; Estivill et al., 1997).
X
ABCC7 p.Leu1077Pro 12151438:20:1618
status: NEW[hide] Extensive sequencing of the cystic fibrosis transm... Genet Med. 2003 Jan-Feb;5(1):9-14. Strom CM, Huang D, Chen C, Buller A, Peng M, Quan F, Redman J, Sun W
Extensive sequencing of the cystic fibrosis transmembrane regulator gene: assay validation and unexpected benefits of developing a comprehensive test.
Genet Med. 2003 Jan-Feb;5(1):9-14., [PMID:12544470]
Abstract [show]
PURPOSE: To develop a sequencing assay for the gene to identify mutations in patients with cystic fibrosis (CF). METHODS: An automated assay format was developed to sequence all exons and splice junctional sequences, the promotor region, and parts of introns 11 and 19. RESULTS: After validating the assay using 20 known samples, DNA of seven patients, four of whom were heterozygous for a known CF mutation, was sequenced. Known CF mutations were detected in seven of the eight chromosomes, and a novel missense mutation was detected in the eighth. In addition, this assay allowed 14 ambiguous results obtained using the Roche CF gold strips to be resolved. Three false-positive diagnoses were prevented; a different mutation at the same codon was identified in two patients and confirmation was provided in the remaining nine cases. CONCLUSIONS: Sequencing of the gene provides important information for CF patients and is a valuable adjunct to a carrier screening program to resolve ambiguities in panel testing.
Comments [show]
None has been submitted yet.
No. Sentence Comment
90 Table 4 Results of sequencing of patient samples Description Prior genotype Sequencing CommentAllele 1 Allele 2 Confirmed CF wt/delta F508 delta F508 P205S Known mutation Confirmed CF wt/3849 ϩ 10 kb 3849 ϩ 10 kb L1077P Known mutation C 3 T C 3 T Confirmed CF wt/delta F508 delta F508 R1066C Known mutation Confirmed CF wt/delta F508 delta F508 D806G Novel missense Confirmed CF wt/wt 3154delG 3154delG Both parents confirmed carriers Confirmed CF delta F508/wt delta F508 G1244E Known mutation Confirmed CF wt/wt wt F191L Novel missense Borderline sweat test wt/wt wt wt Table 5 Resolution of ambiguities on linear array assay using sequencing Linear array result Resolution Weak mutant A455E line 1508 C 3 T (S459F) polymorphism or novel mutation Weak mutant A455E line 1508 C 3 T (S459F) polymorphism or novel mutation Weak mutant A455E line wt/1496 C 3 T (A455V) polymorphism or novel mutation Weak mutant A455E line wt/1496 C 3 T (A455V) polymorphism or novel mutation Weak mutant A455E line wt/1520 G 3 A (G463D) polymorphism or novel mutation No A455E mutant or wt line Homozygous 1499 T 3 C (V456A) polymorphism or novel mutation No A455E mutant or wt line Homozygous 1497 C 3 A polymorphism (no amino acid change) Weak wt 1898 ϩ 1 G 3 A line wt/E587A novel missense mutation or polymorphism Weak 1898 ϩ 1 G 3 A line wt/1898 ϩ 1 G 3 C-different mutation; G 3 C NOT G 3 A DISCUSSION The ACMG recommended panel of CF mutations has rapidly become the standard of care for US carrier screening.
X
ABCC7 p.Leu1077Pro 12544470:90:225
status: NEW[hide] Molecular consequences of cystic fibrosis transmem... Gut. 2003 Aug;52(8):1159-64. Ahmed N, Corey M, Forstner G, Zielenski J, Tsui LC, Ellis L, Tullis E, Durie P
Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas.
Gut. 2003 Aug;52(8):1159-64., [PMID:12865275]
Abstract [show]
BACKGROUND AND AIMS: We tested the hypothesis that the actual or predicted consequences of mutations in the cystic fibrosis transmembrane regulator gene correlate with the pancreatic phenotype and with measures of quantitative exocrine pancreatic function. METHODS: We assessed 742 patients with cystic fibrosis for whom genotype and clinical data were available. At diagnosis, 610 were pancreatic insufficient, 110 were pancreatic sufficient, and 22 pancreatic sufficient patients progressed to pancreatic insufficiency after diagnosis. RESULTS: We identified mutations on both alleles in 633 patients (85.3%), on one allele in 95 (12.8%), and on neither allele in 14 (1.9%). Seventy six different mutations were identified. The most common mutation was DeltaF508 (71.3%) followed by G551D (2.9%), G542X (2.3%), 621+1G-->T (1.2%), and W1282X (1.2%). Patients were categorized into five classes according to the predicted functional consequences of each mutation. Over 95% of patients with severe class I, II, and III mutations were pancreatic insufficient or progressed to pancreatic insufficiency. In contrast, patients with mild class IV and V mutations were consistently pancreatic sufficient. In all but four cases each genotype correlated exclusively with the pancreatic phenotype. Quantitative data of acinar and ductular secretion were available in 93 patients. Patients with mutations belonging to classes I, II, and III had greatly reduced acinar and ductular function compared with those with class IV or V mutations. CONCLUSION: The predicted or known functional consequences of specific mutant alleles correlate with the severity of pancreatic disease in cystic fibrosis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
309 Table 2 Genotype classification according to the functional consequences of CFTR gene mutations Pancreatic status Class I Class II Class III Class IV Class V PS F1 , 875+1G→C(2) F, F (1) F, G551D (1) F, R117H (11) F,3849+10kbC→T (5) F, G85E2 (1) F, R347H (3) F,3272-26A→G (4) F, S1251N (2) F,A445E (3) F, D614G (1) F,P574H (2) F, R347P (1) F,3120G>A (1) R117H,R117H (1) F, 5T (8) F, L1335P (1) F,2789+5G→A (1) F,P67L (1) F,R347P/R347H (1) F,V232D(2) R334W, R334W(1) PS→PI F,3659delC (1) F,F (15) F,G551D (1) F, I1234V (1) F,2184insA (1) F,R560T (1) PI F, G542X (27) F,F (365) F, G551D (28) F, 621+1G→T (13) F, R560T (7) F,R553X (7) F, N1303K (9) F, R1162X (6) F,L1077P (2) F, 3659delC (5) F, I48T (1) F, 1717-1G→A (5) F,A559T (1) F, W1282X (5) F, G85E2 (2) F, 711+1G→T (5) G551D,G551D(1) F,2184delA(4) F,H199R (1) W1282X,W1282X (4) F,I1072T(1) F,Y1092X (3) F,S549 (R75Q) (1) F,556delA (3) F, Q493X (3) F,4016InsT (3) F, 3120+1G→A (2) F, G551D/R553X (2) F,Q814X(2) F,1154insTC (2) F,441delA (1) F, 4326delTC (1) F,Q552X(1) F,3007delG (1) F,2184insA (1) F, 4010del4 (1) F,3905insT (1) F,1078delT(1) F,E1104X (1) F,3876delA (1) F,4374+1G→T (1) F,E585X (1) F, E60X (1) CFTR, cystic fibrosis transmembrane regulator; PI, pancreatic insufficiency; PS, pancreatic sufficiency.
X
ABCC7 p.Leu1077Pro 12865275:309:704
status: NEW[hide] Molecular analysis using DHPLC of cystic fibrosis:... BMC Med Genet. 2004 Apr 14;5:8. D'Apice MR, Gambardella S, Bengala M, Russo S, Nardone AM, Lucidi V, Sangiuolo F, Novelli G
Molecular analysis using DHPLC of cystic fibrosis: increase of the mutation detection rate among the affected population in Central Italy.
BMC Med Genet. 2004 Apr 14;5:8., 2004-04-14 [PMID:15084222]
Abstract [show]
BACKGROUND: Cystic fibrosis (CF) is a multisystem disorder characterised by mutations of the CFTR gene, which encodes for an important component in the coordination of electrolyte movement across of epithelial cell membranes. Symptoms are pulmonary disease, pancreatic exocrine insufficiency, male infertility and elevated sweat concentrations. The CFTR gene has numerous mutations (>1000) and functionally important polymorphisms (>200). Early identification is important to provide appropriate therapeutic interventions, prognostic and genetic counselling and to ensure access to specialised medical services. However, molecular diagnosis by direct mutation screening has proved difficult in certain ethnic groups due to allelic heterogeneity and variable frequency of causative mutations. METHODS: We applied a gene scanning approach using DHPLC system for analysing specifically all CFTR exons and characterise sequence variations in a subgroup of CF Italian patients from the Lazio region (Central Italy) characterised by an extensive allelic heterogeneity. RESULTS: We have identified a total of 36 different mutations representing 88% of the CF chromosomes. Among these are two novel CFTR mutations, including one missense (H199R) and one microdeletion (4167delCTAAGCC). CONCLUSION: Using this approach, we were able to increase our standard power rate of mutation detection of about 11% (77% vs. 88%).
Comments [show]
None has been submitted yet.
No. Sentence Comment
55 These mutations included S4X (143 C to A), exon 1; S42F (257 C to T), exon 2; R117L (482 G to T), exon 4; S549R (1779 T to G), exon 11; 3667ins4, exon 19; A1006E (3149 C to A), exon17a; L1065P (3326 T to C), R1066C (3328 C to T), L1077P (3362 T to C), exon 17b.
X
ABCC7 p.Leu1077Pro 15084222:55:230
status: NEW89 Table 1: Primers and DHPLC (oven temperature, gradient) analysis conditions for 6b and 9 exons of the CFTR gene exon Primer 5' → 3' Amplicon length Oven temp (°C) % B buffer start/end 6b F - CAGAGATCAGAGAGCTGGG 323 56 55/63 R - GAGGTGGAAGTCTACCATGA 9 F - GGGATTTGGGGAATTATTTG 279 55 54/62 R - TCTCCAAAAATACCTTCCAG Table 2: CF mutations identified in cohort of 290 patients from the Central Italy Mutation Nucleotide change Exon/intron N % Method delF508 1652delCTT 10 328 56.36 INNO-LiPA, DHPLC N1303K 4041 C to G 21 51 8.76 INNO-LiPA, DHPLC G542X 1756 G to T 11 42 7.21 INNO-LiPA, DHPLC W1282X 3978 G to A 20 15 2.60 INNO-LiPA, DHPLC S549R 1779 T to G 11 8 1.37 DHPLC 621+1G-T 621+1 G to T Intron 4 7 1.20 INNO-LiPA, DHPLC 1717-1G-A 1717-1 G to A Intron 10 5 0.86 INNO-LiPA, DHPLC G85E 386 G to A 3 4 0.69 INNO-LiPA, DHPLC R553X 1789 C to T 11 4 0.69 INNO-LiPA, DHPLC H139R 548 A to G 6a 3 0.51 DHPLC R347P 1172 G to C 7 3 0.51 INNO-LiPA, DHPLC L1065P 3326 T to C 17b 3 0.51 DHPLC L1077P 3362 T to C 17b 3 0.51 DHPLC S4X 143 C to A 1 2 0.34 DHPLC D110H 460 G to C 4 2 0.34 DHPLC R334W 1132 C to T 7 2 0.34 INNO-LiPA, DHPLC M348K 1175 T to A 7 2 0.34 DHPLC 1259insA 1259 ins A 8 2 0.34 DHPLC S549N 1778 G to A 11 2 0.34 DHPLC L558S 1805 T to C 11 2 0.34 DHPLC 2183+AA-G 2183 A to G and 2184 del A 13 2 0.34 INNO-LiPA, DHPLC 2789+5G-A 2789+5 G to A Intron 14b 2 0.34 INNO-LiPA, DHPLC R1066C 3328 C to T 17b 2 0.34 DHPLC 3667ins4 3667insTCAA 19 2 0.34 DHPLC S42F 257 C to T 2 2 0.34 DHPLC R117L 482 G to T 4 1 0.17 DHPLC H199R 728 A to G 6a 1 0.17 DHPLC R334L 1133 G to T 7 1 0.17 DHPLC T338I 1145 C to T 7 1 0.17 DHPLC G551D 1784 G to A 11 1 0.17 INNO-LiPA, DHPLC Q552X 1786 C to T 11 1 0.17 INNO-LiPA, DHPLC D614G 1973 A to G 13 1 0.17 DHPLC A1006E 3149 C to A 17a 1 0.17 DHPLC 4016insT 4016 ins T 21 1 0.17 DHPLC 4040delA 4040 del A 21 1 0.17 DHPLC 4167del7 4167 delCTAAGCC 22 1 0.17 DHPLC Detected 511 88.10 Unknown 69 11.90 Total 580 100.00 N = number of CF chromosomes; % = frequency.
X
ABCC7 p.Leu1077Pro 15084222:89:996
status: NEW[hide] Comprehensive cystic fibrosis mutation epidemiolog... Ann Hum Genet. 2005 Jan;69(Pt 1):15-24. Castaldo G, Polizzi A, Tomaiuolo R, Cazeneuve C, Girodon E, Santostasi T, Salvatore D, Raia V, Rigillo N, Goossens M, Salvatore F
Comprehensive cystic fibrosis mutation epidemiology and haplotype characterization in a southern Italian population.
Ann Hum Genet. 2005 Jan;69(Pt 1):15-24., [PMID:15638824]
Abstract [show]
We screened the whole coding region of the cystic fibrosis transmembrane regulator (CFTR) gene in 371 unrelated cystic fibrosis (CF) patients from three regions of southern Italy. Forty-three mutations detected 91.5% of CF mutated chromosomes by denaturing gradient gel electrophoresis analysis, and three intragenic CFTR polymorphisms predicted a myriad of rare mutations in uncharacterized CF chromosomes. Twelve mutations are peculiar to CF chromosomes from southern Italy: R1158X, 4016insT, L1065P and 711 + 1G > T are present in 6.3% of CF chromosomes in Campania; G1244E and 852del22 are present in 9.6% of CF chromosomes in Basilicata and 4382delA, 1259insA, I502T, 852del22, 4016insT, D579G, R1158X, L1077P and G1349D are frequent in Puglia (19.6% of CF alleles). Several mutations frequently found in northern Italy (e.g., R1162X, 711 + 5G > T) and northern Europe (e.g., G551D, I507del and 621 + 1G > T) are absent from the studied population. The I148T-3195del6 complex allele was present in two CF chromosomes, whereas I148T was present in both alleles (as a single mutation) in another CF patient and in five CF carriers; this could result from crossover events. The haplotype analysis of three intragenic polymorphisms (IVS8CA, IVS17bTA and IVS17bCA) compared with data from other studies revealed that several mutations (3849 + 10kbC > T, 1717-1G > A, E585X, 3272-26G > A, L558S, 2184insA and R347P) originated from multiple events, whereas others (R1158X and S549R) could be associated with one or more intragenic recombinant events. Given the large population migration from southern Italy, knowledge of the CF molecular epidemiology in this area is an important contribution to diagnosis, counselling and interlaboratory quality control for molecular laboratories worldwide.
Comments [show]
None has been submitted yet.
No. Sentence Comment
2 Twelve mutations are peculiar to CF chromosomes from southern Italy: R1158X, 4016insT, L1065P and 711+1G>T are present in 6.3% of CF chromosomes in Campania; G1244E and 852del22 are present in 9.6% of CF chromosomes in Basilicata and 4382delA, 1259insA, I502T, 852del22, 4016insT, D579G, R1158X, L1077P and G1349D are frequent in Puglia (19.6% of CF alleles).
X
ABCC7 p.Leu1077Pro 15638824:2:296
status: NEW49 In particular, 4016insT, R1158X, 711+1 G>T and L1065P had a cumulative frequency of 6.3% in CF chromosomes from Campania; G1244E and 852del22 a cumulative frequency of 9.6% in CF chromosomes from Basilicata; and 4382delA, 1259insA, I502T, 852del22, 4016insT, D579G, R1158X, L1077P and G1349D a cumulative frequency of 19.6% in CF chromosomes from Puglia.
X
ABCC7 p.Leu1077Pro 15638824:49:274
status: NEW62 A procedure for the large-scale analysis of several mutations peculiar to southern Italy is also indicated Mutation Analytical CF alleles Campania Basilicata Puglia Total procedure n = 340 n = 52 n = 350 n = 742 DF508 55.6 55.8 46.8 51.5 N1303K 7.3 3.8 7.7 7.3 G542X 5.0 3.8 7.1 5.9 W1282X 3.5 3.8 0.6 2.2 2183 AA>G 2.3 5.8 0.8 1.9 852del22 0 5.8 3.2 1.9 3% agarose 1717-1G>A 2.3 1.9 1.1 1.8 4382delA 0 0 3.7 1.8 RE (Ear I -) 1259insA 0 0 3.1 1.5 4016insT 2.1 0 1.1 1.5 ASO R553X 1.5 0 1.7 1.5 R1158X 1.5 0 1.3 1.2 ASO or RE (Sfa N 1 -) L1077P 0.6 0 1.9 1.2 I502T 0.3 0 2.0 1.1 RE (Mse I -) 3849+10kbC>T 0 1.9 1.6 0.9 D579G 0 0 1.6 0.8 RE (Avr II +) G1244E 0.9 3.8 0.3 0.8 ASO or RE (Mbo II +) G1349D 0 0 1.7 0.8 RE (Sty I -) 2789+5 G>A 0.6 0 0.8 0.7 711+1 G>T 1.5 0 0 0.7 ASO L1065P 1.2 0 0 0.5 ASO or RE (Mnl I +) R347P 0.3 0 0.9 0.5 2522insC 0.9 0 0 0.4 E585X 0.6 0 0 0.3 G85E 0.6 0 0 0.3 G178R 0.6 0 0 0.3 D1152H 0.3 0 0.3 0.3 I148T-3195del6 0.6 0 0 0.3 I148T (alone) 0 0 0.3 0.1 R334W 0 0 0.3 0.1 DI507 0 0 0.3 0.1 I1005R 0 0 0.3 0.1 3272-26A>G 0.3 0 0 0.1 2711delT 0.3 0 0 0.1 L558S 0 1.9 0 0.1 W1063X 0 0 0.3 0.1 D110H 0.3 0 0 0.1 S549R (A>C) 0 1.9 0 0.1 2184insA 0.3 0 0 0.1 3131del22 0.3 0 0 0.1 R709N 0 0 0.3 0.1 A349V 0 0 0.3 0.1 4015insA 0 0 0.3 0.1 Y849X 0 1.9 0 0.1 Cumulative 91.6 92.1 91.7 91.5 Unknown 8.4 7.9 8.3 8.5 Total 100,0 100,0 100,0 100,0 RE: restriction enzyme (-/+: abolition or introduction of a RE site); ASO: allele specific oligonucleotide Figure 2 Multiplex denaturing gradient gel electrophoretic analysis of exons 8, 5 and 18 of the cystic fibrosis transmembrane regulator gene in a cystic fibrosis patient (case n.
X
ABCC7 p.Leu1077Pro 15638824:62:537
status: NEW86 However, 12 mutations (4016insT, R1158X, 711+1G>T, L1065P, G1244E, 4382delA, 1259insA, I502T, 852del22, D579G, L1077P and G1349D) have not been found (or have a low incidence) in populations from the British Isles (Cheadle et al. 1993; Ferec et al. 1992), Spain (Chillon et al. 1994; Casals et al.
X
ABCC7 p.Leu1077Pro 15638824:86:111
status: NEW97 Due to the presence of 'local` mutations, the detection rate with commercial kits for CF chromosomes in Table 3 Mutations linked to different haplotypes possibly due to slippage events, characteryzed at the level of three CFTR intragenic loci (IVS8CA, IVS17bTA, IVS17bCA) by the indication of the repeats number Present study Other studies Cases Haplotype cases (n) (n. of repeats) (n) Haplotype references* (n. of repeats) R347P 4/4 16-32-13 3 16-32-13 1,2,3 1 16-31-13 3 2 17-28-13 1 1 16-45-13 1 L1077P 3/3 17-7-17 1 17-7-17 1 1 17-7-16 1 G85E 2/2 16-24-13 9 16-24-13 2,3 1 16-25-13 2 2183AA>G 14/14 16-31-13 1 16-31-13 3 4 16-30-13 1 R553X 6/11 17-55-13 3 17-58-13 3 3/11 18-55-13 1 17-57-11 1 1/11 16-55-13 2 17-55-13 1,3 1/11 16-55-11 6 17-55-11 1 1 17-52-11 1 1 17-54-11 1 1 17-56-13 3 G1244E 5/6 16-32-13 1 17-34-13 1 1/6 16-34-13 711 +1 G>T 5/5 16-25-13 7 16-25-13 1,2,3 1 16-26-13 1 G1349D 5/6 16-30-13 1/6 16-32-13 G178R 1/2 16-32-13 1 16-30-13 3 1/2 16-32-13 2 16-32-13 1 * References 1: Morral et al. 1996.
X
ABCC7 p.Leu1077Pro 15638824:97:502
status: NEW115 Other mutations (see Table 2, group b) also seem to derive from a founding event, and haplotypes differing by a single microsatellite could depend on slippage phenomena, as already proposed for mutations G85E (Claustres et al. 1996) and L1077P (Morral et al. 1996).
X
ABCC7 p.Leu1077Pro 15638824:115:237
status: NEW[hide] Pharmacological induction of CFTR function in pati... Pediatr Pulmonol. 2005 Sep;40(3):183-96. Kerem E
Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
Pediatr Pulmonol. 2005 Sep;40(3):183-96., [PMID:15880796]
Abstract [show]
CFTR mutations cause defects of CFTR protein production and function by different molecular mechanisms. Mutations can be classified according to the mechanisms by which they disrupt CFTR function. This understanding of the different molecular mechanisms of CFTR dysfunction provides the scientific basis for the development of targeted drugs for mutation-specific therapy of cystic fibrosis (CF). Class I mutations are nonsense mutations that result in the presence of a premature stop codon that leads to the production of unstable mRNA, or the release from the ribosome of a short, truncated protein that is not functional. Aminoglycoside antibiotics can suppress premature termination codons by disrupting translational fidelity and allowing the incorporation of an amino acid, thus permitting translation to continue to the normal termination of the transcript. Class II mutations cause impairment of CFTR processing and folding in the Golgi. As a result, the mutant CFTR is retained in the endoplasmic reticulum (ER) and eventually targeted for degradation by the quality control mechanisms. Chemical and molecular chaperones such as sodium-4-phenylbutyrate can stabilize protein structure, and allow it to escape from degradation in the ER and be transported to the cell membrane. Class III mutations disrupt the function of the regulatory domain. CFTR is resistant to phosphorylation or adenosine tri-phosphate (ATP) binding. CFTR activators such as alkylxanthines (CPX) and the flavonoid genistein can overcome affected ATP binding through direct binding to a nucleotide binding fold. In patients carrying class IV mutations, phosphorylation of CFTR results in reduced chloride transport. Increases in the overall cell surface content of these mutants might overcome the relative reduction in conductance. Alternatively, restoring native chloride pore characteristics pharmacologically might be effective. Activators of CFTR at the plasma membrane may function by promoting CFTR phosphorylation, by blocking CFTR dephosphorylation, by interacting directly with CFTR, and/or by modulation of CFTR protein-protein interactions. Class V mutations affect the splicing machinery and generate both aberrantly and correctly spliced transcripts, the levels of which vary among different patients and among different organs of the same patient. Splicing factors that promote exon inclusion or factors that promote exon skipping can promote increases of correctly spliced transcripts, depending on the molecular defect. Inconsistent results were reported regarding the required level of corrected or mutated CFTR that had to be reached in order to achieve normal function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
58 C-D565G II DF508 D1507 S549R S549I S549N S549R S945D S945L H1054D G1061R L1065P R1066C R1066M L1077P H1085R N1303K G85E III G551D S492F V520F R553G R560T R560S Y569D IV R117H, R117C, R117P, R117L D1152H, L88S, G91R, E92K, Q98R, P205S, L206W, L227R, F311L, G314E, R334W, R334Q, I336K, T338I, L346P, R347C, R347H, R347L, R347P, L927P, R1070W, R1070Q V 3849 þ 10 kb C !
X
ABCC7 p.Leu1077Pro 15880796:58:94
status: NEW[hide] Gender-sensitive association of CFTR gene mutation... Mol Hum Reprod. 2005 Aug;11(8):607-14. Epub 2005 Aug 26. Morea A, Cameran M, Rebuffi AG, Marzenta D, Marangon O, Picci L, Zacchello F, Scarpa M
Gender-sensitive association of CFTR gene mutations and 5T allele emerging from a large survey on infertility.
Mol Hum Reprod. 2005 Aug;11(8):607-14. Epub 2005 Aug 26., [PMID:16126774]
Abstract [show]
Human infertility in relation to mutations affecting the cystic fibrosis transmembrane regulator (CFTR) gene has been investigated by different authors. The role of additional variants, such as the possible forms of the thymidine allele (5T, 7T and 9T) of the acceptor splice site of intron 8, has in some instances been considered. However, a large-scale analysis of the CFTR gene and number of thymidine residues, alone and in combination, in the two sexes had not yet been addressed. This was the aim of this study. Two groups were compared, a control group of 20,532 subjects being screened for perspective reproduction, and the patient group represented by 1854 idiopathically infertile cases. Analyses involved PCR-based CFTR mutations assessment, reverse dot-blot IVS8-T polymorphism analyses, denaturing gradient gel electrophoresis (DGGE) and DNA sequencing. The expected 5T increase in infertile men was predominantly owing to the 5/9 genotypic class. The intrinsic rate of 5T fluctuated only slightly among groups, but some gender-related differences arose when comparing their association. Infertile men showed a significantly enriched 5T + CFTR mutation co-presence, distributed in the 5/9 and 5/7 classes. In contrast, females, from both the control and the infertile groups, showed a trend towards a pronounced reduction of such association. The statistical significance of the difference between expected and observed double occurrence of 5T + CFTR traits in women suggests, in line with other reports in the literature, a possible survival-hampering effect. Moreover, regardless of the 5T status, CFTR mutations appear not to be involved in female infertility. These results underline the importance of (i) assessing large sample populations and (ii) considering separately the two genders, whose genotypically opposite correlations with these phenomena may otherwise tend to mask each other.
Comments [show]
None has been submitted yet.
No. Sentence Comment
47 CFTR gene alterations were first scored by PCR and reverse dot blot (Chehab and Wall, 1992), targeted to the detection of the following mutations: ∆F508, G85E, 541∆C, D110H, R117H, 621+1G→T, 711+5G→A, R334W, R334Q, T338I, 1078∆T, R347H, R352Q, ∆I507, 1609∆CA, E527G, 1717-1G→A, 1717-8G→A, G542X, R347P, S549N, S549R A→C, Q552X, R553X, A559T, D579G, Y577F, E585X, 1898+3A→G, 2183AA→G, R709X, 2789+5G→A, 3132∆TG, 3272-26A→G, L1077P, L1065P, R1070Q, R1066H, M1101K, D1152H, R1158X, R1162X, 3849+10KbC→T, G1244E, W1282R, W1282X, N1303K and 4016∇T.
X
ABCC7 p.Leu1077Pro 16126774:47:528
status: NEW[hide] The chemical chaperone CFcor-325 repairs folding d... Biochem J. 2006 May 1;395(3):537-42. Loo TW, Bartlett MC, Wang Y, Clarke DM
The chemical chaperone CFcor-325 repairs folding defects in the transmembrane domains of CFTR-processing mutants.
Biochem J. 2006 May 1;395(3):537-42., 2006-05-01 [PMID:16417523]
Abstract [show]
Most patients with CF (cystic fibrosis) express a CFTR [CF TM (transmembrane) conductance regulator] processing mutant that is not trafficked to the cell surface because it is retained in the endoplasmic reticulum due to altered packing of the TM segments. CL4 (cytoplasmic loop 4) connecting TMs 10 and 11 is a 'hot-spot' for CFTR processing mutations. The chemical chaperone CFcor-325 (4-cyclohexyloxy-2-{1-[4-(4-methoxy-benezenesulphonyl)piperazin-1-yl]-ethy l}-quinazoline) rescued most CL4 mutants. To test if CFcor-325 promoted correct folding of the TMDs (TM domains), we selected two of the CL4 mutants (Q1071P and H1085R) for disulphide cross-linking analysis. Pairs of cysteine residues that were cross-linked in mature wild-type CFTR were introduced into mutants Q1071P and H1085R. The cross-linking patterns of the Q1071P or H1085R double cysteine mutants rescued with CFcor-325 were similar to those observed with mature wild-type double cysteine proteins. These results show that CFcor-325 rescued CFTR mutants by repairing the folding defects in the TMDs.
Comments [show]
None has been submitted yet.
No. Sentence Comment
21 EXPERIMENTAL Construction and expression of mutants The cDNAs of wild-type and CL4 mutants (H1054D, G1061R, L1065P, R1066H, Q1071P, L1077P, H1085R and W1098R) were inserted into pcDNA3 vector (Invitrogen, Oakville, ON, Canada) as described previously [2].
X
ABCC7 p.Leu1077Pro 16417523:21:132
status: NEW51 Accordingly, HEK-293 cells were transfected with mutants H1054D, G1061R, L1065P, R1066H, Q1071P, L1077P, H1085R or W1098R cDNAs.
X
ABCC7 p.Leu1077Pro 16417523:51:97
status: NEW57 Expression of mutants H1054D, G1061R, R1066H, Q1071P, L1077P, H1085R and W1098R in the presence of 3 µM CFcor-325, however, induced expression of the 190 kDa mature protein.
X
ABCC7 p.Leu1077Pro 16417523:57:54
status: NEW61 Lower levels of rescue were observed with mutants H1054D, G1061R and L1077P (5-15% mature CFTR protein).
X
ABCC7 p.Leu1077Pro 16417523:61:69
status: NEW[hide] Misfolding of the cystic fibrosis transmembrane co... Biochemistry. 2008 Feb 12;47(6):1465-73. Epub 2008 Jan 15. Cheung JC, Deber CM
Misfolding of the cystic fibrosis transmembrane conductance regulator and disease.
Biochemistry. 2008 Feb 12;47(6):1465-73. Epub 2008 Jan 15., 2008-02-12 [PMID:18193900]
Abstract [show]
Understanding the structural basis for defects in protein function that underlie protein-based genetic diseases is the fundamental requirement for development of therapies. This situation is epitomized by the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene product known to be defective in CF patients-that appears particularly susceptible to misfolding when its biogenesis is hampered by mutations at critical loci. While the primary CF-related defect in CFTR has been localized to deletion of nucleotide binding fold (NBD1) residue Phe508, an increasing number of mutations (now ca. 1,500) are being associated with CF disease of varying severity. Hundreds of these mutations occur in the CFTR transmembrane domain, the site of the protein's chloride channel. This report summarizes our current knowledge on how mutation-dependent misfolding of the CFTR protein is recognized on the cellular level; how specific types of mutations can contribute to the misfolding process; and describes experimental approaches to detecting and elucidating the structural consequences of CF-phenotypic mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
90 In some additional examples, a number of mutations found in the fourth intracellular loop (H1054D, G1061R, L1065P, R1066C/H/L, Q1071P, L1077P, H1085R, W1098R, M1101K/ R) also affect the biosynthetic processing of CFTR (although function was not tested) (73); some intracellular loop 4 mutants (F1052V, K1060T, A1067T, G1069R, R1070Q/W) can process CFTR to the complex-glycosylated ("Band C") form but have altered channel activity compared to wild type.
X
ABCC7 p.Leu1077Pro 18193900:90:135
status: NEW[hide] A 10-year large-scale cystic fibrosis carrier scre... J Cyst Fibros. 2010 Jan;9(1):29-35. Epub 2009 Nov 7. Picci L, Cameran M, Marangon O, Marzenta D, Ferrari S, Frigo AC, Scarpa M
A 10-year large-scale cystic fibrosis carrier screening in the Italian population.
J Cyst Fibros. 2010 Jan;9(1):29-35. Epub 2009 Nov 7., [PMID:19897426]
Abstract [show]
BACKGROUND: Cystic Fibrosis (CF) is one of the most common autosomal recessive genetic disorders, with the majority of patients born to couples unaware of their carrier status. Carrier screenings might help reducing the incidence of CF. METHODS: We used a semi-automated reverse-dot blot assay identifying the 47 most common CFTR gene mutations followed by DGGE/dHPLC analysis. RESULTS: Results of a 10-year (1996-2006) CF carrier screening on 57,999 individuals with no prior family history of CF are reported. Of these, 25,104 were couples and 7791 singles, with 77.9% from the Italian Veneto region. CFTR mutations were found in 1879 carriers (frequency 1/31), with DeltaF508 being the most common (42.6%). Subjects undergoing medically assisted reproduction (MAR) had significantly (p<0.0001) higher CF carrier frequency (1/22 vs 1/32) compared to non-MAR subjects. CONCLUSIONS: If coupled to counselling programmes, CF carrier screening tests might help reducing the CF incidence.
Comments [show]
None has been submitted yet.
No. Sentence Comment
48 Forty-seven different CFTR mutations/gene alterations were chosen and analysed: ΔF508, G85E, 541delC, D110H, R117H, 621+1G→T, 711+5G→A, R334W, R334Q, T338I, R347H, R347P, R352Q, S466X, ΔI507, E527G, 1717-1G→A, 1717-8G→A, G542X, S549N, S549R A→C, G551D, Q552X, R553X, D579G, 1874insT, E585X, 1898+3A→G, 2183AA→G, 2184delA, R709X, 2789+5G→A, 3132delTG, 3199del6, 3272-26A→G, L1077P, L1065P, R1066H, M1101K, D1152H, R1158X, R1162X, 3849+10KbC→T, G1244E, W1282X, N1303K and 4016insT.
X
ABCC7 p.Leu1077Pro 19897426:48:448
status: NEW[hide] Do common in silico tools predict the clinical con... Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan XW, Corey M, Tsui LC, Zielenski J, Durie P
Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?
Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6., [PMID:20059485]
Abstract [show]
Computational methods are used to predict the molecular consequences of amino-acid substitutions on the basis of evolutionary conservation or protein structure, but their utility in clinical diagnosis or prediction of disease outcome has not been well validated. We evaluated three popular computer programs, namely, PANTHER, SIFT and PolyPhen, by comparing the predicted clinical outcomes for a group of known CFTR missense mutations against the diagnosis of cystic fibrosis (CF) and clinical manifestations in cohorts of subjects with CF-disease and CFTR-related disorders carrying these mutations. Owing to poor specificity, none of tools reliably distinguished between individual mutations that confer CF disease from mutations found in subjects with a CFTR-related disorder or no disease. Prediction scores for CFTR mutations derived from PANTHER showed a significant overall statistical correlation with the spectrum of disease severity associated with mutations in the CFTR gene. In contrast, PolyPhen- and SIFT-derived scores only showed significant differences between CF-causing and non-CF variants. Current computational methods are not recommended for establishing or excluding a CF diagnosis, notably as a newborn screening strategy or in patients with equivocal test results.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Mutations in the CFTR gene grouped by clinical category Cystic fibrosis CFTR-related disease No disease T338I D614G L320V V920L L90S M470V H199R S1251N I203M G550R P111A I148T Q1291H R560K L1388Q L183I R170H I1027T S549R D443Y P499A L1414S T908N R668C S549N A455E E1401K Q151K G27E I1234L Y563N R347P C866R S1118C P1290S R75Q A559T V520F P841R M469V E1401G P67L G85E S50Y E1409K R933G G458V G178R Y1032C R248T I980K G85V V392G L973P L137H T351S R334W I444S V938G R792G R560T R555G L1339F D1305E P574H V1240G T1053I D58G G551D L1335P I918M F994C S945L L558S F1337V R810G D1152H G1247R P574S R766M D579G W1098R H949R F200I R352Q L1077P K1351E M244K L206W M1101K D1154G L375F N1303K R1066C E528D D110Y R347H R1070Q A800G P1021S S549K A1364V V392A damaging` (is supposed to affect protein function or structure) and 'probably damaging` (high confidence of affecting protein function or structure).
X
ABCC7 p.Leu1077Pro 20059485:64:627
status: NEW[hide] Mutations that permit residual CFTR function delay... Respir Res. 2010 Oct 8;11:140. Green DM, McDougal KE, Blackman SM, Sosnay PR, Henderson LB, Naughton KM, Collaco JM, Cutting GR
Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients.
Respir Res. 2010 Oct 8;11:140., [PMID:20932301]
Abstract [show]
BACKGROUND: Lung infection by various organisms is a characteristic feature of cystic fibrosis (CF). CFTR genotype effects acquisition of Pseudomonas aeruginosa (Pa), however the effect on acquisition of other infectious organisms that frequently precede Pa is relatively unknown. Understanding the role of CFTR in the acquisition of organisms first detected in patients may help guide symptomatic and molecular-based treatment for CF. METHODS: Lung infection, defined as a single positive respiratory tract culture, was assessed for 13 organisms in 1,381 individuals with CF. Subjects were divided by predicted CFTR function: 'Residual': carrying at least one partial function CFTR mutation (class IV or V) and 'Minimal' those who do not carry a partial function mutation. Kaplan-Meier estimates were created to assess CFTR effect on age of acquisition for each organism. Cox proportional hazard models were performed to control for possible cofactors. A separate Cox regression was used to determine whether defining infection with Pa, mucoid Pa or Aspergillus (Asp) using alternative criteria affected the results. The influence of severity of lung disease at the time of acquisition was evaluated using stratified Cox regression methods by lung disease categories. RESULTS: Subjects with 'Minimal' CFTR function had a higher hazard than patients with 'Residual' function for acquisition of 9 of 13 organisms studied (HR ranging from 1.7 to 3.78 based on the organism studied). Subjects with minimal CFTR function acquired infection at a younger age than those with residual function for 12 of 13 organisms (p-values ranging: < 0.001 to 0.017). Minimal CFTR function also associated with younger age of infection when 3 alternative definitions of infection with Pa, mucoid Pa or Asp were employed. Risk of infection is correlated with CFTR function for 8 of 9 organisms in patients with good lung function (>90%ile) but only 1 of 9 organisms in those with poorer lung function (<50%ile). CONCLUSIONS: Residual CFTR function correlates with later onset of respiratory tract infection by a wide spectrum of organisms frequently cultured from CF patients. The protective effect conferred by residual CFTR function is diminished in CF patients with more advanced lung disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 For Pa, the hazard ratio Table 1 Classification of CFTR alleles Category Mutation Specific mutations Class I Defective Protein Synthesis (nonsense, frameshift, aberrant splicing) 1078delT, 1154 insTC, 1525-2A > G, 1717-1G > A, 1898+1G > A, 2184delA, 2184 insA, 3007delG, 3120+1G > A, 3659delC, 3876delA, 3905insT, 394delTT, 4010del4, 4016insT, 4326delTC, 4374+1G > T, 441delA, 556delA, 621+1G > T, 621-1G > T, 711+1G > T, 875+1G > C, E1104X, E585X, E60X, E822X, G542X, G551D/R553X, Q493X, Q552X, Q814X, R1066C, R1162X, R553X, V520F, W1282X, Y1092X Class II Abnormal Processing and Trafficking A559T, D979A, ΔF508, ΔI507, G480C, G85E, N1303K, S549I, S549N, S549R Class III Defective Channel Regulation/Gating G1244E, G1349D, G551D, G551S, G85E, H199R, I1072T, I48T, L1077P, R560T, S1255P, S549 (R75Q) Class IV Decreased Channel Conductance A800G, D1152H, D1154G, D614G, delM1140, E822K, G314E, G576A, G622D, G85E, H620Q, I1139V, I1234V, L1335P, M1137V, P67L, R117C, R117P, R117H, R334W, R347H, R347P, R347P/ R347H, R792G, S1251N, V232D Class V Reduced Synthesis and/or Trafficking 2789+5G > A, 3120G > A, 3272-26A > G, 3849+10kbC > T, 5T variant, 621+3A > G, 711+3A > G, A445E, A455E, IVS8 poly T, P574H was increased 3 fold for those with 'Minimal` function when compared to those with 'Residual` function.
X
ABCC7 p.Leu1077Pro 20932301:74:777
status: NEW[hide] Preconceptional identification of cystic fibrosis ... J Cyst Fibros. 2011 May;10(3):207-11. doi: 10.1016/j.jcf.2011.02.006. Epub 2011 Mar 22. Coiana A, Faa' V, Carta D, Puddu R, Cao A, Rosatelli MC
Preconceptional identification of cystic fibrosis carriers in the Sardinian population: A pilot screening program.
J Cyst Fibros. 2011 May;10(3):207-11. doi: 10.1016/j.jcf.2011.02.006. Epub 2011 Mar 22., [PMID:21429822]
Abstract [show]
BACKGROUND: In Sardinia the mutational spectrum of CFTR gene is well defined. A mutation detection rate of 94% can be achieved by screening for 15 CFTR mutations with a frequency higher than 0.5%. The efficiency of this molecular test suggests that Sardinians may represent a suitable population for a preconceptional screening. METHODS: Five hundred couples of Sardinia descent were screened for 38 mutations using a semi-automated reverse-dot blot and PCR-gel electrophoresis assays. This mutation panel included the 15 most frequent CF alleles in Sardinia. RESULTS: We identified 38 CF carriers, revealing an overall frequency of 1/25 (4%). The most common CF allele was the p.Thr338Ile (T338I) (65%), followed by the p.Phe508del (F508del) (22.5%). We also identified one couple at risk and an asymptomatic female homozygote for the p.Thr338Ile allele. CONCLUSIONS: In spite of the low number of the couples tested, the results herein reported demonstrate the efficacy and efficiency of the preconceptional screening program and the high participation rate of the Sardinian population (99%).
Comments [show]
None has been submitted yet.
No. Sentence Comment
88 Mutation nomenclaturea Alleles (%) T338I (p.Thr338Ile) 26 (65.0) F508del (p.Phe508del) 9 (22.5) N1303K (p.Asn1303Lys) 1 (2.5) 2183AANG (c.2051_2052delAAinsG) 1 (2.5) 621+1GNT (c.489+1GNT) 1 (2.5) exon 2 del (c.54-5811_164+2187del8108ins182) 1 (2.5) R347P (p.Arg347Pro) 1 (2.5) The 3849+10kbCNT (c.3717+12191CNT), G85E (p.Gly85Glu), 2789+5GNA (c.2657+5GNA), W1282X (p.Trp1282X), G1244E (p.Gly1244Glu), 711+5GNA (c.579+5GNA), 711+1GNT (c.579+1GNA), 4016insT (p.Ser1297PhefsX5), G542X (p.Gly542X), 1717-1GNA (c.1585-1GNA), R553X (p.Arg553X), Q552X (p.Gln552X), G551D (p.Gly551Asp), S549R (ANC) (p.Ser549Arg), I507del (p.Ile507del), F508C (p.Phe508Cys), I502T (p.Ile502Thr), 1706del17 (p.Gln525LeufsX37), 1677delTA (p.Tyr515X), R117H (p.Arg117His), D1152H (p.Asp1152His), L1065P (p.Leu1065Pro), R1066H (p.Arg1066His), L1077P (p.Leu1077Pro), 4382delA (p.Glu1418ArgfsX14), R1162X (p.Arg1162X), R1158X (p.Arg1158X), 1259 insA (p.Gln378AlafsX4), 852del22 (p.Gly241GlufsX13), S912X (p.Ser912X), and 991del5bp (p.Asn287LysfsX19) mutations included in the CF panel were not detected in the population tested.
X
ABCC7 p.Leu1077Pro 21429822:88:814
status: NEWX
ABCC7 p.Leu1077Pro 21429822:88:824
status: NEW[hide] Detection of CFTR mutations using temporal tempera... Electrophoresis. 2004 Aug;25(15):2593-601. Wong LJ, Alper OM
Detection of CFTR mutations using temporal temperature gradient gel electrophoresis.
Electrophoresis. 2004 Aug;25(15):2593-601., [PMID:15300780]
Abstract [show]
Cystic fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, is one of the most common autosomal recessive diseases with variable incidences and mutation spectra among different ethnic groups. Current commercially available mutation panels designed for the analysis of known recurrent mutations have a detection rate between 38 to 95%, depending upon the ethnic background of the patient. We describe the application of a novel mutation detection method, temporal temperature gradient gel electrophoresis (TTGE), to the study of the molecular genetics of Hispanic CF patients. TTGE effectively identified numerous rare and novel mutations and polymorphisms. One interesting observation is that the majority of the novel mutations are splice site, frame shift, or nonsense mutations that cause severe clinical phenotypes. Our data demonstrate that screening of the 27 exons and intron/exon junctions of the CFTR gene by TTGE greatly improves the molecular diagnosis of Hispanic CF patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
133 Identification of rare and novel mutations and polymorphisms Base substitution Mutation Exon or intron Homozygote or heterozygote Polymorphism or mutation # Alleles identified 1 c.124_146del23bp Frameshift 1 Heterozygote Mutation 1 2 c.296+2T>A Splice Int 2 Heterozygote Mutation 1 3 c.296+28A/G Int 2 Homozygote Polymorphism 2 4 c.355CT p.R75X 3 Heterozygote Mutation 2 5 c.360_365insT Frameshift 3 Heterozygote Mutation 1 6 c.379_381insT Frameshift 3 Heterozygote Mutation 1 7 c.406-1G>A Splice Int 4 Heterozygote Mutation 2 8 c.424C.T p.Q98X 4 Heterozygote Mutation 1 9 c.425A.G p.Q98R 4 Heterozygote Mutation 3 10 c.586A.G p.M152V 4 Homozygote Mutation 2 11 c.663delT Frameshift 5 Heterozygote Mutation 3 12 c.667C>A p.Q179K 5 Heterozygote Mutation, 1 13 c.745C.T p.P205S 6a Heterozygote Mutation 5 14 c.875140A/G 6a Heterozygote Polymorphism 11 15 c.935delA Frameshift 6b Heterozygote Mutation 2 16 c.124811G.A Splice Int 7 Heterozygote Mutation 2 17 c.1285ins TA Frameshift 8 Heterozygote Mutation 4 Homozygote Mutation 2 18 c.1342+196C/T Int 8 Heterozygote Polymorphism 4 Homozygote 2 19 c.1461insAGAT Frameshift 9 Heterozygote Mutation 1 20 c.1525-61A/G 10 Heterozygote Polymorphism 22 21 c.1529C.A/G p.S466X 10 Heterozygote Mutation 1 22 c.1607C.T p.S492F 10 Heterozygote Mutation 3 23 c.1814C.T p.A561E 12 Heterozygote Mutation 1 24 c.189813A.G Splice Int 12 Heterozygote Mutation 1 25 c.18981152T/A Int 12 Heterozygote Polymorphism 5 26 c.1924del 7bp Frameshift 13 Heterozygote Mutation 1 27 c.1949del84 Frameshift 13 Heterozygote Mutation 1 28 c.2055del9toA Frameshift 13 Homozygote Mutation 2 29 c.2105_2117 Frameshift 13 Heterozygote Mutation 4 del13insAGAAA 30 c.2108delA Frameshift 13 Heterozygote Mutation 1 31 c.2184insA Frameshift 13 Heterozygote Mutation 2 32 c.2184delA Frameshift 13 Heterozygote Mutation 1 33 c.2289_2295 Frameshift 13 Heterozygote Mutation 1 del7insGT 34 c.2694T.G p.T854T 14a Heterozygote Polymorphism 10 35 c.2752+12G/C Int 14a Heterozygote Polymorphism 2 36 c.2800C.T p.Q890X 15 Homozygote Mutation 2 37 c.3171delC Frameshift 17a Heterozygote Mutation 1 38 c.3179T>C p.F1016S 17a Heterozygote Mutation 1 39 c.3199del 6bp Frameshift 17a Heterozygote Mutation 1 40 c.3212T.C p.I1027T 17a Heterozygote Mutation 1 41 c.3272-26A.G Splice Int17a Heterozygote Mutation 4 42 c.3271delGG Frameshift 17a Heterozygote Mutation 1 43 c.3313G.C p.G1061R 17b Heterozygote Mutation 1 44 c.3328C.T p.R1066C 17b Heterozygote Mutation 2 45 c.3362T.C p.L1077P 17b Heterozygote Mutation 1 46 c.3431A.C p.Q1100P 17b Heterozygote Mutation 1 47 c.3500-2A>T Splice Int 17b Heterozygote Mutation 1 48 c.3743G.A p.W1204X 19 Heterozygote Mutation 1 Homozygote Mutation 2 49 c.3601-65C/A Int 19 Heterozygote Polymorphism 14 50 c.3863G.A p.G1244E 20 Heterozygote Mutation 3 Table 3.
X
ABCC7 p.Leu1077Pro 15300780:133:2476
status: NEW[hide] [First diagnosis of cystic fibrosis in Afghanistan... Arch Pediatr. 2010 Feb;17(2):180-1. Epub 2009 Dec 16. Vic P, Manalai GG, Labat F, Sabet W, Leis A, Ferec C
[First diagnosis of cystic fibrosis in Afghanistan and description of a new mutation].
Arch Pediatr. 2010 Feb;17(2):180-1. Epub 2009 Dec 16., [PMID:20018497]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
48 La confirmation du diagnostic a e´te´ obtenue par analyse mole´culaire du ge`ne CFTR, mettant en e´vidence 2 mutations : p.L1077P et 1525-1G>A.
X
ABCC7 p.Leu1077Pro 20018497:48:143
status: NEW59 En revanche, la mutation p.L1077P a e´te´ mise en e´vidence pour la premie`re fois chez notre patient.
X
ABCC7 p.Leu1077Pro 20018497:59:27
status: NEW[hide] Cystic fibrosis transmembrane conductance regulato... J Cyst Fibros. 2012 Sep;11(5):355-62. doi: 10.1016/j.jcf.2012.05.001. Epub 2012 Jun 2. Ooi CY, Durie PR
Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in pancreatitis.
J Cyst Fibros. 2012 Sep;11(5):355-62. doi: 10.1016/j.jcf.2012.05.001. Epub 2012 Jun 2., [PMID:22658665]
Abstract [show]
BACKGROUND: The pancreas is one of the primary organs affected by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. While exocrine pancreatic insufficiency is a well-recognized complication of cystic fibrosis (CF), symptomatic pancreatitis is often under-recognized. RESULTS: The aim of this review is to provide a general overview of CFTR mutation-associated pancreatitis, which affects patients with pancreatic sufficient CF, CFTR-related pancreatitis, and idiopathic pancreatitis. The current hypothesis regarding the role of CFTR dysfunction in the pathogenesis of pancreatitis, and concepts on genotype-phenotype correlations between CFTR and symptomatic pancreatitis will be reviewed. Symptomatic pancreatitis occurs in 20% of pancreatic sufficient CF patients. In order to evaluate genotype-phenotype correlations, the Pancreatic Insufficiency Prevalence (PIP) score was developed and validated to determine severity in a large number of CFTR mutations. Specific CFTR genotypes are significantly associated with pancreatitis. Patients who carry genotypes with mild phenotypic effects have a greater risk of developing pancreatitis than patients carrying genotypes with moderate-severe phenotypic consequences at any given time. CONCLUSIONS: The genotype-phenotype correlation in pancreatitis is unique compared to other organ manifestations but still consistent with the complex monogenic nature of CF. Paradoxically, genotypes associated with otherwise mild phenotypic effects have a greater risk for causing pancreatitis; compared with genotypes associated with moderate to severe disease phenotypes. Greater understanding into the underlying mechanisms of disease is much needed. The emergence of CFTR-assist therapies may potentially play a future role in the treatment of CFTR-mutation associated pancreatitis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
855 CFTR mutation Total PI Total PI + PS PIP score CFTR mutation Total PI Total PI + PS PIP score 621+1G>T 96 96 1.00 G542X 74 75 0.99 711+1G>T 36 36 1.00 F508del 1276 1324 0.96 I507del 34 34 1.00 1717-1G>A 20 21 0.95 R553X 24 24 1.00 W1282X 19 20 0.95 Q493X 11 11 1.00 N1303K 45 48 0.94 S489X 11 11 1.00 R1162X 12 13 0.92 1154insTC 10 10 1.00 Y1092X 12 13 0.92 3659delC 9 9 1.00 I148T 10 11 0.91 CFTRdele2 7 7 1.00 V520F 9 10 0.90 4016insT 7 7 1.00 G551D 59 67 0.88 E60X 7 7 1.00 L1077P 5 6 0.83 R560T 7 7 1.00 R1066C 5 6 0.83 R1158X 7 7 1.00 2184insA 9 12 0.75 3905insT 6 6 1.00 2143delT 3 4 0.75 I148T;3199del6 5 5 1.00 1161delC 3 4 0.75 2183AA>G 5 5 1.00 3120+1G>A 3 4 0.75 1898+1G>A 5 5 1.00 S549N 3 4 0.75 2347delG 4 4 1.00 G85E 16 22 0.73 Q1313X 3 3 1.00 R117C 2 3 0.67 Q220X 3 3 1.00 M1101K 19 30 0.63 2184delA 3 3 1.00 P574H 3 5 0.60 1078delT 3 3 1.00 474del13BP 1 2 0.50 L1254X 3 3 1.00 R352Q 1 2 0.50 E585X 3 3 1.00 Q1291H 1 2 0.50 3876delA 2 2 1.00 A455E 18 37 0.49 S4X 2 2 1.00 R347P 6 15 0.40 R1070Q 2 2 1.00 2789+5G>A 6 16 0.38 F508C 2 2 1.00 L206W 6 18 0.33 DELI507 2 2 1.00 IVS8-5T 4 16 0.25 Q1411X 2 2 1.00 3272-26A>G 1 4 0.25 365-366insT 2 2 1.00 R334W 1 10 0.10 R709X 2 2 1.00 3849+10kbC>T 2 22 0.09 1138insG 2 2 1.00 P67L 1 14 0.07 CFTRdele2-4 2 2 1.00 R117H 1 25 0.04 3007delG 2 2 1.00 R347H 0 5 0.00 Q814X 2 2 1.00 G178R 0 3 0.00 394delTT 2 2 1.00 E116K 0 2 0.00 406-1G>A 2 2 1.00 875+1G>C 0 2 0.00 R75X 2 2 1.00 V232D 0 2 0.00 CFTRdel2-3 2 2 1.00 D579G 0 2 0.00 E193X 2 2 1.00 L1335P 0 2 0.00 185+1G>T 2 2 1.00 Mild mutations (based on PIP scores) are shaded in gray.
X
ABCC7 p.Leu1077Pro 22658665:855:477
status: NEW[hide] Frequency of the hyperactive W493R ENaC variant in... J Cyst Fibros. 2012 Jan;11(1):53-5. Epub 2011 Sep 13. Handschick M, Hedtfeld S, Tummler B
Frequency of the hyperactive W493R ENaC variant in carriers of a CFTR mutation.
J Cyst Fibros. 2012 Jan;11(1):53-5. Epub 2011 Sep 13., [PMID:21917531]
Abstract [show]
BACKGROUND: The basic defect of the autosomal recessive disorder cystic fibrosis (CF) manifests in chloride hyposecretion and sodium hyperabsorption. CF-like disease has been reported in a heterozygous carrier of F508del CFTR and the hyperactive variant p.W493R-SCNN1A of the epithelial sodium channel (ENaC). METHODS: The hypothesis that heterozygosity for p.W493R-SCNN1A and one loss-of-function CFTR mutation causes or predisposes to CF or CF-like disease was tested in 441 parents of a child with CF. RESULTS: p.W493R-SCNN1A was detected in three female carriers of F508del CFTR who did not show any symptoms of respiratory or intestinal disease that could be interpreted as the manifestation of CF or CFTR-related disorder. Frequency of p.W493R was lower in CF parents than in Caucasian control subjects. CONCLUSIONS: A hyperactive ENaC does not necessarily cause CF-like disease in a CF gene carrier, but its low frequency in CF parents suggests that it is a risk factor.
Comments [show]
None has been submitted yet.
No. Sentence Comment
53 A. Caucasians a F508del 378 2184delA 2 CFTRdele2,3(21 kb) 4 2789+5 G-A 1 R117H 1 I1005R 1 405+1 G-A 1 L1077P 1 H199Y 1 Y1092X 1 L206W 1 3601-111 G-C 1 R347P 3 3849+10 kb C-T 1 Q414X 1 3850-3 T-G 1 G551D 4 W1282X 1 R553X 8 N1303K 2 1717-1 G-A 1 4374+1 G-T 1 2143delT 1 Unknown 9 B. Turks K68N 1 1525-1 G-A 1 G85E 1 F508del 2 E92K 1 1677delTA 1 CFTRdele2(ins186) 2 2184delA 1 CFTRdele2,3(21 kb) 2 3601-2 A-G 1 435insA 1 Unknown 1 a The subjects were born in Austria (N=9 subjects), Belgium (2), France (4), Germany (374), Greece (4), Italy (12), The Netherlands (7), Poland (2), Spain (5), Sweden (2) and United Kingdom (5).
X
ABCC7 p.Leu1077Pro 21917531:53:102
status: NEW[hide] Genotype-phenotype correlation in cystic fibrosis ... Genet Mol Biol. 2011 Jul;34(3):416-20. Epub 2011 Jul 1. Polizzi A, Tesse R, Santostasi T, Diana A, Manca A, Logrillo VP, Cazzato MD, Pantaleo MG, Armenio L
Genotype-phenotype correlation in cystic fibrosis patients bearing [H939R;H949L] allele.
Genet Mol Biol. 2011 Jul;34(3):416-20. Epub 2011 Jul 1., [PMID:21931512]
Abstract [show]
Cystic fibrosis (CF) is caused by CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations. We ascertained five patients with a novel complex CFTR allele, with two mutations, H939R and H949L, inherited in cis in the same exon of CFTR gene, and one different mutation per patient inherited in trans in a wide population of 289 Caucasian CF subjects from South Italy. The genotype-phenotype relationship in patients bearing this complex allele was investigated. The two associated mutations were related to classical severe CF phenotypes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
62 Particularly, 1259insA and G1349D represent with few other mutations, 4382delA, I502T, 852del22, 4016insT, D579G, R1158X and L1077P, almost 20% of the CF alleles found in the Apulian population (Castaldo et al., 2005; Polizzi et al., 2005).
X
ABCC7 p.Leu1077Pro 21931512:62:125
status: NEW[hide] The use of DHPLC (Denaturing High Performance Liqu... J Prenat Med. 2010 Jul;4(3):45-8. Mesoraca A, Di Natale M, Cima A, Di Giacomo G, Sarti M, Barone MA, Bizzoco D, Cignini P, Mobili L, D'emidio L, Giorlandino C
The use of DHPLC (Denaturing High Performance Liquid Chromatography) in II level screening of the CFTR gene in Prenatal Diagnosis.
J Prenat Med. 2010 Jul;4(3):45-8., [PMID:22439061]
Abstract [show]
OBJECTIVE: The aim of the study is to evaluate the role of Denaturing High Performance Liquid Chromatography (DHPLC) in the second level screening of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. METHODS: A 9-month prospective study, between June 2008 and March 2009 at Artemisia Fetal Medical Centre, included 3829 samples of amniotic fluid collected from women undergoing mid-trimester amniocentesis.The genetic diagnosis of CF was based on research of the main mutations of the CFTR gene on fetal DNA extracted from the amniocytes, (first level screening) using different commercial diagnostic systems. A second level screening using DHPLC, on the amniotic fluid and on a blood sample from the couple, was offered in case of fetuses heterozygous at first level screening. RESULTS: Of 3829 fetuses, 134 were found to be positive, 129 heterozygous and 5 affected. Of the 129 couples, following appropriate genetic counselling, 53 requested a second level screening. Through the use of DHPLC, 44 couples were found to be negative, and in nine couples, nine rare mutations were identified. CONCLUSIONS: The first level screening can be useful to evidence up to 75% of the CF mutations. The second level screening can identify a further 10% of mutant alleles. DHPLC was found to be a reliable and specific method for the rapid identification of the rare CFTR mutations which were not revealed in initial first level screening.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 Through the use of DHPLC, all the exonic regions of the CFTR gene were analysed and through the technique 44 of the 53 couples were found to be negative, while for 9 couples, 9 rare mutations were identified which were not revealed in I level screening: R1066C, L1065P, L1077P (exon 17b), A1006E (exon 19), R75Q (exon 3), D537E (exon 11), W1134X (exon 18), R1145X (exon 18), C524X (exon 11).
X
ABCC7 p.Leu1077Pro 22439061:80:270
status: NEW100 48 Journal of Prenatal Medicine 2010; 4 (3): 45-50 Table III Mutations found with II level screening through DHPLC Mutations of mutated alleles DF508 29 W1282X 3 N1303K 8 1717-1G®A 2 3659delC 1 G85E 1 2789 +5G®A 2 R553X 2 R1162X 1 R117H 1 G542X 3 Total 53Table I Mutations found through I level screeningMutations analysed with I level screening through OLA CFTR Mutations Position on the CFTR gene DF508 Exon 10 3849+10KbC®T Intron 19 R334W Exon 7 W1282X Exon 10 V520F Exon 10 3905insT Exon 20 N1303K Exon 21 3876delA Exon 20 1717-1G®A Exon 11 3659delC Exon 19 DI507 Exon 10 A455E Exon 9 G85E Exon 3 2789 +5G®A Exon 14 / Intron 14 2183AA®G Exon 13 1898+1G®A Exon 12 / Intron 12 R347P Exon 7 R347H Exon 7 R560T Exon 11 1078delT Exon 7 R553X Exon 11 711+1G®T Exon 5 / Intron 5 G551D Exon 11 R1162X Exon 19 S549R Exon 11 R117H Exon 4 S549N Exon 11 621+1G®T Exon 4 G542X Exon 11 394delTT Exon 3 3120+1G®ðA Exon 16/ Intron 16 2184delA Exon 13 Table II Mutations found through I level screening Mutations Positions on CFTR gene R1066C Exon 17 b L1065P Exon 17 b A1006E Exon 19 R75Q Exon 3 D537E Exon 11 W1134X Exon 18 W1145X Exon 18 L1077P Exon 17b C524X Exon 11 Total 9 The use of DHPLC (Denaturing High Performance Liquid Chromatography) in II level screening of the CFTR gene in Prenatal Diagnosis Journal of Prenatal Medicine 2010; 4 (3): 45-50 49 tion was to provide the couple with adequate counselling in order to better understand the genotype-phenotype correlation in the various associations of mutations.
X
ABCC7 p.Leu1077Pro 22439061:100:1173
status: NEWX
ABCC7 p.Leu1077Pro 22439061:100:1183
status: NEW[hide] Analysis of the CFTR gene in Iranian cystic fibros... J Cyst Fibros. 2008 Mar;7(2):102-9. Epub 2007 Jul 27. Alibakhshi R, Kianishirazi R, Cassiman JJ, Zamani M, Cuppens H
Analysis of the CFTR gene in Iranian cystic fibrosis patients: identification of eight novel mutations.
J Cyst Fibros. 2008 Mar;7(2):102-9. Epub 2007 Jul 27., [PMID:17662673]
Abstract [show]
BACKGROUND: Cystic fibrosis (CF) is the most common inherited disorder in Caucasian populations, with over 1400 mutations identified in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Mutations in the CFTR gene may be also causative for CBAVD (Congenital Bilateral Absence of the Vas Deferens). The type and distribution of mutations varies widely between different countries and/or ethnic groups, and is relatively unknown in Iran. We therefore performed a comprehensive analysis of the CFTR gene in Iranian CF patients. METHODS: 69 Iranian CF patients, and 1 CBAVD patient, were analysed for mutations in the complete coding region, and its exon/intron junctions, of their CFTR genes, using different methods, such as ARMS (amplification refractory mutation system)-PCR, SSCP (single stranded conformation polymorphism) analysis, restriction enzyme digestion analysis, direct sequencing, and MLPA (Multiplex Ligation-mediated Probe Amplification). RESULTS: CFTR mutation analysis revealed the identification of 37 mutations in 69 Iranian CF patients. Overall, 81.9% (113/138) CFTR genes derived from Iranian CF patients could be characterized for a disease-causing mutation. The CBAVD patient was found to be homozygous for the p.W1145R mutation. The most common mutations were p.F508del (DeltaF508) (18.1%), c.2183_2184delAAinsG (2183AA>G) (6.5%), p.S466X (5.8%), p.N1303K (4.3%), c.2789+5G>A (4.3%), p.G542X (3.6%), c.3120+1G>A (3.6%), p.R334W (2.9%) and c.3130delA (2.9%). These 9 types of mutant CFTR genes totaled for 52% of all CFTR genes derived from the 69 Iranian CF patients. Eight mutations, c.406-8T>C, p.A566D, c.2576delA, c.2752-1_2756delGGTGGCinsTTG, p.T1036I, p.W1145R, c.3850-24G>A, c.1342-?_1524+?del, were found for the first time in this study. CONCLUSIONS: We identified 37 CFTR mutations in 69 well characterized Iranian CF patients, obtaining a CFTR mutation detection rate of 81.9%, the highest detection rate obtained in the Iranian population so far. These findings will assist in genetic counseling, prenatal diagnosis and future screening of CF in Iran.
Comments [show]
None has been submitted yet.
No. Sentence Comment
37 1 c.406-3TNC I3 T to C at 406-3 mRNA splicing defect 1 p.R170H E5 G to A at 641 Arg to His at 170 1 p.D192G E5 A to G at 707 Asp to Gly at 192 2 p.R334W E7 C to T at 1132 Arg to Trp at 334 4 c.1525-1GNA I9 G to A at 1525-1 mRNA splicing defect 2 p.F508del E10 Deletion of CTT from 1653 Deletion of Phe at 508 25 p.S466X E10 C to G at 1529 Ser to stop at 466 8 c.1677delTA E10 Deletion of TA from 1677 Frame shift 2 p.G542X E11 G to T at 1756 Gly to stop at 542 5 p.S549R E11 T to G at 1779 Ser to Arg at 549 2 p.A566D E12 C to A at 1829 Ala to Asp at 566 2 c.1898+1GNT I12 G→T at 1898+1 mRNA splicing defect 2 c.2183_2184delAAinsG E13 A to G at 2183 and deletion of A at 2184 Frame shift 9 c.2576delA E13 Deletion of A at 2576 Frame shift 1 c.2043delG E13 Deletion of A at 2043 Frame shift 1 c.2184insA E13 Insertion of A after 2184 Frame shift 1 p.R785X E13 C to T at 2485 Arg to stop at 785 2 c.2752-1_2756delGGTGGCinsTTG I14a/ Deletion of GGTGGC mRNA splicing defect 2 E14b From 2752-1 to 2756 and insertion TTG c.2789+5GNA I14b G to A at 2789+5 mRNA splicing defect 6 p.S945L E15 C to Tat 2966 Ser to Leu at 945 2 c.3120+1GNA I16 G to A at 3120+1 mRNA splicing defect 5 c.3121-1GNA I16 G to A at 3121-1 mRNA splicing defect 2 c.3130delA E17a Deletion of A at 3130 Frame shift 4 p.T1036I E17a C to T at 3239 Thr to Ile at 1036 1 p.R1066C E17b C to T at 3328 Arg to Cys at 1066 1 p.L1077P E17b T to C at 3362 Leu to Pro at 1077 1 p.T1086I E17b C to T at 3389 Thr to Ile at 1086 1 p.R1162X E19 C to T at 3616 Arg to stop at 1162 2 p.K1177X E19 A to T at 3361 Lys to stop at 1177 2 c.3850-24GNA I19 G to A at 3850-24 mRNA splicing defect?
X
ABCC7 p.Leu1077Pro 17662673:37:1390
status: NEWX
ABCC7 p.Leu1077Pro 17662673:37:1391
status: NEW66 Results A total of 69 unrelated CF patients (38 male and 31 female; aged between 2 months and 15 years) of Iranian Table 2 Genotype of CFTR genes in 53 Iranian patients Genotype Exon/intron Number of patients p.F508del/p.F508del E10/E10 10 p.F508del/p.R1162X E10/E19 2 p.F508del/p.T1036I E10/E17a 1 p.F508del/p.R1066C E10/E17b 1 p.F508del/c.1342-?_1524+?del E10/E9 1 p.S466X/p.S466X E10/E10 4 c.2183_2184delAAinsG/ c.2183_2184delAAinsG E13/E13 4 c.2183_2184delAAinsG/c.186- ?_296+?del E13/E2 1 p.N1303K/p.N1303K E21/E21 2 p.N1303K/p.S945L E21/E15 1 p.N1303K/c.1677delTA E21/E10 1 p.G542X/p.G542X E11/E11 2 p.G542X/c.2789+5GNA E11/I14b 1 c.3120+1GNA/c.3120+1GNA I16/I16 2 c.3120+1GNA/c.3121-1GNA I16 1 c.3121-1GNA/p.T1086I I16/E17b 1 c.3130delA/c.3130delA E17a/E17a 2 p.D192G/p.D192G E5/E5 1 p.R334W/p.R334W E7/E7 1 p.R334W/p.S945L E7/E15 1 p.R334W/p.L1077P E7/E17b 1 c.1525-1GNA/c.1525-1GNA I9/I9 1 p.S549R/p.S549R E11/E11 1 p.A566D/p.A566D E12/E12 1 c.1898+1GNT/c.1898+1GNT I12/I12 1 c.2576delA/p.S1455X/ E13/E24 1 c.2184insA/c.1677delTA E10/E13 1 p.R785X/p.R785X E13/E13 1 c.2752-1_2756delGGTGGCinsTTG/ c.2752-1_2756delGGTGGCinsTTG I14a/E14b 1 c.2789+5GNA/c.2789+5GNA I14b/I14b 1 p.K1177X/p.K1177X E19/E19 1 c.406-?_1716+?del/c.406-?_1716+?del E4-E10/E4-E10 1 Total 53 origin were extensively studied for the presence of mutations in the CFTR gene, for the presence of the deep intronic 3849+10 kbC→T mutation, and large deletions/ duplications.
X
ABCC7 p.Leu1077Pro 17662673:66:850
status: NEW65 Results A total of 69 unrelated CF patients (38 male and 31 female; aged between 2 months and 15 years) of Iranian Table 2 Genotype of CFTR genes in 53 Iranian patients Genotype Exon/intron Number of patients p.F508del/p.F508del E10/E10 10 p.F508del/p.R1162X E10/E19 2 p.F508del/p.T1036I E10/E17a 1 p.F508del/p.R1066C E10/E17b 1 p.F508del/c.1342-?_1524+?del E10/E9 1 p.S466X/p.S466X E10/E10 4 c.2183_2184delAAinsG/ c.2183_2184delAAinsG E13/E13 4 c.2183_2184delAAinsG/c.186- ?_296+?del E13/E2 1 p.N1303K/p.N1303K E21/E21 2 p.N1303K/p.S945L E21/E15 1 p.N1303K/c.1677delTA E21/E10 1 p.G542X/p.G542X E11/E11 2 p.G542X/c.2789+5GNA E11/I14b 1 c.3120+1GNA/c.3120+1GNA I16/I16 2 c.3120+1GNA/c.3121-1GNA I16 1 c.3121-1GNA/p.T1086I I16/E17b 1 c.3130delA/c.3130delA E17a/E17a 2 p.D192G/p.D192G E5/E5 1 p.R334W/p.R334W E7/E7 1 p.R334W/p.S945L E7/E15 1 p.R334W/p.L1077P E7/E17b 1 c.1525-1GNA/c.1525-1GNA I9/I9 1 p.S549R/p.S549R E11/E11 1 p.A566D/p.A566D E12/E12 1 c.1898+1GNT/c.1898+1GNT I12/I12 1 c.2576delA/p.S1455X/ E13/E24 1 c.2184insA/c.1677delTA E10/E13 1 p.R785X/p.R785X E13/E13 1 c.2752-1_2756delGGTGGCinsTTG/ c.2752-1_2756delGGTGGCinsTTG I14a/E14b 1 c.2789+5GNA/c.2789+5GNA I14b/I14b 1 p.K1177X/p.K1177X E19/E19 1 c.406-?_1716+?del/c.406-?_1716+?del E4-E10/E4-E10 1 Total 53 origin were extensively studied for the presence of mutations in the CFTR gene, for the presence of the deep intronic 3849+10 kbCT mutation, and large deletions/ duplications.
X
ABCC7 p.Leu1077Pro 17662673:65:850
status: NEW[hide] Genotyping microarray for the detection of more th... J Mol Diagn. 2005 Aug;7(3):375-87. Schrijver I, Oitmaa E, Metspalu A, Gardner P
Genotyping microarray for the detection of more than 200 CFTR mutations in ethnically diverse populations.
J Mol Diagn. 2005 Aug;7(3):375-87., [PMID:16049310]
Abstract [show]
Cystic fibrosis (CF), which is due to mutations in the cystic fibrosis transmembrane conductance regulator gene, is a common life-shortening disease. Although CF occurs with the highest incidence in Caucasians, it also occurs in other ethnicities with variable frequency. Recent national guidelines suggest that all couples contemplating pregnancy should be informed of molecular screening for CF carrier status for purposes of genetic counseling. Commercially available CF carrier screening panels offer a limited panel of mutations, however, making them insufficiently sensitive for certain groups within an ethnically diverse population. This discrepancy is even more pronounced when such carrier screening panels are used for diagnostic purposes. By means of arrayed primer extension technology, we have designed a genotyping microarray with 204 probe sites for CF transmembrane conductance regulator gene mutation detection. The arrayed primer extension array, based on a platform technology for disease detection with multiple applications, is a robust, cost-effective, and easily modifiable assay suitable for CF carrier screening and disease detection.
Comments [show]
None has been submitted yet.
No. Sentence Comment
53 Table 1. Continued CFTR location Amino acid change Nucleotide change 141 IVS 16 Splicing defect 3120 ϩ 1GϾA 142 IVS 16 Splicing defect 3121 - 2AϾG 143 IVS 16 Splicing defect 3121 - 2AϾT 144 E 17a Frameshift 3132delTG 145 E 17a I1005R 3146TϾG 146 E 17a Frameshift 3171delC 147 E 17a Frameshift 3171insC 148 E 17a del V1022 and I1023 3199del6 149 E 17a Splicing defect 3271delGG 150 IVS 17a Possible splicing defect 3272 - 26AϾG 151 E 17b G1061R 3313GϾC 152 E 17b R1066C 3328CϾT 153 E 17b R1066S 3328CϾA 154 E 17b R1066H 3329GϾA 155 E 17b R1066L 3329GϾT 156 E 17b G1069R 3337GϾA 157 E 17b R1070Q 3341GϾA 158 E 17b R1070P 3341GϾC 159 E 17b L1077P 3362TϾC 160 E 17b W1089X 3398GϾA 161 E 17b Y1092X (TAA) 3408CϾA 162 E 17b Y1092X (TAG) 3408CϾG 163 E 17b L1093P 3410TϾC 164 E 17b W1098R 3424TϾC 165 E 17b Q1100P 3431AϾC 166 E 17b M1101K 3434TϾA 167 E 17b M1101R 3434TϾG 168 IVS 17b 3500 - 2AϾT 3500 - 2AϾT 169 IVS 17b Splicing defect 3500 - 2AϾG 170 E 18 D1152H 3586GϾC 171 E 19 R1158X 3604CϾT 172 E 19 R1162X 3616CϾT 173 E 19 Frameshift 3659delC 174 E 19 S1196X 3719CϾG 175 E 19 S1196T 3719TϾC 176 E 19 Frameshift and K1200E 3732delA and 3730AϾG 177 E 19 Frameshift 3791delC 178 E 19 Frameshift 3821delT 179 E 19 S1235R 3837TϾG 180 E 19 Q1238X 3844CϾT 181 IVS 19 Possible splicing defect 3849 ϩ 4AϾG 182 IVS 19 Splicing defect 3849 ϩ 10 kb CϾT 183 IVS 19 Splicing defect 3850 - 1GϾA 184 E 20 G1244E 3863GϾA 185 E 20 G1244V 3863GϾT 186 E 20 Frameshift 3876delA 187 E 20 G1249E 3878GϾA 188 E 20 S1251N 3884GϾA 189 E 20 T1252P 3886AϾC 190 E 20 S1255X 3896CϾA and 3739AϾG in E19 191 E 20 S1255L 3896CϾT 192 E 20 Frameshift 3905insT 193 E 20 D1270N 3940GϾA 194 E 20 W1282R 3976TϾC 195 E 20 W1282X 3978GϾA 196 E 20 W1282C 3978GϾT 197 E 20 R1283M 3980GϾT 198 E 20 R1283K 3980GϾA 199 IVS 20 Splicing defect 4005 ϩ 1GϾA 200 E 21 Frameshift 4010del4 201 E 21 Frameshift 4016insT 202 E 22 Inframe del E21 del E21 203 E 21 N1303K 4041CϾG 204 E 24 Frameshift 4382delA Genomic and Synthetic Template Samples Where possible, native genomic DNA was collected.
X
ABCC7 p.Leu1077Pro 16049310:53:721
status: NEW150 Primers Generated to Create Synthetic Templates That Serve As Positive Mutation Controls Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј 175delC synt F T(15)ATTTTTTTCAGGTGAGAAGGTGGCCA 175delC synt R T(15)ATTTGGAGACAACGCTGGCCTTTTCC W19C synt F T(15)TACCAGACCAATTTTGAGGAAAGGAT W19C synt R T(15)ACAGCTAAAATAAAGAGAGGAGGAAC Q39X synt F T(15)TAAATCCCTTCTGTTGATTCTGCTGA Q39X synt R T(15)AGTATATGTCTGACAATTCCAGGCGC 296 ϩ 12TϾC synt F T(15)CACATTGTTTAGTTGAAGAGAGAAAT 296 ϩ 12TϾC synt R T(15)GCATGAACATACCTTTCCAATTTTTC 359insT synt F T(15)TTTTTTTCTGGAGATTTATGTTCTAT 359insT synt R T(15)AAAAAAACATCGCCGAAGGGCATTAA E60X synt F T(15)TAGCTGGCTTCAAAGAAAAATCCTAA E60X synt R T(15)ATCTATCCCATTCTCTGCAAAAGAAT P67L synt F T(15)TTAAACTCATTAATGCCCTTCGGCGA P67L synt R T(15)AGATTTTTCTTTGAAGCCAGCTCTCT R74Q synt F T(15)AGCGATGTTTTTTCTGGAGATTTATG R74Q synt R T(15)TGAAGGGCATTAATGAGTTTAGGATT R75X synt F T(15)TGATGTTTTTTCTGGAGATTTATGTT R75X synt R T(15)ACCGAAGGGCATTAATGAGTTTAGGA W57X(TAG) synt F T(15)AGGATAGAGAGCTGGCTTCAAAGAAA W57X(TAG) synt R T(15)TATTCTCTGCAAAAGAATAAAAAGTG W57X(TGA) synt F T(15)AGATAGAGAGCTGGCTTCAAAGAAAA W57X(TGA) synt R T(15)TCATTCTCTGCAAAAGAATAAAAAGT G91R synt F T(15)AGGGTAAGGATCTCATTTGTACATTC G91R synt R T(15)TTAAATATAAAAAGATTCCATAGAAC 405 ϩ 1GϾA synt F T(15)ATAAGGATCTCATTTGTACATTCATT 405 ϩ 1GϾA synt R T(15)TCCCTAAATATAAAAAGATTCCATAG 405 ϩ 3AϾC synt F T(15)CAGGATCTCATTTGTACATTCATTAT 405 ϩ 3AϾC synt R T(15)GACCCCTAAATATAAAAAGATTCCAT 406 - 1GϾA synt F T(15)AGAAGTCACCAAAGCAGTACAGCCTC 406 - 1GϾA synt R T(15)TTACAAAAGGGGAAAAACAGAGAAAT E92X synt F T(15)TAAGTCACCAAAGCAGTACAGCCTCT E92X synt R T(15)ACTACAAAAGGGGAAAAACAGAGAAA E92K synt F T(15)AAAGTCACCAAAGCAGTACAGCCTCT E92K synt R T(15)TCTACAAAAGGGGAAAAACAGAGAAA 444delA synt F T(15)GATCATAGCTTCCTATGACCCGGATA 444delA synt R T(15)ATCTTCCCAGTAAGAGAGGCTGTACT 574delA synt F T(15)CTTGGAATGCAGATGAGAATAGCTAT 574delA synt R T(15)AGTGATGAAGGCCAAAAATGGCTGGG 621GϾA synt F T(15)AGTAATACTTCCTTGCACAGGCCCCA 621GϾA synt R T(15)TTTCTTATAAATCAAACTAAACATAG Q98P synt F T(15)CGCCTCTCTTACTGGGAAGAATCATA Q98P synt R T(15)GGTACTGCTTTGGTGACTTCCTACAA 457TATϾG synt F T(15)GGACCCGGATAACAAGGAGGAACGCT 457TATϾG synt R T(15)CGGAAGCTATGATTCTTCCCAGTAAG I148T synt F T(15)CTGGAATGCAGATGAGAATAGCTATG I148T synt R T(15)GTGTGATGAAGGCCAAAAATGGCTGG 624delT synt F T(15)CTTAAAGCTGTCAAGCCGTGTTCTAG 624delT synt R T(15)TAAGTCTAAAAGAAAAATGGAAAGTT 663delT synt F T(15)ATGGACAACTTGTTAGTCTCCTTTCC 663delT synt R T(15)CATACTTATTTTATCTAGAACACGGC G178R synt F T(15)AGACAACTTGTTAGTCTCCTTTCCAA G178R synt R T(15)TAATACTTATTTTATCTAGAACACGG Q179K synt F T(15)AAACTTGTTAGTCTCCTTTCCAACAA Q179K synt R T(15)TTCCAATACTTATTTTATCTAGAACA 711 ϩ 5GϾA synt F T(15)ATACCTATTGATTTAATCTTTTAGGC 711 ϩ 5GϾA synt R T(15)TTATACTTCATCAAATTTGTTCAGGT 712 - 1GϾT synt F T(15)TGGACTTGCATTGGCACATTTCGTGT 712 - 1GϾT synt R T(15)TATGGAAAATAAAAGCACAGCAAAAAC H199Y synt F T(15)TATTTCGTGTGGATCGCTCCTTTGCA H199Y synt R T(15)TATGCCAATGCTAGTCCCTGGAAAATA P205S synt F T(15)TCTTTGCAAGTGGCACTCCTCATGGG P205S synt R T(15)TAAGCGATCCACACGAAATGTGCCAAT L206W synt F T(15)GGCAAGTGGCACTCCTCATGGGGCTA L206W synt R T(15)TCAAGGAGCGATCCACACGAAATGTGC Q220X synt F T(15)TAGGCGTCTGCTTTCTGTGGACTTGG Q220X synt R T(15)TATAACAACTCCCAGATTAGCCCCATG 936delTA synt F T(15)AATCCAATCTGTTAAGGCATACTGCT 936delTA synt R T(15)TGATTTTCAATCATTTCTGAGGTAATC 935delA synt F T(15)GAAATATCCAATCTGTTAAGGCATAC 935delA synt R T(15)TATTTCAATCATTTCTGAGGTAATCAC N287Y synt F T(15)TACTTAAGACAGTAAGTTGTTCCAAT N287Y synt R T(15)TATTCAATCATTTTTTCCATTGCTTCT 1002 - 3TϾG synt F T(15)GAGAACAGAACTGAAACTGACTCGGA 1002 - 3TϾG synt R T(15)TCTAAAAAACAATAACAATAAAATTCA 1154insTC syntwt F T(15)ATCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntwt R T(15)TTGAGATGGTGGTGAATATTTTCCGGA 1154insTC syntmt F T(15)TCTCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntmt R T(15)TAGAGATGGTGGTGAATATTTTCCGGA DF311 mt syntV1 F T(15)CCTTCTTCTCAGGGTTCTTTGTGGTG dF311 mt syntV1 R T(15)GAGAAGAAGGCTGAGCTATTGAAGTATC G330X synt F T(15)TGAATCATCCTCCGGAAAATATTCAC G330X synt R T(15)ATTTGATTAGTGCATAGGGAAGCACA S364P synt F T(15)CCTCTTGGAGCAATAAACAAAATACA S364P synt R T(15)GGTCATACCATGTTTGTACAGCCCAG Q359K/T360K mt synt F T(15)AAAAAATGGTATGACTCTCTTGGAGC Q359K/T360K mt synt R T(15)TTTTTTACAGCCCAGGGAAATTGCCG 1078delT synt F T(15)CTTGTGGTGTTTTTATCTGTGCTTCC 1078delT synt R T(15)CAAGAACCCTGAGAAGAAGAAGGCTG 1119delA synt F T(15)CAAGGAATCATCCTCCGGAAAATATT 1119delA synt R T(15)CTTGATTAGTGCATAGGGAAGCACAG 1161delC synt F T(15)GATTGTTCTGCGCATGGCGGTCACTC 1161delC synt R T(15)TCAGAATGAGATGGTGGTGAATATTT T338I synt F T(15)TCACCATCTCATTCTGCATTGTTCTG T338I synt R T(15)ATGAATATTTTCCGGAGGATGATTCC R352Q synt F T(15)AGCAATTTCCCTGGGCTGTACAAACA R352Q synt R T(15)TGAGTGACCGCCATGCGCAGAACAAT L346P synt F T(15)CGCGCATGGCGGTCACTCGGCAATTT L346P synt R T(15)GGAACAATGCAGAATGAGATGGTGGT 1259insA synt F T(15)AAAAAGCAAGAATATAAGACATTGGA 1259insA synt R T(15)TTTTTGTAAGAAATCCTATTTATAAA W401X(TAG)mtsynt F T(15)AGGAGGAGGTCAGAATTTTTAAAAAA W401X(TAG)mtsynt R T(15)TAGAAGGCTGTTACATTCTCCATCAC W401X(TGA) synt F T(15)AGAGGAGGTCAGAATTTTTAAAAAAT W401X(TGA) synt R T(15)TCAGAAGGCTGTTACATTCTCCATCA 1342 - 2AϾC synt F T(15)CGGGATTTGGGGAATTATTTGAGAAA 1342 - 2AϾC synt R T(15)GGTTAAAAAAACACACACACACACAC 1504delG synt F T(15)TGATCCACTGTAGCAGGCAAGGTAGT 1504delG synt R T(15)TCAGCAACCGCCAACAACTGTCCTCT G480C synt F T(15)TGTAAAATTAAGCACAGTGGAAGAAT G480C synt R T(15)ACTCTGAAGGCTCCAGTTCTCCCATA C524X synt F T(15)ACAACTAGAAGAGGTAAGAAACTATG C524X synt R T(15)TCATGCTTTGATGACGCTTCTGTATC V520F synt F T(15)TTCATCAAAGCAAGCCAACTAGAAGA V520F synt R T(15)AGCTTCTGTATCTATATTCATCATAG 1609delCA synt F T(15)TGTTTTCCTGGATTATGCCTGGCACC 1609delCA synt R T(15)CAGAACAGAATGAAATTCTTCCACTG 1717 - 8GϾA synt F T(15)AGTAATAGGACATCTCCAAGTTTGCA 1717 - 8GϾA synt R T(15)TAAAAATAGAAAATTAGAGAGTCACT 1784delG synt F T(15)AGTCAACGAGCAAGAATTTCTTTAGC 1784delG synt R T(15)ACTCCACTCAGTGTGATTCCACCTTC A559T synt F T(15)ACAAGGTGAATAACTAATTATTGGTC A559T synt R T(15)TTAAAGAAATTCTTGCTCGTTGACCT Q552X synt F T(15)TAACGAGCAAGAATTTCTTTAGCAAG Q552X synt R T(15)AACCTCCACTCAGTGTGATTCCACCT S549R(AϾC) synt F T(15)CGTGGAGGTCAACGAGCAAGAATTTC S549R(AϾC) synt R T(15)GCAGTGTGATTCTACCTTCTCCAAGA S549R(TϾG) synt F T(15)GGGAGGTCAACGAGCAAGTATTTC S549R(TϾG) synt R T(15)CCTCAGTGTGATTCCACCTTCTCCAA L558S synt F T(15)CAGCAAGGTGAATAACTAATTATTGG L558S synt R T(15)GAAGAAATTCTCGCTCGTTGACCTCC 1811 ϩ 1.6 kb AϾG synt F T(15)GTAAGTAAGGTTACTATCAATCACAC 1811 ϩ 1.6 kb AϾG synt R T(15)CATCTCAAGTACATAGGATTCTCTGT 1812 - 1GϾA synt F T(15)AAGCAGTATACAAAGATGCTGATTTG 1812 - 1GϾA synt R T(15)TTAAAAAGAAAATGGAAATTAAATTA D572N synt F T(15)AACTCTCCTTTTGGATACCTAGATGT D572N synt R T(15)TTAATAAATACAAATCAGCATCTTTG P574H synt F T(15)ATTTTGGATACCTAGATGTTTTAACA P574H synt R T(15)TGAGAGTCTAATAAATACAAATCAGC 1833delT synt F T(15)ATTGTATTTATTAGACTCTCCTTTTG 1833delT synt R T(15)CAATCAGCATCTTTGTATACTGCTCT Table 4. Continued Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј Y563D synt F T(15)GACAAAGATGCTGATTTGTATTTATT Y563D synt R T(15)CTACTGCTCTAAAAAGAAAATGGAAA T582R synt F T(15)GAGAAAAAGAAATATTTGAAAGGTAT T582R synt R T(15)CTTAAAACATCTAGGTATCCAAAAGG E585X synt F T(15)TAAATATTTGAAAGGTATGTTCTTTG E585X synt R T(15)ATTTTTCTGTTAAAACATCTAGGTAT 1898 ϩ 5GϾT synt F T(15)TTTCTTTGAATACCTTACTTATATTG 1898 ϩ 5GϾT synt R T(15)AATACCTTTCAAATATTTCTTTTTCT 1924del7 synt F T(15)CAGGATTTTGGTCACTTCTAAAATGG 1924del7 synt R T(15)CTGTTAGCCATCAGTTTACAGACACA 2055del9ϾA synt F T(15)ACATGGGATGTGATTCTTTCGACCAA 2055del9ϾA synt R T(15)TCTAAAGTCTGGCTGTAGATTTTGGA D648V synt F T(15)TTTCTTTCGACCAATTTAGTGCAGAA D648V synt R T(15)ACACATCCCATGAGTTTTGAGCTAAA K710X synt F T(15)TAATTTTCCATTGTGCAAAAGACTCC K710X synt R T(15)ATCGTATAGAGTTGATTGGATTGAGA I618T synt F T(15)CTTTGCATGAAGGTAGCAGCTATTTT I618T synt R T(15)GTTAATATTTTGTCAGCTTTCTTTAA R764X synt F T(15)TGAAGGAGGCAGTCTGTCCTGAACCT R764X synt R T(15)ATGCCTGAAGCGTGGGGCCAGTGCTG Q685X synt F T(15)TAATCTTTTAAACAGACTGGAGAGTT Q685X synt R T(15)ATTTTTTTGTTTCTGTCCAGGAGACA R709X synt F T(15)TGAAAATTTTCCATTGTGCAAAAGAC R709X synt R T(15)ATATAGAGTTGATTGGATTGAGAATA V754M synt F T(15)ATGATCAGCACTGGCCCCACGCTTCA V754M synt R T(15)TGCTGATGCGAGGCAGTATCGCCTCT 1949del84 synt F T(15)AAAAATCTACAGCCAGACTTTATCTC 1949del84 synt R T(15)TTTTTAGAAGTGACCAAAATCCTAGT 2108delA synt F T(15)GAATTCAATCCTAACTGAGACCTTAC 2108delA synt R T(15)ATTCTTCTTTCTGCACTAAATTGGTC 2176insC synt F T(15)CCAAAAAAACAATCTTTTAAACAGACTGGAGAG 2176insC synt R T(15)GGTTTCTGTCCAGGAGACAGGAGCAT 2184delA synt F T(15)CAAAAAACAATCTTTTAAACAGACTGG 2184delA synt R T(15)GTTTTTTGTTTCTGTCCAGGAGACAG 2105-2117 del13 synt F T(15)AAACTGAGACCTTACACCGTTTCTCA 2105-2117 del13 synt R T(15)TTTCTTTCTGCACTAAATTGGTCGAA 2307insA synt F T(15)AAAGAGGATTCTGATGAGCCTTTAGA 2307insA synt R T(15)TTTCGATGCCATTCATTTGTAAGGGA W846X synt F T(15)AAACACATACCTTCGATATATTACTGTCCAC W846X synt R T(15)TCATGTAGTCACTGCTGGTATGCTCT 2734G/AT synt F T(15)TTAATTTTTCTGGCAGAGGTAAGAAT 2734G/AT synt R T(15)TTAAGCACCAAATTAGCACAAAAATT 2766del8 synt F T(15)GGTGGCTCCTTGGAAAGTGAGTATTC 2766del8 synt R T(15)CACCAAAGAAGCAGCCACCTGGAATGG 2790 - 2AϾG synt F T(15)GGCACTCCTCTTCAAGACAAAGGGAA 2790 - 2AϾG synt R T(15)CGTAAAGCAAATAGGAAATCGTTAAT 2991del32 synt F T(15)TTCAACACGTCGAAAGCAGGTACTTT 2991del32 synt R T(15)AAACATTTTGTGGTGTAAAATTTTCG Q890X synt F T(15)TAAGACAAAGGGAATAGTACTCATAG Q890X synt R T(15)AAAGAGGAGTGCTGTAAAGCAAATAG 2869insG synt F T(15)GATTATGTGTTTTACATTTACGTGGG 2869insG synt R T(15)CACGAACTGGTGCTGGTGATAATCAC 3120GϾA synt F T(15)AGTATGTAAAAATAAGTACCGTTAAG 3120GϾA synt R T(15)TTGGATGAAGTCAAATATGGTAAGAG 3121 - 2AϾT synt F T(15)TGTTGTTATTAATTGTGATTGGAGCT 3121 - 2AϾT synt R T(15)AGTAAGATCAAAGAAAACATGTTGGT 3132delTG synt F T(15)TTGATTGGAGCCATAGCAGTTGTCGC 3132delTG synt R T(15)AATTAATAACAACTGTAAGATCAAAG 3271delGG synt F T(15)ATATGACAGTGAATGTGCGATACTCA 3271delGG synt R T(15)ATTCAGATTCCAGTTGTTTGAGTTGC 3171delC synt F T(15)ACCTACATCTTTGTTGCAACAGTGCC 3171delC synt R T(15)AGGTTGTAAAACTGCGACAACTGCTA 3171insC synt F T(15)CCCCTACATCTTTGTTGCTACAGTGC 3171insC synt R T(15)GGGGTTGTAAAACTGCGACAACTGCT 3199del6 synt F T(15)GAGTGGCTTTTATTATGTTGAGAGCATAT 3199del6 synt R T(15)CCACTGGCACTGTTGCAACAAAGATG M1101K synt F T(15)AGAGAATAGAAATGATTTTTGTCATC M1101K synt R T(15)TTTTGGAACCAGCGCAGTGTTGACAG G1061R synt F T(15)CGACTATGGACACTTCGTGCCTTCGG G1061R synt R T(15)GTTTTAAGCTTGTAACAAGATGAGTG R1066L synt F T(15)TTGCCTTCGGACGGCAGCCTTACTTT R1066L synt R T(15)AGAAGTGTCCATAGTCCTTTTAAGCT R1070P synt F T(15)CGCAGCCTTACTTTGAAACTCTGTTC R1070P synt R T(15)GGTCCGAAGGCACGAAGTGTCCATAG L1077P synt F T(15)CGTTCCACAAAGCTCTGAATTTACAT L1077P synt R T(15)GGAGTTTCAAAGTAAGGCTGCCGTCC W1089X synt F T(15)AGTTCTTGTACCTGTCAACACTGCGC W1089X synt R T(15)TAGTTGGCAGTATGTAAATTCAGAGC L1093P synt F T(15)CGTCAACACTGCGCTGGTTCCAAATG L1093P synt R T(15)GGGTACAAGAACCAGTTGGCAGTATG W1098R synt F T(15)CGGTTCCAAATGAGAATAGAAATGAT W1098R synt R T(15)GGCGCAGTGTTGACAGGTACAAGAAC Q1100P synt F T(15)CAATGAGAATAGAAATGATTTTTGTC Q1100P synt R T(15)GGGAACCAGCGCAGTGTTGACAGGTA D1152H synt F T(15)CATGTGGATAGCTTGGTAAGTCTTAT D1152H synt R T(15)GTATGCTGGAGTTTACAGCCCACTGC R1158X synt F T(15)TGATCTGTGAGCCGAGTCTTTAAGTT R1158X synt R T(15)ACATCTGAAATAAAAATAACAACATT S1196X synt F T(15)GACACGTGAAGAAAGATGACATCTGG S1196X synt R T(15)CAATTCTCAATAATCATAACTTTCGA 3732delA synt F T(15)GGAGATGACATCTGGCCCTCAGGGGG 3732delA synt R T(15)CTCCTTCACGTGTGAATTCTCAATAA 3791delC synt F T(15)AAGAAGGTGGAAATGCCATATTAGAG 3791delC synt R T(15)TTGTATTTTGCTGTGAGATCTTTGAC 3821delT synt F T(15)ATTCCTTCTCAATAAGTCCTGGCCAG 3821delT synt R T(15)GAATGTTCTCTAATATGGCATTTCCA Q1238X synt F T(15)TAGAGGGTGAGATTTGAACACTGCTT Q1238X synt R T(15)AGCCAGGACTTATTGAGAAGGAAATG S1255X (ex19)synt F T(15)GTCTGGCCCTCAGGGGGCCAAATGAC S1255X (ex19) synt R T(15)CGTCATCTTTCTTCACGTGTGAATTC S1255X;L synt F T(15)AAGCTTTTTTGAGACTACTGAACACT S1255X;L synt R T(15)TATAACAAAGTAATCTTCCCTGATCC 3849 ϩ 4AϾG synt F T(15)GGATTTGAACACTGCTTGCTTTGTTA 3849 ϩ 4AϾG synt R T(15)CCACCCTCTGGCCAGGACTTATTGAG 3850 - 1GϾA synt F T(15)AGTGGGCCTCTTGGGAAGAACTGGAT 3850 - 1GϾA synt R T(15)TTATAAGGTAAAAGTGATGGGATCAC 3905insT synt F T(15)TTTTTTTGAGACTACTGAACACTGAA 3905insT synt R T(15)AAAAAAAGCTGATAACAAAGTACTCT 3876delA synt F T(15)CGGGAAGAGTACTTTGTTATCAGCTT 3876delA synt R T(15)CGATCCAGTTCTTCCCAAGAGGCCCA G1244V synt F T(15)TAAGAACTGGATCAGGGAAGAGTACT G1244V synt R T(15)ACCAAGAGGCCCACCTATAAGGTAAA G1249E synt F T(15)AGAAGAGTACTTTGTTATCAGCTTTT G1249E synt R T(15)TCTGATCCAGTTCTTCCCAAGAGGCC S1251N synt F T(15)ATACTTTGTTATCAGCTTTTTTGAGACTACTG S1251N synt R T(15)TTCTTCCCTGATCCAGTTCTTCCCAA S1252P synt F T(15)CCTTTGTTATCAGCTTTTTTGAGACT S1252P synt R T(15)GACTCTTCCCTGATCCAGTTCTTCCC D1270N synt F T(15)AATGGTGTGTCTTGGGATTCAATAAC D1270N synt R T(15)TGATCTGGATTTCTCCTTCAGTGTTC W1282R synt F T(15)CGGAGGAAAGCCTTTGGAGTGATACC W1282R synt R T(15)GCTGTTGCAAAGTTATTGAATCCCAA R1283K synt F T(15)AGAAAGCCTTTGGAGTGATACCACAG R1283K synt R T(15)TTCCACTGTTGCAAAGTTATTGAATC 4005 ϩ 1GϾA synt F T(15)ATGAGCAAAAGGACTTAGCCAGAAAA 4005 ϩ 1GϾA synt R T(15)TCTGTGGTATCACTCCAAAGGCTTTC 4010del4 synt F T(15)GTATTTTTTCTGGAACATTTAGAAAAAACTTGG 4010del4 synt R T(15)AAAATACTTTCTATAGCAAAAAAGAAAAGAAGAA 4016insT synt F T(15)TTTTTTTCTGGAACATTTAGAAAAAACTTGG 4016insT synt R T(15)AAAAAAATAAATACTTTCTATAGCAAAAAAGAAAAGAAGA CFTRdele21 synt F T(15)TAGGTAAGGCTGCTAACTGAAATGAT CFTRdele21 synt R T(15)CCTATAGCAAAAAAGAAAAGAAGAAGAAAGTATG 4382delA synt F T(15)GAGAGAACAAAGTGCGGCAGTACGAT 4382delA synt R T(15)CTCTATGACCTATGGAAATGGCTGTT Bold, mutation allele of interest; bold and italicized, modified nucleotide.
X
ABCC7 p.Leu1077Pro 16049310:150:10747
status: NEWX
ABCC7 p.Leu1077Pro 16049310:150:10793
status: NEW[hide] Glucose intolerance in children with cystic fibros... J Pediatr. 2003 Feb;142(2):128-32. Solomon MP, Wilson DC, Corey M, Kalnins D, Zielenski J, Tsui LC, Pencharz P, Durie P, Sweezey NB
Glucose intolerance in children with cystic fibrosis.
J Pediatr. 2003 Feb;142(2):128-32., [PMID:12584532]
Abstract [show]
OBJECTIVE: To evaluate the relations among glucose intolerance, genotype, and exocrine pancreatic status in patients with cystic fibrosis (CF). STUDY DESIGN: Data on 335 patients <18 years of age were from the Toronto CF database. A modified oral glucose tolerance test was given to 94 patients 10 to 18 years of age without recognized CF-related diabetes. CF transmembrane conductance regulator mutations and exocrine pancreatic status were determined for all patients. RESULTS: CF-related diabetes was clinically recognized in 9 of 335 (2.7%) patients <18 years of age, all of whom were pancreatic insufficient, and 8 of 9 had severe (classes I through III) mutations on both alleles. The ninth patient had unidentified mutations. Although all patients given the oral glucose tolerance test were asymptomatic and had normal fasting blood glucose, 16 of 94 (17%) had impaired glucose tolerance and 4 of 94 (4.3%) had CF-related diabetes without fasting hyperglycemia. Abnormal glucose tolerance was associated exclusively with severe mutations and exocrine pancreatic insufficiency. Glycosylated hemoglobin (HbA(1)C) levels did not correlate with glucose tolerance results. CONCLUSIONS: Screening of pancreatic-insufficient, adolescent patients with CF identified more with abnormal oral glucose tolerance than was suspected clinically and is recommended as a routine practice. HbA(1)C was not useful in screening for CF-related glucose intolerance.
Comments [show]
None has been submitted yet.
No. Sentence Comment
118 of patients with IGT 2 10 2 0 0 1/1 16 No of patients with CFRD without FH 0 4 0 0 0 0 4 *Genotype class based on mutation with ∆F508: Class I, 621+1G→T, G542X, 441delA, R553X, W1282X, 3120+1G→A, 4016insT, 1154insTC, I1027T; Class II, ∆F508; Class III, G551D, G85E, S549N, L1077P, H199R; Class IV, Class V, 3849+10kbC→T, 5T; Unknown, G85E/-, ∆F508/-; Other, G551D/R506T, W1282X/W1282X.
X
ABCC7 p.Leu1077Pro 12584532:118:297
status: NEW[hide] Genotype and phenotype correlations in patients wi... Gastroenterology. 2002 Dec;123(6):1857-64. Durno C, Corey M, Zielenski J, Tullis E, Tsui LC, Durie P
Genotype and phenotype correlations in patients with cystic fibrosis and pancreatitis.
Gastroenterology. 2002 Dec;123(6):1857-64., [PMID:12454843]
Abstract [show]
BACKGROUND & AIMS: Pancreatitis is known to occur in some patients with cystic fibrosis (CF), but the prevalence, natural history, and genotypic basis are unclear. We examined a well-defined cohort of patients with CF to answer these questions. METHODS: Patients with CF were identified from a computerized database (1966-1996). Chart audit identified all patients with CF and pancreatitis. RESULTS: Among 1075 patients with CF, 937 (87%) were pancreatic insufficient at diagnosis, 28 (3%) were pancreatic sufficient but developed pancreatic insufficiency after diagnosis, and 110 (10%) have remained pancreatic sufficient. No patients with pancreatic insufficiency developed pancreatitis. Nineteen patients (17.3%) with pancreatic sufficiency experienced one or more attacks of pancreatitis. The mean age at diagnosis of pancreatitis was 22.7 +/- 10.3 years (range, 10-35 years), and pancreatitis was recognized before the diagnosis of CF in 6 patients (32%). The diagnosis of CF in pancreatic-sufficient patients, with and without pancreatitis, was established at a significantly older age than in those with pancreatic insufficiency (P < 0.0001). Genotyped patients with pancreatic insufficiency carried 2 severe mutant alleles. All genotyped patients with pancreatic sufficiency and pancreatitis carried at least one mild mutation. No specific genotype was predictive of pancreatitis. CONCLUSIONS: Patients with CF with pancreatic sufficiency carry at least one mild mutant allele and are at a significant risk of developing pancreatitis. Symptoms of pancreatitis may precede the diagnosis of CF. Pancreatitis is associated with an otherwise mild CF phenotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
105 CFTR Genotypes Among CF Patients With PS With and Without Pancreatitis Two mutations (n) ⌬F508/R117H (9) ⌬F508/(5T) (6) ⌬F508/3272-26A 3 G (4) ⌬F508/R347H (2) ⌬F508/P574H (2) ⌬F508/875 ϩ 1G Ͼ C (2) ⌬F508/3849 ϩ 10kb C 3 T (1) ⌬F508/A455E (1) ⌬F508/D614G (1) ⌬F508/G85E (1) ⌬F508/R347P (1) ⌬F508/S1251N (1) ⌬F508/⌬F508a (1) ⌬F508/3120G Ͼ A (1) ⌬F508/G551Da (1) G542X/R117H (1) R560T/L206W (1) R117H/R117H (1) R31L/P67L (1) 1461ins4 (AGAT)/G85E (1) G551D/(5T) (1) R1066C/3849 ϩ 10kb C Ͼ T (1) G551D/3849 ϩ 10kb C Ͼ T (1) R334W/R334W (1) R334W/681delC (1) W1282X/3489 ϩ 10kb C Ͼ T (1) One mutation (n) ⌬F508/- (18) L1077P/- (1) W1282X/- (1) M1137V/- (1) G551D/- (1) R347H/- (1) Q30X1/- (1) G1244E/- (1) R117H/- (1) 621 ϩ 2G621 ϩ 1G 3 T/- (1) NOTE.
X
ABCC7 p.Leu1077Pro 12454843:105:791
status: NEW[hide] Spectrum of CFTR mutations in cystic fibrosis and ... Hum Mutat. 2000;16(2):143-56. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD
Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France.
Hum Mutat. 2000;16(2):143-56., [PMID:10923036]
Abstract [show]
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
107 f 306insA, W79X, R117C, P205S, L227R, I336K, 1248+1G>A, 1609delCA, 1717-8G>A, S549R(T>G), S549N, 1812-1G>A, P574H, 2176insC, R709X, E827X, D836Y, 3007delG, L1065P, L1077P, H1085R, M1101K, 4021insT.
X
ABCC7 p.Leu1077Pro 10923036:107:164
status: NEW140 Non-F508del Mutations Found as Homozygous in a Sample of 3,710 Patients With Cystic Fibrosis Mutation n 711+1G>T 8 G542X 7 N1303K 7 2183delAA>G 5 W1282X 4 G551D 3 3905insT 3 R334W 2 R347P 2 1078delT 2 1811+1.6kbA>G 2 2113delA 2 Y1092X 2 R1162X 2 306insA 1 E92K 1 G178R 1 L227R 1 1677delTA 1 1717-1G>A 1 1717-8G>A 1 R553X 1 S549R(T>G) 1 R560S 1 V562I 1 Y569D 1 2711delT 1 S945L 1 R1158X 1 I1234V 1 3849+10kbC>T 1 Q1313X 1 del25kb 1 E831X 1 I175V 1 G314V 1 L1077P 1 produce a small quantity of functional protein as a result of a variable proportion of normal CFTR mRNA transcripts in addition to the abnormal ones (class V); 3) they are located in sites known to generate less severe mutants (external loops, residues lining the pore); and/or 4) they have been observed in CF with pancreatic sufficiency, CBAVD, and/or CF-related attenuated phenotypes only.
X
ABCC7 p.Leu1077Pro 10923036:140:455
status: NEW[hide] Effect of cystic fibrosis-associated mutations in ... J Biol Chem. 1996 Aug 30;271(35):21279-84. Cotten JF, Ostedgaard LS, Carson MR, Welsh MJ
Effect of cystic fibrosis-associated mutations in the fourth intracellular loop of cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 1996 Aug 30;271(35):21279-84., [PMID:8702904]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR) contains multiple membrane spanning sequences that form a Cl- channel pore and cytosolic domains that control the opening and closing of the channel. The fourth intracellular loop (ICL4), which connects the tenth and eleventh transmembrane spans, has a primary sequence that is highly conserved across species, is the site of a preserved sequence motif in the ABC transporter family, and contains a relatively large number of missense mutations associated with cystic fibrosis (CF). To investigate the role of ICL4 in CFTR function and to learn how CF mutations in this region disrupt function, we studied several CF-associated ICL4 mutants. We found that most ICL4 mutants disrupted the biosynthetic processing of CFTR, although not as severely as the most common DeltaF508 mutation. The mutations had no discernible effect on the channel's pore properties; but some altered gating behavior, the response to increasing concentrations of ATP, and stimulation in response to pyrophosphate. These effects on activity were similar to those observed with mutations in the nucleotide-binding domains, suggesting that ICL4 might help couple activity of the nucleotide-binding domains to gating of the Cl- channel pore. The data also explain how these mutations cause a loss of CFTR function and suggest that some patients with mutations in ICL4 may have a milder clinical phenotype because they retain partial activity of CFTR at the cell membrane.
Comments [show]
None has been submitted yet.
No. Sentence Comment
218 There are reports that several of the mutations (for example, F1052V, H1054D, and L1077P) are associated with a milder, pancreatic sufficient phenotype in which pancreatic function is not completely defective (17, 20, 46).
X
ABCC7 p.Leu1077Pro 8702904:218:82
status: NEW217 There are reports that several of the mutations (for example, F1052V, H1054D, and L1077P) are associated with a milder, pancreatic sufficient phenotype in which pancreatic function is not completely defective (17, 20, 46).
X
ABCC7 p.Leu1077Pro 8702904:217:82
status: NEW[hide] Disease-associated mutations in the fourth cytopla... J Biol Chem. 1996 Jun 21;271(25):15139-45. Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Clarke DM, Riordan JR
Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity.
J Biol Chem. 1996 Jun 21;271(25):15139-45., [PMID:8662892]
Abstract [show]
A cluster of 18 point mutations in exon 17b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has been detected in patients with cystic fibrosis. These mutations cause single amino acid substitutions in the most C-terminal cytoplasmic loop (CL4, residues 1035-1102) of the CFTR chloride channel. Heterologous expression of the mutants showed that 12 produced only core-glycosylated CFTR, which was retained in the endoplasmic reticulum; the other six mutants matured and reached the cell surface. In some cases substitution of one member of pairs of adjacent residues resulted in misprocessing, whereas the other did not. Thus, the secondary structure of CL4 may contribute crucially to the proper folding of the entire CFTR molecule. Cyclic AMP-stimulated iodide efflux was not detected from cells expressing the misprocessed variants but was from the other six, indicating that their mutations cause relatively subtle channel defects. Consistent with this, these latter mutations generally are present in patients who are pancreatic-sufficient, while the processing mutants are mostly from patients who are pancreatic-insufficient. Single-channel patch-clamp analysis demonstrated that the processed mutants had the same ohmic conductance as wild-type CFTR, but a lower open probability, generally due to an increase in channel mean closed time and a reduction in mean open time. This suggests that mutations in CL4 do not affect pore properties of CFTR, but disrupt the mechanism of channel gating.
Comments [show]
None has been submitted yet.
No. Sentence Comment
130 D: छ, WT; E, Q1071P; छϩ, W1098R; Ⅺ, H1085R; Ç, M1101K; µ, M1101R; Q, control; É, L1077P.
X
ABCC7 p.Leu1077Pro 8662892:130:121
status: NEW136 D: L, WT; E, Q1071P; L 1, W1098R; M, H1085R; &#c7;, M1101K; &#b5;, M1101R; Q, control; &#c9;, L1077P.
X
ABCC7 p.Leu1077Pro 8662892:136:94
status: NEW[hide] Haplotype analysis of 94 cystic fibrosis mutations... Hum Mutat. 1996;8(2):149-59. Morral N, Dork T, Llevadot R, Dziadek V, Mercier B, Ferec C, Costes B, Girodon E, Zielenski J, Tsui LC, Tummler B, Estivill X
Haplotype analysis of 94 cystic fibrosis mutations with seven polymorphic CFTR DNA markers.
Hum Mutat. 1996;8(2):149-59., [PMID:8844213]
Abstract [show]
We have analyzed 416 normal and 467 chromosomes carrying 94 different cystic fibrosis (CF) mutations with polymorphic genetic markers J44, IVS6aGATT, IVS8CA, T854, IVS17BTA, IVS17BCA, and TUB20. The number of mutations found with each haplotype is proportional to its frequency among normal chromosomes, suggesting that there is no preferential haplotype in which mutations arise and thus excluding possible selection for specific haplotypes. While many common mutations in the worldwide CF population showed absence of haplotype variation, indicating their recent origins, some mutations were associated with more than one haplotype. The most common CF mutations, delta F508, G542X, and N1303K, showed the highest number of slippage events at microsatellites, suggesting that they are the most ancient CF mutations. Recurrence was probably the case for 9 CF mutations (R117H, H199Y, R347YH, R347P, L558S, 2184insA, 3272-26A-->G, R1162X, and 3849 + 10kbC-->T). This analysis of 94 CF mutations should facilitate mutation screening and provides useful data for studies on population genetics of CF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 Other haplotypes that were less commonon normal chromosomes(16-44-13, 16-35-13, 16-33-13, and 16-29-13)were each associatedwith only one CF mutation. Several mutations were associated with more than one haplotype apparentlyas the result of slippage at one of the microsatellites IVS8CA, IVS17BTA, and IVS17BCA: AF508, G542X, N1303K, R553X, Q552X, 2869insG, L1077P, 7H, and R1162X (Table 3).
X
ABCC7 p.Leu1077Pro 8844213:85:357
status: NEW106 (1992) Dork et al. (1994a) Malone et al. (personal communication) Claustreset al. (1992) Ferec et al. (1992) Fanen et al. (1992) lvaschenko et al. (1991) T. Dork (personal communication) Dean et al. (1990) Dork et al. (1994a) Ferec et al. (1992) Bozon et al. (1994) Costes et al. (personal communication) Fanen et al. (1992) Audrezet et al. (personal communication) Zielenski et al. (1991a) Zielenski et al. (1991a) Granell et al. (1992) Highsmith et al. (1990) Mercier et al. (1993b) Vidaud et al. (1990) Fanen et al. (1992) Fanen et al. (1992) Dork et al. (1994b) (continued) HAPLOTYPESFOR 94 CF MUTATIONS TABLE2. CFTR HaplotvpesforDiallelic and Multiallelic DNA Markers for 94 CF Mutations"(Continued) ~~ ~ J44-GAIT- 8CA-17BTA- No. of TSU-TUB20 17BCA Mutation chromosomes % Normal Laboratory Reference 1-6-1-2 (9.1%) 1-6-2-2 (8.9%) 1-7-1-2 (3.4%) 1-7-2-2 (2.6%) 2-7-1-1 (1.2%) 2-7-2-2 (0.7%) 17-7-16 16-7-18 16-7-17 15-7-17 24-31-13 23-52-13 23-34-13 23-33-14 23-33-13 23-32-13 23-31-13 23-30-13 23-21-19 23-18-13 22-35-13 22-31-13 22-30-13 21-31-13 19-33-13 18-45-13 18-37-13 18-35-13 17-57-11 17-55-13 17-55-11 17-54-11 17-53-11 17-52-11 17-51-11 17-33-13 16-46-13 16-45-13 16-44-13 16-42-13 16-35-13 16-30-13 16-30-13 16-7-17 16-21-19 L107% L1077P 24ldelAT L719X A1507 3849+10kbC-T 2184insA 2991de132 G551D 1154insTC V520F R560T 4114ATA+lT 3667de14 435insA Q414X C225R Q39X N1303K R1162X H199Y G542X G542X w1204x R347H G542X AF50gb N1303K 2143delT 3849f 10kbC-T N1303K 681delC R347H A455E N1303K A120T 621+1 h T 574delA 1221delCT F311L R560K R553X R533X R553X Q552X R553X Q552X R116W R553X 1898+5 h T 3272-26A-G 1717-1hA 1342-2A-C A1507 2869insG 2869insG E92X 4374+1 h T 2183AA-G R117H 1609delCA I336K W1063X 1 1 1 1 6 1 3 1 1 22 17 1 1 1 1 1 1 1 1 1 1 1 1 1 17 1 1 4 157 7 1 2 2 1 1 2 2 1 9 1 1 1 1 1 1 6 1 1 1 2 1 3 2 1 3 1 1 1 4 2 4 1 1 - - 10.33 1.45 - - 0.48 1.45 - 0.24 1.45 0.24 - - - - 0.24 0.48 - - - - - - 0.49 0.48 - 0.24 0.24 0.24 - - - - - 0.72 0.24 0.72 - t h fP h b.fb,fP h b,fp.t t h b.fb.fp,h,t b.fb.fp,h,t t t t h b h h fP h fP fb b fP b.fb,fP,h.t fP fb b,fP,t b.fb,fp,h,t b.fb,h h h h,t t fb t b b b.fb.t fP fb fb tb h fP h h t t b h t h b b h h b,fb,h fP.h b h fP fP Bozon et al. (1994) Fanen et al. (1992) Dork et al. (1994a) Kerem et al. (1990) Dork et al. (1994~) Cutting et al. (1990) Kerem et al. (1990) lannuui et d.
X
ABCC7 p.Leu1077Pro 8844213:106:1249
status: NEW136 Other mutations with relative frequency of less than 0.7% are associated with more than one haplotype that should be the result of slippage at one or several microsatellite repeats (R553X, R334W, 1811+1.6kbA-+G, 711 + lG+T, Q552X, 2869insG, L1077P, R347H, and R1162X).
X
ABCC7 p.Leu1077Pro 8844213:136:241
status: NEW[hide] Cystic fibrosis mutation detection by hybridizatio... Hum Mutat. 1996;7(3):244-55. Cronin MT, Fucini RV, Kim SM, Masino RS, Wespi RM, Miyada CG
Cystic fibrosis mutation detection by hybridization to light-generated DNA probe arrays.
Hum Mutat. 1996;7(3):244-55., [PMID:8829658]
Abstract [show]
We have combined photochemistry and photolithography with solid-phase DNA synthesis chemistry to form a new technology that makes high density oligonucleotide probe array synthesis possible. Hybridization to these two-dimensional arrays containing hundreds or thousands of oligonucleotide probes provides a powerful DNA sequence analysis tool. Two types of light-generated DNA probe arrays have been used to test for a variety of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. One array, made up of 428 probes, was designed to scan through the length of CFTR exon 11 and identify differences from the wild type reference sequence. The second type of array contained 1480 probes chosen to detect known deletions, insertions, or base substitution mutations. The validity of the probe arrays was established by hybridizing them with fluorescently labeled control oligonucleotide targets. Characterized mutant CFTR genomic DNA samples were then used to further test probe array hybridization specificity. Finally, ten unknown patient samples were genotyped using the CFTR probe array assay. The genotype assignments were identical to those obtained by PCR product restriction fragment analysis. Our results show that light-generated DNA probe arrays are highly effective in analyzing complex mutation and polymorphism patterns in a relatively large gene such as CFTR.
Comments [show]
None has been submitted yet.
No. Sentence Comment
238 Cystic Fibrosis Mutation-Specific DNA Probe Array" Mutation Exon and column Tested Subarrayhow G85E R117H I148T 621 -+ l(G+T) 711 + 1(G+T) R334W R347H R347P 1078 delT A455E G480C Q493X A1507 F508C AF508 V520F G542X S549R(T-+ G) G551D Q552X R553X A559T R560T 1898 + l(G-,A) 2184 del A 2789 + 5(G+ A) R1066C L1077P Y1092X R1162X 3659 del C 1717-1(& A) 3272 - 26(A+ G) 3 4 4 in 4 in 5 7 7 7 7 9 10 10 10 10 10 10 in 10 11 11 11 11 11 11 11 in 12 13 in 14b in 17a 17b 17b 17b 19 19 * * * * * * * * * * * * * * * * * * * * * * * * * * * * 3849 + lOkb C-, T in 19 9,3 W1282X 20 994 3905insT 20 10.1 * N1303K 21 10,2 * * * "Row and column locations for each of the mutation specific,40 probe sets included in the specialized probe array design.
X
ABCC7 p.Leu1077Pro 8829658:238:306
status: NEW[hide] Correlation of sweat chloride concentration with c... J Pediatr. 1995 Nov;127(5):705-10. Wilschanski M, Zielenski J, Markiewicz D, Tsui LC, Corey M, Levison H, Durie PR
Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations.
J Pediatr. 1995 Nov;127(5):705-10., [PMID:7472820]
Abstract [show]
OBJECTIVE: To compare differences in epithelial chloride conductance according to class of mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. METHODS: We evaluated the relationship between the functional classes of CFTR mutations and chloride conductance using the first diagnostic sweat chloride concentration in a large cystic fibrosis (CF) population. RESULTS: There was no difference in sweat chloride value value between classes of CFTR mutations that produce no protein (class I), fail to reach the apical membrane because of defective processing (class II), or produce protein that fails to respond to cyclic adenosine monophosphate (class III). Those mutations that produce a cyclic adenosine monophosphate-responsive channel with reduced conductance (class IV) were associated with a significantly lower, intermediate sweat chloride value. However, patients with the mutations that cause reduced synthesis or partially defective processing of normal CFTR (class V) had sweat chloride concentrations similar to those in classes I to III. CONCLUSION: Studies of differences in chloride conductance between functional classes of CFTR mutations provide insight into phenotypic expression of the disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
43 Defined mutations (each mutation cited in references 8, 23, and 24; numerals in parentheses indicate number of patients): Nonsense mutations-----class I: Frameshift mutations---class I: Splice site mutations-class I: Missense mutations---class HI: Missense mutations---class IV: Partially defective processing---class V: Alternative spficing-----classV: R1162X (3), Y1092X (3), G542X (21), Q552X (2), Q493X (2), w1282x (2), E1104X (1), R553X (6), E585X (l), (all PI) 3659delC (5), 2184delA (4), 4010de14 (1), 556delA (1), 3002delG (1) 3905insT (1), 4016insT (3), 1154insTC (l), 441delA (1), 2184insA (2), 1078delT (1), 4326delTC (3) (all PI) I717-1G--~A (4), 621+lG--*T (10), 711+IG--~T (3), 875+1G-+C (2), 3120+IG-~A (1) (18 PI, 2 PS) G551D (25), N1303K (7), R560T (8), I148T (1), G85E (3), A559T (1), L1077P (2), T1234V (1), (47 PI, 1 PS) R117H (10), R347H (3), R347P (1), D614G (1), S1251N (2), (all PS) P574H (2), A455E (2), (all PS) 3272-26A-+G (4), 3849+10KbC---~T (2), 3120G-+A (1), (all PS) analysis, we further grouped the patients according to the molecular consequences conferred by the CFTR alleles.
X
ABCC7 p.Leu1077Pro 7472820:43:803
status: NEW[hide] A cluster of cystic fibrosis mutations in exon 17b... J Med Genet. 1994 Sep;31(9):731-4. Mercier B, Lissens W, Novelli G, Kalaydjieva L, de Arce M, Kapranov N, Canki Klain N, Estivill X, Palacio A, Cashman S, et al.
A cluster of cystic fibrosis mutations in exon 17b of the CFTR gene: a site for rare mutations.
J Med Genet. 1994 Sep;31(9):731-4., [PMID:7529319]
Abstract [show]
Intensive screening has improved our understanding of the profile of mutations in the CFTR gene in which more than 400 mutations have been detected to date. In collaboration with several European laboratories we are involved in such analysis. We have identified 14 new mutations in exon 17b of CFTR, having analysed 780 CF chromosomes, and have compared the frequency of mutations in this exon with that of other regions of the CFTR gene. The results obtained indicate an accumulation of mutations, not only in regions encoding the two nucleotide binding folds, but also in those encoding transmembrane domains of the CFTR gene, in particular exon 17b.
Comments [show]
None has been submitted yet.
No. Sentence Comment
19 Most of these are missense mutations and as no functional test has been 732 Table 1 Mutations identified in exon 17b of the CFTR gene Mutation Nucleotide Modificationl Ethnic Rcferencesposition ongini (No) 3271-1 G--A 3272-1 G-A Belgian (1) 11F1052V 3286 T-G Belgian (1) 11HI054D 3292 CG French (1) 13G1061R 3313 G-C French (1) 113320 Dup 3320 Duplication of Breton (1) 6 CTATG R1066C 3328 CT French (1) 14 R1066L R1066H A1067T G1069R R1070Q 3359 del CT L1077P H1085R W1089X Y1092X M1IOIR 3329 3329 3331 3337 3341 G-T G-+A G-A G,A G--A 3359 3362 3386 3398 3408 3434 del CT T--C A-.G G-+A C +A T--G Spanish (5) French (1) Breton (1) Breton (1) Bulgarian (1) Bulgarian (3) Rumanian (1) Albanian (1) French (1) Italian (1) French (1) Spanish (1) French (4) Turkish (1I) * Bozon et al, personal communication.
X
ABCC7 p.Leu1077Pro 7529319:19:455
status: NEW[hide] Sensitivity of single-strand conformation polymorp... Hum Mol Genet. 1994 May;3(5):801-7. Ravnik-Glavac M, Glavac D, Dean M
Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene.
Hum Mol Genet. 1994 May;3(5):801-7., [PMID:7521710]
Abstract [show]
The gene responsible for cystic fibrosis (CF) contains 27 coding exons and more than 300 independent mutations have been identified. An efficient and optimized strategy is required to identify additional mutations and/or to screen patient samples for the presence of known mutations. We have tested several different conditions for performing single-stranded conformation polymorphism (SSCP) analysis in order to determine the efficiency of the method and to identify the optimum conditions for mutation detection. Each exon and corresponding exon boundaries were amplified. A panel of 134 known CF mutations were used to test the efficiency of detection of mutations. The SSCP conditions were varied by altering the percentage and cross-linking of the acrylamide, employing MDE (an acrylamide substitute), and by adding sucrose and glycerol. The presence of heteroduplexes could be detected on most gels and in some cases contributed to the ability to distinguish certain mutations. Each analysis condition detected 75-98% of the mutations, and all of the mutations could be detected by at least one condition. Therefore, an optimized SSCP analysis can be used to efficiently screen for mutations in a large gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
121 1078delT (35), L327R (Ravnik-Glavac a al., unpublished), R334W (36), D36K (31), R347L (26), R347P (14), A349V (26), R352Q (30), 1221delCT (34); Exon 8: W401X (31), 1342-1G-C (25); Exon 9: G458V (37), 1525 -1G-A (38); Exon 10: S492F (34), Q493X (39), 1609delCA (40,17), deltaI507 (39,41), deltaF5O8 (3), 1717-1G-A (39,42); Exon 11: G542X (39), S549N, G551D, R553X (43), R553Q (44), A559T (43), R560K (Fine et al., pers. comm.), R560T (39); Exon 12: Y563N (39), 1833delT (Schwartz et al., pers. comm.), P574H (39), 1898 + 1G-C (31), 1898+3A-G (Ferrari et al., pers. comm.); Exon 13: G628R(G-C) (31), Q685X (Firec et al., pers. comm.), K716X (26), L719X (Dork etal., pers. comm.), 2522insC (15), 2556insAT (45), E827X (34); Exon 14a: E831X (Ffrec et al., pers. comm.), R851X (29), 2721delll (31), C866Y (Audrezet et al., pers. comm.); Exon 14b: 2789+5G-A (Highsmith et al., pers. comm.); Exon 15: 2907denT (21), 2991del32 (Dark and TQmmler, pers. comm.), G970R (31); Exon 16: S977P, 3100insA (D6rk et al., pers. comm.); Exon 17a: I1005R (Dork and TQmmler, pers. comm.), 3272-1G-A (46); Exon 17b: H1054D (F6rec et al., pers. comm.), G1061R (Fdrec et al., pers. comm.), 332Oins5, R1066H, A1067T (34), R1066L (Fe"rec etal., pers. comm.), R1070Q (46), E1104X (Zielenski el al., pers. comm.), 3359delCT (46), L1077P (Bozon « a/., pers. comm.), H1085R (46), Y1092X (Bozon etal., pers. comm.), W1098R, M1101K (Zielenski et al., pers. comm.); Exon 18: D1152H (Highsmith et al., pers. comm.); Exon 19:R1162X (36), 3659delC (39), 3662delA (25), 3667del4 (Chillon et al., pers. comm.), 3737ddA (35), 3821ddT (15), I1234V (35), S1235R (31), Q1238X (26), 3849G-A (25), 385O-3T-G (38); Exon20:3860ins31 (Chillon etal., pers. comm.), S1255X (47), 3898insC (26), 3905insT (Malik et al., pers. comm.), D127ON (48), W1282X (49), Q1291R (Dork et al., pers. comm.), Exon 21: N1303H (35), N13O3K (50), W1316X (43); Exon 22: 11328L/4116delA (Dork and TQmmler, pers. comm.), E1371X (25); Exon 23: 4374+ 1G-T (38); Exon 24: 4382delA (Claustres et al., pers. comm.).
X
ABCC7 p.Leu1077Pro 7521710:121:1301
status: NEW[hide] Exon 9 of the CFTR gene: splice site haplotypes an... Hum Genet. 1994 Jan;93(1):67-73. Dork T, Fislage R, Neumann T, Wulf B, Tummler B
Exon 9 of the CFTR gene: splice site haplotypes and cystic fibrosis mutations.
Hum Genet. 1994 Jan;93(1):67-73., [PMID:7505767]
Abstract [show]
The alternatively spliced exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene codes for the initial part of the amino-terminal nucleotide-binding fold of CFTR. A unique feature of the acceptor splice site preceding this exon is a variable length polymorphism within the polypyrimidine tract influencing the extent of exon 9 skipping in CFTR mRNA. We investigated this repeat for its relationship to CFTR mutations and intragenic markers on 200 chromosomes from German patients with cystic fibrosis (CF). Four frequent length variations were strongly associated with the four predominant haplotypes previously defined by intragenic marker dimorphisms. One of these alleles displayed absolute linkage disequilibrium to the major CF mutation delta F508. Other frequent CFTR mutations were linked to one particular splice site haplotype indicating that differential exon 9 skipping contributes little to the clinical heterogeneity among CF patients with an identical mutation. We also identified a novel missense mutation (V456F) and a novel nonsense mutation (Q414X) within the coding region of exon 9. The missense mutation V456F adjacent to Walker motif A was present in a pancreas-sufficient CF patient. In contrast, the pancreas-insufficient Q414X/delta F508 compound heterozygote suffered from a severe form of the disease, indicating that alternative splicing of exon 9 does not overcome the deleterious effect of a stop codon with this exon.
Comments [show]
None has been submitted yet.
No. Sentence Comment
61 Association of (TG),Tm alleles with CFTR mutations (TG),Tm CFTR mutationsa (TG)llT7 E60X, E92X, R117C, 1078delT, R347P, R553X, 2184delA, 2184insA, I1005R, 3272-26A--~G, L1059X, Y1092X, R1162X, 3659delC, 3850-3T-oG, S1251N Q39X, R117H, Q414X, V456F, AI507, 1717-1G--~A, G551D, 2043delG, 2183AA---~G, 2184insA, 2789 + 5 G---~A,3272-26A---~G, R1066C, L1077P, 3849 + l0 kB C---~T,4374 + 1 G---~T 621 + 1 G---~T,R334W, A455E, AF508, G542X, 2143delT, 3849 + 10 kB C---~T,NI303K 405 + 1 G----~A,1342-2 A---~C,R553X (TG)IoT7 (TG)10T9 (TG)12T7 a References are compiled in Tsui (1992), except for 2143delT (Dtrk et al. 1992b), 3850-3 T---~G,4374 + 1 G---~T,1342-2 A---~C (Dtrk et al. 1993a, b), Q414X, V456F (this work), 405 + 1 G---~A, E92X, R117C, 2184delA, 2184insA, I1005R, L1059X (T.
X
ABCC7 p.Leu1077Pro 7505767:61:348
status: NEW[hide] Direct sequencing of the complete CFTR gene: the m... Hum Mol Genet. 1993 Oct;2(10):1551-6. Cheadle JP, Goodchild MC, Meredith AL
Direct sequencing of the complete CFTR gene: the molecular characterisation of 99.5% of CF chromosomes in Wales.
Hum Mol Genet. 1993 Oct;2(10):1551-6., [PMID:7505689]
Abstract [show]
We have performed an extensive mutation analysis on 184 CF families in Wales. In our previous study, mutations on 329/369 CF chromosomes were identified after screening for delta F508 and sixteen other mutations. To identify the mutations on the remaining 40 uncharacterized CF chromosomes, we have carried out direct DNA sequencing over the complete coding region, intron splice sites, and part of the promoter region of the CFTR gene. During this study we have designed a set of internal sequencing primers which allow clear sequencing through the aforementioned regions. Sequence analysis revealed 15 further mutations (4 of which are novel), and 10 previously described polymorphisms. In total, we have identified 29 mutations, the distribution of which provides further insight into the functional domains of the CFTR protein. We have characterised 99.5% of the CF chromosomes (365/367, one sample degraded). In order to ascertain accurate frequency data for the Welsh population, CF families with at least 3 'Welsh' grandparents were strictly regarded as 'Welsh'. Of these 91 families, delta F508 accounts for 71.6%, 621 + 1G-->T 6.6% and 1898 + 1G-->A 5.5%. The implications for CF population screening in Wales are discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
34 6'-CTGGATCCAAATGAGCACTGGG-3' 23I6' (PCR)b 23I3' (PCR)b 24IS' (PCR)b 248S': S'-CAAAGTGCGGCAGTACGATTCC-3' HAPLOTYPE LOCATION Exon Exon Exon Exon Exon Exon Exon Intron Exon Exon 1 3 8A 8B 7 11 11 12 13 13 Exon 14A Intron Exon Exon 17A 17B 19 In t ror 1 ^ Exon 21 MUTATION M1V E60X O220X 977 imA 107S delT SS49N 8S49R 1B98«1 0-A 2184 dsIA 2184 InsA W846X1 3272-26 A>Q L1077P 3069 dtIC 1A4Q«10khC>T O O ^ W lUHDv* 1 401B IntT AMINO ACID ALTERATION TRANSLATION 1N1T1 AT 10 N MUTATION Qlu>8top I t 00 Oln'Stop i t 2 : o FRAME8HIFT FRAMtBHIFT Skr'Akn 11 540 8«r>Arg it 549 8PLICINO M U TAT 10 N FHAMESHIFT FRAME8HIFT Trp>8t0p kt 146 • PUCIHO.
X
ABCC7 p.Leu1077Pro 7505689:34:369
status: NEW64 17b 18 19 20 21 22 23 24 M1V E60X O220X | R117H G85E 621*1G>T 977msA AF508 I AI607 1898*1G>A G642X 2184delA 1078delT I I 8549N 2184insA I I 1154insTC S549R G651D I R553X I R560T I 1717-1G>A W846X1 3272-26A>G L1077P R12B3U 3669delC 4 016in aT I N1303K 3849*10kbC>T Figure 2.
X
ABCC7 p.Leu1077Pro 7505689:64:208
status: NEW74 Frequencies of mutations in 183 CF families m MUTATION delta FSOB 621«1<3>T 18aS«1Q>A Q661O Q642X Q85E R663X 1078delT R1283M 3669delC R117H delta I607 N1303K 1717-1Q>A R660T M1V E80X Q220X S77lnaA 1154inaTC 8S49N 8649R 2184dtlA 2184ineA W846X1 3272-26A>Q L1077P 3849>10kbC>T 4018ln«T Total Total TOTAL Welsh 131 12 10 4 5 2 4 3 1 1 2 1 2 1 1 1 1 182 183 71.8% 6.6% 5.5% 2.2% 2.7% 1.1% 2.2% 1.6% 0.5% 0.6% 1.1% 0.6% 1.1% 0.6% 0.6% 0.5% 0.5% 99.6% 0 6% Other 1 14 6 7 7 4 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 167 168 72.2% 3.2% 4.4% 4.4% 2.6% 2.6% 1.3% 0.6% 0.6% 0.8% 0.8% 0.8% 0.6% 0.6% 0.6% 0.6% 0.6% 0.8% 0.8% 0.6% 0.8% 99.4% 0 6% Undefined 22 2 1 1 28 26 84.6% 7.7% 3.8% 3.8% 100% Wales TOTAL 267 19 18 11 9 6 4 4 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 366 2 3 6 7 72.8% 5.2% 4.9% 3.0% 2.6% 1 4% 1.1% 1.1% 0.8% 0.6% 0.6% 0.6% 0.6% 0.6% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 09 6% 0 6% Table 5.
X
ABCC7 p.Leu1077Pro 7505689:74:265
status: NEW[hide] A 96-well formatted method for exon and exon/intro... Anal Biochem. 2006 Jun 15;353(2):226-35. Epub 2006 Apr 5. Lucarelli M, Narzi L, Piergentili R, Ferraguti G, Grandoni F, Quattrucci S, Strom R
A 96-well formatted method for exon and exon/intron boundary full sequencing of the CFTR gene.
Anal Biochem. 2006 Jun 15;353(2):226-35. Epub 2006 Apr 5., [PMID:16635477]
Abstract [show]
Full genotypic characterization of subjects affected by cystic fibrosis (CF) is essential for the definition of the genotype-phenotype correlation as well as for the enhancement of the diagnostic and prognostic value of the genetic investigation. High-sensitivity diagnostic methods, capable of full scanning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, are needed to enhance the significance of these genetic assays. A method for extensive sequencing of the CFTR gene was optimized. This method was applied to subjects clinically positive for CF and to controls from the general population of central Italy as well as to a single subject heterozygous for a mild mutation and with an uncertain diagnosis. Some points that are crucial for the optimization of the method emerged: a 96-well format, primer project and purification, and amplicon purification. The optimized method displayed a high degree of diagnostic sensitivity; we identified a subset of 13 CFTR mutations that greatly enhanced the diagnostic sensitivity of common methods of mutational analysis. A novel G1244R disease causing mutation, leading to a CF phenotype with pancreatic sufficiency but early onset of pulmonary involvement, was detected in the subject with an uncertain diagnosis. Some discrepancies between our results and previously published CFTR sequence were found.
Comments [show]
None has been submitted yet.
No. Sentence Comment
139 In this work, we found a limited subset of 13 mutations (not included in the PCR/OLA/SCS assay) in 7 CFTR exons, significantly improving the sensitivity of standard assays: D110H, R117C, and H139R (exon 4); R334L, T338I, and A349V (exon 7); S549R(A->C) (exon 11); Y849X (exon 14a); L997F (exon 17a); L1065P, R1066C, and L1077P (exon 17b); and G1244E (exon 20).
X
ABCC7 p.Leu1077Pro 16635477:139:320
status: NEW[hide] Cystic fibrosis transmembrane conductance regulato... PLoS One. 2013 Apr 17;8(4):e61176. doi: 10.1371/journal.pone.0061176. Print 2013. Schippa S, Iebba V, Santangelo F, Gagliardi A, De Biase RV, Stamato A, Bertasi S, Lucarelli M, Conte MP, Quattrucci S
Cystic fibrosis transmembrane conductance regulator (CFTR) allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients.
PLoS One. 2013 Apr 17;8(4):e61176. doi: 10.1371/journal.pone.0061176. Print 2013., [PMID:23613805]
Abstract [show]
INTRODUCTION: In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF). CFTR mutations (F508del is the most common) lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age. METHODS: Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure. RESULTS: Patients were classified by two different criteria: 1) presence/absence of F508del mutation; 2) disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme) were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum) were reduced. CONCLUSIONS: This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a 'systemic disease', linking the lung and the gut in a joined axis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
37 Patient Sex Age (years) CFTR allele, = CFTR allele, R Criterion I(a) Criterion II (1 = severe, 0 = mild)(b) Pancreatic status(d) FEV1% BMI 1 M 17 F508del M1V 2 (1) 1 65 17.91 2 F 23 F508del Y569D 2 (1) 0 97 18.66 3 (s1)(c) F 20 P1013L F508del 2 (0) 0 87 18.67 4 M 11 F508del L997F (without R117L) 2 0 0 110 21.33 5 (s1)(c) M 11 P1013L F508del 2 (0) 0 100 23.14 6 M 8 R553X F508del 2 1 0 80 15.87 7 M 3 F508del unknown 2 (0) 0 nd nd 8 F 33 F508del F508del 1 1 1 73 18.61 9 M 10 F508del L1077P 2 1 0 94 19.79 10 M 9 F508del G542X 2 1 1 100 16.00 11 F 9 4167delCTAAGCC L1065P 3 nd 1 76 14.57 12 F 14 R117C (without (TG)12T5) F508del 2 0 0 94 18.44 13 F 11 F508del 991del5 2 1 1 109 17.80 14 M 42 (TG)12T5 F508del 2 0 0 106 23.78 15 (s2)(c) M 9 F508del F508del 1 1 1 82 15.45 16 M 10 F508del R347P 2 (0) 0 89 15.91 17 (s2)(c) F 6 F508del F508del 1 1 1 110 15.20 18 (s3)(c) M 39 2789+5G.A N1303K 3 nd 0 105 19.33 19 (s3)(c) F 41 2789+5G.A N1303K 3 nd 0 80 19.47 20 F 26 N1303K W1282X 3 nd 1 90 19.57 21 M 7 CFTRdele2,3 (21 kb) N1303K 3 nd 1 107 12.85 22 F 9 F508del L997F (without R117L) 2 0 0 113 25.21 23 M 7 P5L W1282X 3 nd 0 89 22.31 24 M 9 2789+5G.A F508del 2 (1) 1 97 15.60 25 F 2 F508del F508del 1 1 1 nd nd 26 F 32 N1303K N1303K 3 nd 1 107 21.22 27 M 14 L1065R T338I 3 nd 0 116 21.50 28 M 12 711+3A.G S549R(A.C) 3 nd 0 97 20.00 29 M 13 unknown R117H (without (TG)12T5) 3 nd 0 104 19.36 30 M 14 F508del G542X 2 1 1 84 21.87 31 F 13 F508del F508del 1 1 1 85 18.00 32 F 41 2789+5G.A N1303K 3 nd 1 84 21.08 33 F 21 L1065P F508del 2 (0) 0 62 18.29 34 F 50 D1152H F508del 2 (0) 0 63 23.74 35 M 29 F508del 2790-2A.G 2 (1) 0 92 24.46 36 F 45 unknown W1282X 3 nd 0 69 23.42 a (Hm = 1; Ht = 2; N = 3).
X
ABCC7 p.Leu1077Pro 23613805:37:485
status: NEW62 Class I, II or III: G542X, W1282X, F508del, N1303K, L1065P, L1077P, Y569D, S549R(A.C).
X
ABCC7 p.Leu1077Pro 23613805:62:60
status: NEW[hide] Effect of ivacaftor on CFTR forms with missense mu... J Cyst Fibros. 2014 Jan;13(1):29-36. doi: 10.1016/j.jcf.2013.06.008. Epub 2013 Jul 23. Van Goor F, Yu H, Burton B, Hoffman BJ
Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function.
J Cyst Fibros. 2014 Jan;13(1):29-36. doi: 10.1016/j.jcf.2013.06.008. Epub 2013 Jul 23., [PMID:23891399]
Abstract [show]
BACKGROUND: Ivacaftor (KALYDECO, VX-770) is a CFTR potentiator that increased CFTR channel activity and improved lung function in patients age 6 years and older with CF who have the G551D-CFTR gating mutation. The aim of this in vitro study was to evaluate the effect of ivacaftor on mutant CFTR protein forms with defects in protein processing and/or channel function. METHODS: The effect of ivacaftor on CFTR function was tested in electrophysiological studies using a panel of Fischer rat thyroid (FRT) cells expressing 54 missense CFTR mutations that cause defects in the amount or function of CFTR at the cell surface. RESULTS: Ivacaftor potentiated multiple mutant CFTR protein forms that produce functional CFTR at the cell surface. These included mutant CFTR forms with mild defects in CFTR processing or mild defects in CFTR channel conductance. CONCLUSIONS: These in vitro data indicated that ivacaftor is a broad acting CFTR potentiator and could be used to help stratify patients with CF who have different CFTR genotypes for studies investigating the potential clinical benefit of ivacaftor.
Comments [show]
None has been submitted yet.
No. Sentence Comment
44 None M1V A46D E56K P67L R74W G85E E92K D110E D110H R117C R117H E193K L206W R334W I336K T338I S341P R347H R347P R352Q A455E L467P S492F F508del V520F A559T R560S R560T A561E Y569D D579G R668C L927P S945L S977F L997F F1052V H1054D K1060T L1065P R1066C R1066H R1066M A1067T R1070Q R1070W F1074L L1077P H1085R M1101K D1152H S1235R D1270N N1303K 0 100 200 300 400 500 600 * * * CFTR Mutation mRNA (% Normal CFTR) Fig. 1.
X
ABCC7 p.Leu1077Pro 23891399:44:292
status: NEW64 Mutant CFTR form CFTR processing Mature/total % Normal CFTR Normal 0.89 &#b1; 0.01 100.0 &#b1; 18.5 G85E -0.05 &#b1; 0.04 -1.0 &#b1; 0.9 R560S 0.00 &#b1; 0.00 0.0 &#b1; 0.0 R1066C 0.02 &#b1; 0.01 0.0 &#b1; 0.0 S492F 0.00 &#b1; 0.00 0.1 &#b1; 0.1 R560T 0.01 &#b1; 0.01 0.2 &#b1; 0.1 V520F 0.05 &#b1; 0.03 0.3 &#b1; 0.2 M1101K 0.05 &#b1; 0.03 0.3 &#b1; 0.1 A561E 0.08 &#b1; 0.04 0.5 &#b1; 0.2 R1066M 0.02 &#b1; 0.02 0.5 &#b1; 0.4 N1303K 0.02 &#b1; 0.02 0.5 &#b1; 0.3 A559T 0.16 &#b1; 0.09 0.6 &#b1; 0.2 M1V 0.06 &#b1; 0.06 0.7 &#b1; 0.6 Y569D 0.11 &#b1; 0.04 0.6 &#b1; 0.2 R1066H 0.08 &#b1; 0.02a 0.7 &#b1; 0.2a L1065P 0.05 &#b1; 0.05 1.0 &#b1; 0.8 L467P 0.10 &#b1; 0.07 1.2 &#b1; 0.8 L1077P 0.08 &#b1; 0.04 1.5 &#b1; 0.6 A46D 0.21 &#b1; 0.08 1.9 &#b1; 0.5a E92K 0.06 &#b1; 0.05 1.9 &#b1; 1.3 H1054D 0.09 &#b1; 0.04 1.9 &#b1; 0.8 F508del 0.09 &#b1; 0.02a 2.3 &#b1; 0.5a H1085R 0.06 &#b1; 0.01a 3.0 &#b1; 0.7a I336K 0.42 &#b1; 0.05a 6.5 &#b1; 0.7a L206W 0.35 &#b1; 0.10a 6.8 &#b1; 1.7a F1074L 0.52 &#b1; 0.03a 10.9 &#b1; 0.6a A455E 0.26 &#b1; 0.10a 11.5 &#b1; 2.5a E56K 0.29 &#b1; 0.04a 12.2 &#b1; 1.5a R347P 0.48 &#b1; 0.04a 14.6 &#b1; 1.8a R1070W 0.61 &#b1; 0.04a 16.3 &#b1; 0.6a P67L 0.36 &#b1; 0.04a 28.4 &#b1; 6.8a R1070Q 0.90 &#b1; 0.01a 29.5 &#b1; 1.4a S977F 0.97 &#b1; 0.01a 37.3 &#b1; 2.4a A1067T 0.78 &#b1; 0.03a 38.6 &#b1; 6.1a D579G 0.72 &#b1; 0.02a 39.3 &#b1; 3.1a D1270N 1.00 &#b1; 0.00a,c 40.7 &#b1; 1.2a S945L 0.65 &#b1; 0.04a 42.4 &#b1; 8.9a L927P 0.89 &#b1; 0.01a,b 43.5 &#b1; 2.5a,b R117C 0.87 &#b1; 0.02a,b 49.1 &#b1; 2.9a,b T338I 0.93 &#b1; 0.03a,b 54.2 &#b1; 3.7a,b L997F 0.90 &#b1; 0.04a,b 59.8 &#b1; 10.4a,b D110H 0.97 &#b1; 0.01a,b 60.6 &#b1; 1.5a,b S341P 0.79 &#b1; 0.02a 65.0 &#b1; 4.9a,b R668C 0.94 &#b1; 0.03a,b 68.5 &#b1; 1.9a,b R74W 0.78 &#b1; 0.01a 69.0 &#b1; 2.7a,b D110E 0.92 &#b1; 0.05a,b 87.5 &#b1; 9.5a,b R334W 0.91 &#b1; 0.05a,b 97.6 &#b1; 10.0a,b K1060T 0.87 &#b1; 0.02a,b 109.9 &#b1; 28.0a,b R347H 0.96 &#b1; 0.02a,c 120.7 &#b1; 2.8a,b S1235R 0.96 &#b1; 0.00a,c 139.0 &#b1; 9.0a,b E193K 0.84 &#b1; 0.02a,b 143.0 &#b1; 17.1a,b R117H 0.86 &#b1; 0.01a,b 164.5 &#b1; 34.2a,b R352Q 0.98 &#b1; 0.01a,b 179.9 &#b1; 8.0a,c F1052V 0.90 &#b1; 0.01a,b 189.9 &#b1; 33.1a,b D1152H 0.96 &#b1; 0.02a,c 312.0 &#b1; 45.5a,b Notes to Table 1: Quantification of steady-state CFTR maturation expressed as the mean (&#b1;SEM; n = 5-9) ratio of mature CFTR to total CFTR (immature plus mature) or level of mature mutant CFTR relative to mature normal-CFTR (% normal CFTR) in FRT cells individually expressing CFTR mutations.
X
ABCC7 p.Leu1077Pro 23891399:64:683
status: NEW74 Because the level of CFTR mRNA was similar across the panel of cell lines tested, the range in baseline activity and ivacaftor response likely reflects the severity of the functional defect and/or the 0 50 100 150 200 S341P R347P L467P S492F A559T A561E Y569D L1065P R1066C R1066M L1077P M1101K N1303K R560S L927P R560T H1085R V520F E92K M1V F508del H1054D I336K A46D G85E R334W T338I R1066H R352Q R117C L206W R347H S977F S945L A455E F1074L E56K P67L R1070W D110H D579G D110E R1070Q L997F A1067T E193K R117H R74W K1060T R668C D1270N D1152H S1235R F1052V Baseline With ivacaftor * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Chloride transport (% Normal) Mutant CFTR form 0 100 200 300 400 S341P R347P L467P S492F A559T A561E Y569D L1065P R1066C R1066M L1077P M1101K N1303K R560S L927P R560T H1085R V520F E92K M1V F508del H1054D I336K A46D G85E R334W T338I R1066H R352Q R117C L206W R347H S977F S945L A455E F1074L P67L E56K R1070W D110H D579G D110E R1070Q L997F A1067T E193K R117H R74W K1060T R668C D1270N D1152H S1235R F1052V * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Mature CFTR (% Normal) Mutant CFTR form A B Fig. 2.
X
ABCC7 p.Leu1077Pro 23891399:74:281
status: NEWX
ABCC7 p.Leu1077Pro 23891399:74:774
status: NEW82 Mutation Patientsa Chloride transport (bc;A/cm2 ) Chloride transport (% normal) EC50 Baseline With ivacaftor Baseline With ivacaftor Fold increase over baselineb Normal 204.5 &#b1; 33.3 301.3 &#b1; 33.8c 100.0 &#b1; 16.3 147.3 &#b1; 16.5c 1.5 266 &#b1; 42 G551D 1282 1.5 &#b1; 0.7 113.2 &#b1; 13.0c 1.0 &#b1; 0.5 55.3 &#b1; 6.3c 55.3 312 &#b1; 73 F1052V 12 177.3 &#b1; 13.7 410.2 &#b1; 11.3c 86.7 &#b1; 6.7 200.7 &#b1; 5.6c 2.3 177 &#b1; 14 S1235R ND 160.6 &#b1; 25.7 352.1 &#b1; 43.4c 78.5 &#b1; 12.6 172.2 &#b1; 21.2c 2.2 282 &#b1; 104 D1152H 185 117.3 &#b1; 23.0 282.7 &#b1; 46.9c 57.4 &#b1; 11.2 138.2 &#b1; 22.9c 2.4 178 &#b1; 67 D1270N 32 109.5 &#b1; 20.5 209.5 &#b1; 27.4c 53.6 &#b1; 10.0 102.4 &#b1; 13.4c 1.9 254 &#b1; 56 R668C 45 99.0 &#b1; 9.4 217.6 &#b1; 11.7c 48.4 &#b1; 4.6 106.4 &#b1; 5.7c 2.2 517 &#b1; 105 K1060T ND 89.0 &#b1; 9.8 236.4 &#b1; 20.3c 43.5 &#b1; 4.8 115.6 &#b1; 9.9c 2.7 131 &#b1; 73 R74W 25 86.8 &#b1; 26.9 199.1 &#b1; 16.8c 42.5 &#b1; 13.2 97.3 &#b1; 8.2c 2.3 162 &#b1; 17 R117H 739 67.2 &#b1; 13.3 274.1 &#b1; 32.2c 32.9 &#b1; 6.5 134.0 &#b1; 15.7c 4.1 151 &#b1; 14 E193K ND 62.2 &#b1; 9.8 379.1 &#b1; 1.1c 30.4 &#b1; 4.8 185.4 &#b1; 1.0c 6.1 240 &#b1; 20 A1067T ND 55.9 &#b1; 3.2 164.0 &#b1; 9.7c 27.3 &#b1; 1.6 80.2 &#b1; 4.7c 2.9 317 &#b1; 214 L997F 27 43.7 &#b1; 3.2 145.5 &#b1; 4.0c 21.4 &#b1; 1.6 71.2 &#b1; 2.0c 3.3 162 &#b1; 12 R1070Q 15 42.0 &#b1; 0.8 67.3 &#b1; 2.9c 20.6 &#b1; 0.4 32.9 &#b1; 1.4c 1.6 164 &#b1; 20 D110E ND 23.3 &#b1; 4.7 96.4 &#b1; 15.6c 11.4 &#b1; 2.3 47.1 &#b1; 7.6c 4.1 213 &#b1; 51 D579G 21 21.5 &#b1; 4.1 192.0 &#b1; 18.5c 10.5 &#b1; 2.0 93.9 &#b1; 9.0c 8.9 239 &#b1; 48 D110H 30 18.5 &#b1; 2.2 116.7 &#b1; 11.3c 9.1 &#b1; 1.1 57.1 &#b1; 5.5c 6.2 249 &#b1; 59 R1070W 13 16.6 &#b1; 2.6 102.1 &#b1; 3.1c 8.1 &#b1; 1.3 49.9 &#b1; 1.5c 6.2 158 &#b1; 48 P67L 53 16.0 &#b1; 6.7 88.7 &#b1; 15.7c 7.8 &#b1; 3.3 43.4 &#b1; 7.7c 5.6 195 &#b1; 40 E56K ND 15.8 &#b1; 3.1 63.6 &#b1; 4.4c 7.7 &#b1; 1.5 31.1 &#b1; 2.2c 4.0 123 &#b1; 33 F1074L ND 14.0 &#b1; 3.4 43.5 &#b1; 5.4c 6.9 &#b1; 1.6 21.3 &#b1; 2.6c 3.1 141 &#b1; 19 A455E 120 12.9 &#b1; 2.6 36.4 &#b1; 2.5c 6.3 &#b1; 1.2 17.8 &#b1; 1.2c 2.8 170 &#b1; 44 S945L 63 12.3 &#b1; 3.9 154.9 &#b1; 47.6c 6.0 &#b1; 1.9 75.8 &#b1; 23.3c 12.6 181 &#b1; 36 S977F 9 11.3 &#b1; 6.2 42.5 &#b1; 19.1c 5.5 &#b1; 3.0 20.8 &#b1; 9.3c 3.8 283 &#b1; 36 R347H 65 10.9 &#b1; 3.3 106.3 &#b1; 7.6c 5.3 &#b1; 1.6 52.0 &#b1; 3.7c 9.8 280 &#b1; 35 L206W 81 10.3 &#b1; 1.7 36.4 &#b1; 2.8c 5.0 &#b1; 0.8 17.8 &#b1; 1.4c 3.6 101 &#b1; 13 R117C 61 5.8 &#b1; 1.5 33.7 &#b1; 7.8c 2.9 &#b1; 0.7 16.5 &#b1; 3.8c 5.7 380 &#b1; 136 R352Q 46 5.5 &#b1; 1.0 84.5 &#b1; 7.8c 2.7 &#b1; 0.5 41.3 &#b1; 3.8c 15.2 287 &#b1; 75 R1066H 29 3.0 &#b1; 0.3 8.0 &#b1; 0.8c 1.5 &#b1; 0.1 3.9 &#b1; 0.4c 2.6 390 &#b1; 179 T338I 54 2.9 &#b1; 0.8 16.1 &#b1; 2.4c 1.4 &#b1; 0.4 7.9 &#b1; 1.2c 5.6 334 &#b1; 38 R334W 150 2.6 &#b1; 0.5 10.0 &#b1; 1.4c 1.3 &#b1; 0.2 4.9 &#b1; 0.7c 3.8 259 &#b1; 103 G85E 262 1.6 &#b1; 1.0 1.5 &#b1; 1.2 0.8 &#b1; 0.5 0.7 &#b1; 0.6 NS NS A46D ND 2.0 &#b1; 0.6 1.1 &#b1; 1.1 1.0 &#b1; 0.3 0.5 &#b1; 0.6 NS NS I336K 29 1.8 &#b1; 0.2 7.4 &#b1; 0.1c 0.9 &#b1; 0.1 3.6 &#b1; 0.1c 4 735 &#b1; 204 H1054D ND 1.7 &#b1; 0.3 8.7 &#b1; 0.3c 0.8 &#b1; 0.1 4.2 &#b1; 0.1c 5.3 187 &#b1; 20 F508del 29,018 0.8 &#b1; 0.6 12.1 &#b1; 1.7c 0.4 &#b1; 0.3 5.9 &#b1; 0.8c 14.8 129 &#b1; 38 M1V 9 0.7 &#b1; 1.4 6.5 &#b1; 1.9c 0.4 &#b1; 0.7 3.2 &#b1; 0.9c 8.0 183 &#b1; 85 E92K 14 0.6 &#b1; 0.2 4.3 &#b1; 0.8c 0.3 &#b1; 0.1 2.1 &#b1; 0.4c 7.0 198 &#b1; 46 V520F 58 0.4 &#b1; 0.2 0.5 &#b1; 0.2 0.2 &#b1; 0.1 0.2 &#b1; 0.1 NS NS H1085R ND 0.3 &#b1; 0.2 2.1 &#b1; 0.4 0.2 &#b1; 0.1 1.0 &#b1; 0.2 NS NS R560T 180 0.3 &#b1; 0.3 0.5 &#b1; 0.5 0.1 &#b1; 0.1 0.2 &#b1; 0.2 NS NS L927P 15 0.2 &#b1; 0.1 10.7 &#b1; 1.7c 0.1 &#b1; 0.1 5.2 &#b1; 0.8c 52.0 313 &#b1; 66 R560S ND 0.0 &#b1; 0.1 -0.2 &#b1; 0.2 0.0 &#b1; 0.0 -0.1 &#b1; 0.1 NS NS N1303K 1161 0.0 &#b1; 0.0 1.7 &#b1; 0.3 0.0 &#b1; 0.0 0.8 &#b1; 0.2 NS NS M1101K 79 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS L1077P 42 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS R1066M ND 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS R1066C 100 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS L1065P 25 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS Y569D 9 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS A561E ND 0.0 &#b1; 0.1 0.0 &#b1; 0.1 0.0 &#b1; 0.0 0.0 &#b1; 0.1 NS NS A559T 43 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS S492F 16 0.0 &#b1; 0.0 1.7 &#b1; 1.2 0.0 &#b1; 0.0 0.8 &#b1; 0.6 NS NS L467P 16 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS R347P 214 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 0.0 &#b1; 0.0 NS NS S341P 9 0.0 &#b1; 0.0 0.2 &#b1; 0.2 0.0 &#b1; 0.0 0.1 &#b1; 0.1 NS NS a Number of individuals with the individual mutation in the CFTR-2 database (www.CFTR2.org).
X
ABCC7 p.Leu1077Pro 23891399:82:4038
status: NEW[hide] Phenotypic expression of the p.Leu1077Pro CFTR mut... BMC Res Notes. 2013 Nov 13;6:461. doi: 10.1186/1756-0500-6-461. Parisi GF, Cutello S, Di Dio G, Rotolo N, La Rosa M, Leonardi S
Phenotypic expression of the p.Leu1077Pro CFTR mutation in Sicilian cystic fibrosis patients.
BMC Res Notes. 2013 Nov 13;6:461. doi: 10.1186/1756-0500-6-461., [PMID:24225052]
Abstract [show]
BACKGROUND: The p.Leu1077Pro CFTR mutation was firstly described in 1992 as a mild allele that confers a pancreatic sufficiency phenotype but the information collected in database CFTR2 lead to consider p.Leu1077Pro as a severe CF mutation. Although it is typical of Southern Italy, p.Leu1077Pro is not included in the mutation panel firstly tested in individuals originated from this area. The aim of our study was to describe prevalence and clinical features in patients bearing this mutation followed in our Cystic Fibrosis Centre to demonstrate that this mutation should be included in the mutation panel firstly tested in patients originated from Southern Italy. FINDINGS: We reviewed data from a cohort of 111 cystic fibrosis patients. 4 patients who were heterozygous for the p.Leu1077Pro mutation were included in the study.In our Cystic Fibrosis Centre, the prevalence of p.Leu1077Pro is 3.6% among all mutations. All patients had positive sweat test values, pancreatic insufficiency and pulmonary exacerbations. One out of four patients even showed both FEV1 and FVC values significantly below the normal range, the presence of bronchiectasis and chronic Pseudomonas aeruginosa colonization. CONCLUSIONS: We found that the p.Leu1077Pro CFTR mutation is associated with a classic CF phenotype confirming what is reported in CFTR2 database. The relatively high prevalence of p.Leu1077Pro associated with the severe clinical course of the disease in patients bearing this mutation is of interest for genetic counselling purposes, as it should be part of mutation panel to be tested in individuals originated from Southern Italy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
0 SHORT REPORT Open Access Phenotypic expression of the p.Leu1077Pro CFTR mutation in Sicilian cystic fibrosis patients Giuseppe Fabio Parisi, Silvia Cutello, Giovanna Di Dio, Novella Rotolo, Mario La Rosa and Salvatore Leonardi* Abstract Background: The p.Leu1077Pro CFTR mutation was firstly described in 1992 as a mild allele that confers a pancreatic sufficiency phenotype but the information collected in database CFTR2 lead to consider p.Leu1077Pro as a severe CF mutation.
X
ABCC7 p.Leu1077Pro 24225052:0:56
status: NEWX
ABCC7 p.Leu1077Pro 24225052:0:255
status: NEWX
ABCC7 p.Leu1077Pro 24225052:0:442
status: NEW1 Although it is typical of Southern Italy, p.Leu1077Pro is not included in the mutation panel firstly tested in individuals originated from this area.
X
ABCC7 p.Leu1077Pro 24225052:1:44
status: NEW4 4 patients who were heterozygous for the p.Leu1077Pro mutation were included in the study.
X
ABCC7 p.Leu1077Pro 24225052:4:43
status: NEW5 In our Cystic Fibrosis Centre, the prevalence of p.Leu1077Pro is 3.6% among all mutations. All patients had positive sweat test values, pancreatic insufficiency and pulmonary exacerbations.
X
ABCC7 p.Leu1077Pro 24225052:5:51
status: NEW7 Conclusions: We found that the p.Leu1077Pro CFTR mutation is associated with a classic CF phenotype confirming what is reported in CFTR2 database.
X
ABCC7 p.Leu1077Pro 24225052:7:33
status: NEW8 The relatively high prevalence of p.Leu1077Pro associated with the severe clinical course of the disease in patients bearing this mutation is of interest for genetic counselling purposes, as it should be part of mutation panel to be tested in individuals originated from Southern Italy.
X
ABCC7 p.Leu1077Pro 24225052:8:36
status: NEW9 Keywords: Cystic fibrosis, CFTR, pLeu1077Pro, L1077P, Genotype-phenotype, Sicilian patients Background Cystic fibrosis (CF) is the most common life-shortening monogenic genetic disease in Caucasians.
X
ABCC7 p.Leu1077Pro 24225052:9:46
status: NEW17 The p.Leu1077Pro (L1077P) mutation consists in a transition T to C at nucleotide position 3362 in exon 17b of CFTR cDNA that is responsible of change of Leucine (CTG) to Proline (CCG) at position 1077 of the protein. This mutation belongs to the class III CFTR mutations and produce a protein that is trafficked to the cell membrane but does not respond to cAMP stimulation [8].
X
ABCC7 p.Leu1077Pro 24225052:17:6
status: NEWX
ABCC7 p.Leu1077Pro 24225052:17:18
status: NEW22 [8] firstly found evidence that the p.Leu1077Pro was associated with a pancreatic sufficiency even if their study did not contain functional data.
X
ABCC7 p.Leu1077Pro 24225052:22:38
status: NEW23 The information collected in database CFTR2 [9], analyzing data from 40 patients with this mutation, lead to consider p.Leu1077Pro as a severe CF mutation, associated with PI in 78% of patients and Pseudomonas Aeruginosa infection in 55% of patients.
X
ABCC7 p.Leu1077Pro 24225052:23:120
status: NEW25 [10] and although it should be predictive of a severe CF phenotype, p.Leu1077Pro is not included in the mutation panel firstly tested in individuals originated from this area since the information collected in CFTR2 are only available from 2011, and the only information held prior to the creation of this database were related to the work of Bozon et al.
X
ABCC7 p.Leu1077Pro 24225052:25:70
status: NEW26 The aim of our study was therefore to describe prevalence and clinical features in Sicilian patients bearing the p.Leu1077Pro CFTR mutation followed in our Cystic Fibrosis Centre to add new data on this issue.
X
ABCC7 p.Leu1077Pro 24225052:26:115
status: NEW30 Four patients (3 males, age range 7 - 20 years) who were heterozygous for the p.Leu1077Pro mutation were included in the study: three patients also carried the p.Phe508del (ƊF508) mutation in the second allele while one carried the p.Asn1303Lys (N1303K) mutation.
X
ABCC7 p.Leu1077Pro 24225052:30:80
status: NEW49 Table 1 Demographic data of the patients Patient Sex Age BMI Age of diagnosis Genotype Sweat chloride (mmol/L) IRT (ng/ml) 1 M 7 yrs 14.57 (Underweight) Birth p.Phe508del/p.Leu1077Pro 112 84/43 2 M 10 19.80 (Normal weight) Birth p.Phe508del/p.Leu1077Pro 101 155/215 3 M 12 19.63 (Normal weight) Birth p.Phe508del/p.Leu1077Pro 97 181/100 4 F 20 16.44 (Underweight) 4 months p.Asn1303Lys/p.Leu1077Pro 108 NA BMI: body mass index.
X
ABCC7 p.Leu1077Pro 24225052:49:173
status: NEWX
ABCC7 p.Leu1077Pro 24225052:49:243
status: NEWX
ABCC7 p.Leu1077Pro 24225052:49:315
status: NEWX
ABCC7 p.Leu1077Pro 24225052:49:388
status: NEW59 The p.Leu1077Pro mutation was identified by denaturing high-performance liquid chromatography (d-HPLC) and confirmed by gene sequencing analysis with an automated procedure (Genetic Analyzer, Applied Biosystems).
X
ABCC7 p.Leu1077Pro 24225052:59:6
status: NEW61 Results In our Eastern Sicilian Cystic Fibrosis Centre, the prevalence of p.Leu1077Pro is 3.6% among all mutations. All patients had pancreatic insufficiency treated with enzyme replacement therapy.
X
ABCC7 p.Leu1077Pro 24225052:61:76
status: NEW72 Discussion The present study provides evidence that the p.Leu1077Pro is a relatively frequent mutation associated with a phenotype characterized by pathological sweat test, pancreatic insufficiency and pulmonary disease.
X
ABCC7 p.Leu1077Pro 24225052:72:58
status: NEW73 The p.Leu1077Pro mutation consists in a transition T to C at nucleotide position 3362 in exon 17b of CFTR cDNA that is responsible of change of Leucine (CTG) to Proline (CCG) at position 1077 of the protein. This mutation belongs to the III class CFTR mutations and produce a protein that is trafficked to the cell membrane but does not respond to cAMP stimulation [8].
X
ABCC7 p.Leu1077Pro 24225052:73:6
status: NEW76 Nevertheless p.Leu1077Pro mutation, although belonging to the class III CFTR mutations, was classified by Bozon et al.
X
ABCC7 p.Leu1077Pro 24225052:76:15
status: NEW83 On this regard, the mutation p.Leu1077Pro is typical of Southern Italy, overall in Puglia, in which the prevalence is higher (1.9% among all mutations) than in the world (< 1%) [10].
X
ABCC7 p.Leu1077Pro 24225052:83:31
status: NEW89 All of them had a p.Phe508del/p.Leu1077Pro genotype.
X
ABCC7 p.Leu1077Pro 24225052:89:32
status: NEW91 She had a p.Asn1303Lys/p.Leu1077Pro genotype.
X
ABCC7 p.Leu1077Pro 24225052:91:25
status: NEW101 The relatively high prevalence of p.Leu1077Pro associated with the severe clinical course of the disease in patients bearing this mutation is of interest for genetic counselling purposes, as it should be part of mutation panel to be tested in individuals originated from Southern Italy.
X
ABCC7 p.Leu1077Pro 24225052:101:36
status: NEW132 Bozon D, Zielenski J, Rininsland F, Tsui LC: Identification of Four New Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene: I148T, L1077P, Y1092X, 2183AA G.
X
ABCC7 p.Leu1077Pro 24225052:132:153
status: NEW176 : Phenotypic expression of the p.Leu1077Pro CFTR mutation in Sicilian cystic fibrosis patients.
X
ABCC7 p.Leu1077Pro 24225052:176:33
status: NEW[hide] Full-open and closed CFTR channels, with lateral t... Cell Mol Life Sci. 2015 Apr;72(7):1377-403. doi: 10.1007/s00018-014-1749-2. Epub 2014 Oct 7. Mornon JP, Hoffmann B, Jonic S, Lehn P, Callebaut I
Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics.
Cell Mol Life Sci. 2015 Apr;72(7):1377-403. doi: 10.1007/s00018-014-1749-2. Epub 2014 Oct 7., [PMID:25287046]
Abstract [show]
In absence of experimental 3D structures, several homology models, based on ABC exporter 3D structures, have provided significant insights into the molecular mechanisms underlying the function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel whose defects are associated with cystic fibrosis (CF). Until now, these models, however, did not furnished much insights into the continuous way that ions could follow from the cytosol to the extracellular milieu in the open form of the channel. Here, we have built a refined model of CFTR, based on the outward-facing Sav1866 experimental 3D structure and integrating the evolutionary and structural information available today. Molecular dynamics simulations revealed significant conformational changes, resulting in a full-open channel, accessible from the cytosol through lateral tunnels displayed in the long intracellular loops (ICLs). At the same time, the region of nucleotide-binding domain 1 in contact with one of the ICLs and carrying amino acid F508, the deletion of which is the most common CF-causing mutation, was found to adopt an alternative but stable position. Then, in a second step, this first stable full-open conformation evolved toward another stable state, in which only a limited displacement of the upper part of the transmembrane helices leads to a closure of the channel, in a conformation very close to that adopted by the Atm1 ABC exporter, in an inward-facing conformation. These models, supported by experimental data, provide significant new insights into the CFTR structure-function relationships and into the possible impact of CF-causing mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
357 Moreover, a large ''hot spot`` region for natural CFTR mutations is located at the NBD1:ICL4 interface, involving (1) six ICL4 positions (H1054D, G1061R, L1065P, R1066H/R1066C, F1074L, and L1077P), which line the path followed by F508 during the MD1 conformational transition from its initial to its final position, and (2) seven positions in NBD1 (S492F, I507del, F508del, V520F, A559T, R560K/R560T, and A561E) (Fig. 7c).
X
ABCC7 p.Leu1077Pro 25287046:357:189
status: NEW[hide] Analysis of cystic fibrosis gene mutations in chil... J Med Case Rep. 2014 Oct 10;8:339. doi: 10.1186/1752-1947-8-339. Dell'Edera D, Benedetto M, Gadaleta G, Carone D, Salvatore D, Angione A, Gallo M, Milo M, Pisaturo ML, Di Pierro G, Mazzone E, Epifania AA
Analysis of cystic fibrosis gene mutations in children with cystic fibrosis and in 964 infertile couples within the region of Basilicata, Italy: a research study.
J Med Case Rep. 2014 Oct 10;8:339. doi: 10.1186/1752-1947-8-339., [PMID:25304080]
Abstract [show]
INTRODUCTION: Cystic fibrosis is the most common autosomal recessive genetic disease in the Caucasian population. Extending knowledge about the molecular pathology on the one hand allows better delineation of the mutations in the CFTR gene and the other to dramatically increase the predictive power of molecular testing. METHODS: This study reports the results of a molecular screening of cystic fibrosis using DNA samples of patients enrolled from January 2009 to December 2013. Patients were referred to our laboratory for cystic fibrosis screening for infertile couples. In addition, we identified the gene mutations present in 76 patients affected by cystic fibrosis in the pediatric population of Basilicata. RESULTS: In the 964 infertile couples examined, 132 subjects (69 women and 63 men) resulted heterozygous for one of the CFTR mutations, with a recurrence of carriers of 6.85%. The recurrence of carriers in infertile couples is significantly higher from the hypothetical value of the general population (4%). CONCLUSIONS: This study shows that in the Basilicata region of Italy the CFTR phenotype is caused by a small number of mutations. Our aim is to develop a kit able to detect not less than 96% of CTFR gene mutations so that the relative risk for screened couples is superimposable with respect to the general population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
47 The molecular analysis of the CFTR gene revealed that the two Table 1 Number of subjects tested who were carriers of the cystic fibrosis transmembrane regulator gene Mutation Men Women Total G551D 1 2 3 R553X 0 1 1 F508del 35 32 67 N1303K 7 8 15 I148T 4 9 13 G542X 3 6 9 DI507 2 0 2 L1077P 0 2 2 D1152H 1 6 7 W1282X 2 0 2 2183 AA>G 3 0 3 1259insA 0 1 1 4016insT 1 0 1 I507del 1 0 1 2789+5G>A 1 0 1 4382delA 0 2 2 G1244E 1 0 1 621+3A>G 1 0 1 Total 63 69 132 Figure 1 76 patients with cystic fibrosis and positive sweat test, all have two genes mutated.
X
ABCC7 p.Leu1077Pro 25304080:47:283
status: NEW59 As mentioned before, molecular screening Table 2 Comparison between the results obtained in this study and those obtained in a previous study Castaldo et al. [14] Mutations observed in the present study F508del 55.8% (29) 48.62% (141) N1303K 3.8% (2) 9.31% (27) G542X 3.8% (2) 8.96% (26) W1282X 3.8% (2) 1.03% (3) 2183AA>G 5.8% (3) 2.76% (8) R1162X 0 0 1717-1G>A 1.9% (1) 0 T338I 0 0 R347P 0 0.69% (2) 711+5G>A 0 0 852del22 5.8% (3) 1.03% (3) 4382delA 0 0.69% (2) 1259insA 0 0.34% (1) 4016insT 0 0.34% (1) R553X 0 0.34% (1) R1158X 0 0 L1077P 0 1.03% (3) I502T 0 0 3849+10kbC>T 1.9% (1) 0.34% (1) D579G 0 0.69% (2) G1244E 3.8% (2) 0 G1349D 0 0.34% (1) 2789+5G>A 0 1.03% (3) 711+1G>T 0 0 L1065P 0 0 2522insC 0 0 E585X 0 0 G85E 0 0 G178R 0 0 D1152H 0 3.10% (9) I148T-3195del6 0 0 I148T (alone) 0 4.48% (13) R334W 0 0 DI507 0 0.69% (2) I1005R 0 0 3272-26A>G 0 0 2711delT 0 0 L558S 1.9% (1) 0.34% (1) W1063X 0 0 D110H 0 0 S549R (A>C) 1.9% (1) 0.69% (2) 2184insA 0 0 3131del22 0 0 Table 2 Comparison between the results obtained in this study and those obtained in a previous study (Continued) R709N 0 0 A349V 0 0 4015insA 0 0 Y849X 1.9% (1) 0.34% (1) G551D 0 1.03% (3) 621+3A>G 0 0.34% (1) E831X 0 0 I507del 0 0.69% (2) IVS8 TG12/t5 0 1.03% (3) H139R (A->G) 0 0.34% (1) 1248+1G>A 0 0.34% (1) R74W;V201M;D1270N 0 0.69% (2) S1455X 0 0.34% (1) dele 2,3 (21kb) 0 0.34% (1) 991del5 0 0.34% (1) UNKNOWN 7 %(4) 4.83% (14) F508C 0 0.69% (2) TOTAL 52 290 of CF is highly recommended in the USA by the National Institutes of Health Consensus Development Conference Statement on genetic testing for cystic fibrosis [17].
X
ABCC7 p.Leu1077Pro 25304080:59:535
status: NEW79 The test has a sensitivity and a specificity of more than Table 3 List of 60 mutations in the cystic fibrosis transmembrane regulator gene (specificity 100%) F508del I507del F508C 621+1G>T D110H E585X G1349D I502T 1706del17 1677delTA R117H H139R 1898+1G>A 4015delA G542X 1717-1G>A Q552X 852del22 G178R 1898+3A>G G551D S549R(A>C) 2183AA>G T338I 991del5 1898+5G>T N1303K 4016insT 3849+10kb C>T R347P R334W 2184insA G85E 711+5G>A 711+1G>T 1259insA R347H 2522insC 2789+5G>A W1282X G1244E R1066H R352Q 3120+1G>A I148T 3199del6 S912X R1158X 1717-8G>A R1066C R1162X 4382delA D1152H L1077P D579G 3272-26A>G L1065P R553X PoliT: 5T, 7T, 9T 1874insT 3659delC 99%.
X
ABCC7 p.Leu1077Pro 25304080:79:575
status: NEW[hide] Improving newborn screening for cystic fibrosis us... Genet Med. 2015 Feb 12. doi: 10.1038/gim.2014.209. Baker MW, Atkins AE, Cordovado SK, Hendrix M, Earley MC, Farrell PM
Improving newborn screening for cystic fibrosis using next-generation sequencing technology: a technical feasibility study.
Genet Med. 2015 Feb 12. doi: 10.1038/gim.2014.209., [PMID:25674778]
Abstract [show]
Purpose:Many regions have implemented newborn screening (NBS) for cystic fibrosis (CF) using a limited panel of cystic fibrosis transmembrane regulator (CFTR) mutations after immunoreactive trypsinogen (IRT) analysis. We sought to assess the feasibility of further improving the screening using next-generation sequencing (NGS) technology.Methods:An NGS assay was used to detect 162 CFTR mutations/variants characterized by the CFTR2 project. We used 67 dried blood spots (DBSs) containing 48 distinct CFTR mutations to validate the assay. NGS assay was retrospectively performed on 165 CF screen-positive samples with one CFTR mutation.Results:The NGS assay was successfully performed using DNA isolated from DBSs, and it correctly detected all CFTR mutations in the validation. Among 165 screen-positive infants with one CFTR mutation, no additional disease-causing mutation was identified in 151 samples consistent with normal sweat tests. Five infants had a CF-causing mutation that was not included in this panel, and nine with two CF-causing mutations were identified.Conclusion:The NGS assay was 100% concordant with traditional methods. Retrospective analysis results indicate an IRT/NGS screening algorithm would enable high sensitivity, better specificity and positive predictive value (PPV). This study lays the foundation for prospective studies and for introducing NGS in NBS laboratories.Genet Med advance online publication 12 February 2015Genetics in Medicine (2015); doi:10.1038/gim.2014.209.
Comments [show]
None has been submitted yet.
No. Sentence Comment
15 Correspondence: Mei W. Baker (mwbaker@wisc.edu) Improving newborn screening for cystic fibrosis using next-generation sequencing technology: a technical feasibility study Mei W. Baker, MD1,2 , Anne E. Atkins, MPH2 , Suzanne K. Cordovado, PhD3 , Miyono Hendrix, MS3 , Marie C. Earley, PhD3 and Philip M. Farrell, MD, PhD1,4 Table 1ߒ CF-causing or varying consequences mutations in the MiSeqDx IUO Cystic Fibrosis System c.1521_1523delCTT (F508del) c.2875delG (3007delG) c.54-5940_273ߙ+ߙ10250del21kb (CFTRdele2,3) c.3909C>G (N1303K) c.3752G>A (S1251N) Mutations that cause CF when combined with another CF-causing mutation c.1624G>T (G542X) c.2988ߙ+ߙ1G>A (3120ߙ+ߙ1G->A) c.3964-78_4242ߙ+ߙ577del (CFTRdele22,23) c.613C>T (P205S) c.1021T>C (S341P) c.948delT (1078delT) c.2988G>A (3120G->A) c.328G>C (D110H) c.200C>T (P67L) c.1397C>A (S466X(C>A)) c.1022_1023insTC (1154insTC) c.2989-1G>A (3121-1G->A) c.3310G>T (E1104X) c.3937C>T (Q1313X) c.1397C>G (S466X(C>G)) c.1081delT (1213delT) c.3140-26A>G (3272-26A->G) c.1753G>T (E585X) c.658C>T (Q220X) c.1466C>A (S489X) c.1116ߙ+ߙ1G>A (1248ߙ+ߙ1G->A) c.3528delC (3659delC) c.178G>T (E60X) c.115C>T (Q39X) c.1475C>T (S492F) c.1127_1128insA (1259insA) c.3659delC (3791delC) c.2464G>T (E822X) c.1477C>T (Q493X) c.1646G>A (S549N) c.1209ߙ+ߙ1G>A (1341ߙ+ߙ1G->A) c.3717ߙ+ߙ12191C>T (3849ߙ+ߙ10kbC->T) c.2491G>T (E831X) c.1573C>T (Q525X) c.1645A>C (S549R) c.1329_1330insAGAT (1461ins4) c.3744delA (3876delA) c.274G>A (E92K) c.1654C>T (Q552X) c.1647T>G (S549R) c.1393-1G>A (1525-1G->A) c.3773_3774insT (3905insT) c.274G>T (E92X) c.2668C>T (Q890X) c.2834C>T (S945L) c.1418delG (1548delG) c.262_263delTT (394delTT) c.3731G>A (G1244E) c.292C>T (Q98X) c.1013C>T (T338I) c.1545_1546delTA (1677delTA) c.3873ߙ+ߙ1G>A (4005ߙ+ߙ1G->A) c.532G>A (G178R) c.3196C>T (R1066C) c.1558G>T (V520F) c.1585-1G>A (1717-1G->A) c.3884_3885insT (4016insT) c.988G>T (G330X) c.3197G>A (R1066H) c.3266G>A (W1089X) c.1585-8G>A (1717-8G->A) c.273ߙ+ߙ1G>A (405ߙ+ߙ1G->A) c.1652G>A (G551D) c.3472C>T (R1158X) c.3611G>A (W1204X) c.1679ߙ+ߙ1.6kbA>G (1811ߙ+ߙ1.6kbA->G) c.274-1G>A (406-1G->A) c.254G>A (G85E) c.3484C>T (R1162X) c.3612G>A (W1204X) c.1680-1G>A (1812-1G->A) c.4077_4080delTGTTinsAA (4209TGTT->AA) c.2908G>C (G970R) c.349C>T (R117C) c.3846G>A (W1282X) c.1766ߙ+ߙ1G>A (1898ߙ+ߙ1G->A) c.4251delA (4382delA) c.595C>T (H199Y) c.1000C>T (R334W) c.1202G>A (W401X) c.1766ߙ+ߙ3A>G (1898ߙ+ߙ 3A->G) c.325_327delTATinsG (457TAT->G) c.1007T>A (I336K) c.1040G>A (R347H) c.1203G>A (W401X) c.2012delT (2143delT) c.442delA (574delA) c.1519_1521delATC (I507del) c.1040G>C (R347P) c.2537G>A (W846X) c.2051_2052delAAinsG (2183AA->G) c.489ߙ+ߙ1G>T (621ߙ+ߙ 1G->T) c.2128A>T (K710X) c.1055G>A (R352Q) c.3276C>A (Y1092X (C>A)) c.2052delA (2184delA) c.531delT (663delT) c.3194T>C (L1065P) c.1657C>T (R553X) c.3276C>G (Y1092X (C>G)) c.2052_2053insA (2184insA) c.579ߙ+ߙ1G>T (711ߙ+ߙ 1G->T) c.3230T>C (L1077P) c.1679G>A (R560K) c.366T>A (Y122X) c.2175_2176insA (2307insA) c.579ߙ+ߙ3A>G (711ߙ+ߙ 3A->G) c.617T>G (L206W) c.1679G>C (R560T) - c.2215delG (2347delG) c.579ߙ+ߙ5G>A (711ߙ+ߙ 5G->A) c.1400T>C (L467P) c.2125C>T (R709X) - c.2453delT (2585delT) c.580-1G>T (712-1G->T) c.2195T>G (L732X) c.223C>T (R75X) - c.2490ߙ+ߙ1G>A (2622ߙ+ߙ1G->A) c.720_741delAGGGAG AATGATGATGAAGTAC (852del22) c.2780T>C (L927P) c.2290C>T (R764X) - c.2583delT (2711delT) c.1364C>A (A455E) c.3302T>A (M1101K) c.2551C>T (R851X) - c.2657ߙ+ߙ5G>A (2789ߙ+ߙ5G->A) c.1675G>A (A559T) c.1A>G (M1V) c.3587C>G (S1196X) - Mutations/variants that were validated in this study are in bold. CF, cystic fibrosis. Table 1ߒ Continued on next page reduce carrier detection and potentially improve the positive predictive value (PPV), the NBS goals of equity and the highest possible sensitivity become more difficult to achieve.
X
ABCC7 p.Leu1077Pro 25674778:15:3163
status: NEW[hide] Mutation analysis of PRSS1, SPINK1 and CFTR gene i... Turk J Gastroenterol. 2015 Mar;26(2):176-80. doi: 10.5152/tjg.2015.4287. Sisman G, Tugcu M, Ayla K, Sebati O, Senturk H
Mutation analysis of PRSS1, SPINK1 and CFTR gene in patients with alcoholic and idiopathic chronic pancreatitis: A single center study.
Turk J Gastroenterol. 2015 Mar;26(2):176-80. doi: 10.5152/tjg.2015.4287., [PMID:25835118]
Abstract [show]
BACKGROUND/AIMS: A relation between some genetic mutations and chronic pancreatitis (CP) has been reported. However, the relation of genetic mutation to alcoholic CP (ACP) and idiopathic CP (ICP) still remains controversial. In this study, we investigated the prevalence of protease serine 1 (PRSS1), serine protease inhibitor, Kazal type 1 (SPINK1) SPINK1 and cystic fibrosis transmembrane conductance regulator (CFTR) mutations in ACP and ICP patients in Turkey. MATERIALS AND METHODS: Forty-one patients with ACP and 38 patients with ICP were enrolled, and 35 healthy individuals served as controls. The PRSS1 and SPINK1 mutations were investigated by the polymerase chain reaction (PCR)-restriction fragment-length polymorphism (RFLP) technique. The CFTR mutation was examined with PCR direct sequencing. RESULTS: The mean ages of the ACP, ICP and healthy control groups were 53.2, 40.4 and 46.3 years, respectively. A CFTR F508 mutation was detected as a heterozygote in one (2.4%) patient with ACP. In the ICP and control populations, PRSS1, SPINK1 and CFTR mutations were not detected. CONCLUSION: This study shows that PRSS1, SPINK1 and CFTR mutations do not play a role in ACP and ICP patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
45 DNA samples were multiplied by multiplex PCR with a CF 22Mut and CF 14Mut+Tn strip assay kit which has 36 common mutations of the CFTR gene (DF508, DI507, F508C, I502T, 1706del17, 1677del TA, G542X, 1717-1G>A, R553X, Q552X, G551D, S549R(A>C), N1303K, 4016insT, R1162X, R1158X, W1282X, G1244E, 2789+5G>A, 2183AA>G, 711+5G>A, 711+1G>T, G85E, 3849+10kbC>T, 621+1G>T, R117H, D1152H, L1065P, R1066H, L1077P, 4382delA, 1259insA, 852del22, R347P, T338I, S912X and Allele5T-7T-9T).
X
ABCC7 p.Leu1077Pro 25835118:45:395
status: NEW[hide] A Genotypic-Oriented View of CFTR Genetics Highlig... Mol Med. 2015 Apr 21;21:257-75. doi: 10.2119/molmed.2014.00229. Lucarelli M, Bruno SM, Pierandrei S, Ferraguti G, Stamato A, Narzi F, Amato A, Cimino G, Bertasi S, Quattrucci S, Strom R
A Genotypic-Oriented View of CFTR Genetics Highlights Specific Mutational Patterns Underlying Clinical Macrocategories of Cystic Fibrosis.
Mol Med. 2015 Apr 21;21:257-75. doi: 10.2119/molmed.2014.00229., [PMID:25910067]
Abstract [show]
Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype-phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype-phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype-phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway.
Comments [show]
None has been submitted yet.
No. Sentence Comment
390 L1077P c.3230T>C CF-PI CF-causing p.Leu1077Pro Y1092X(C>A) c.3276C>A CF-PI CF-causing p.Tyr1092* M1137V c.3409A>G CFTR-RD nd p.Met1137Val D1152H c.3454G>C CF-PI,CF-PS,CFTR-RD varying clinical consequence p.Asp1152His R1162X c.3484C>T CF-PI CF-causing p.Arg1162* D1168G c.3503A>G CFTR-RD nd p.Asp1168Gly 3667ins4 c.3535_3536insTCAA CF-PI CF-causing p.Thr1179IlefsX17 S1206X c.3617C>A uncertain: CF-PI and/or CF-PS nd p.Ser1206* I1234V c.3700A>G CF-PI,CF-PS CF-causing p.Ile1234Val S1235R c.3705T>G CFTR-RD non CF-causing p.Ser1235Arg 3849+10kbC>T c.3717+12191C>T CF-PI,CF-PS CF-causing V1240G c.3719T>G CFTR-RD nd p.Val1240Gly G1244R c.3730G>A uncertain: CF-PI and/or CF-PS nd p.Gly1244Arg G1244E c.3731G>A CF-PI,CF-PS CF-causing p.Gly1244Glu G1247R(G>C) c.3739G>C CF-PS nd p.Gly1247Arg W1282X c.3846G>A CF-PI CF-causing p.Trp1282* Q1291R c.3872A>G CF-PI,CF-PS,CFTR-RD nd p.Gln1291Arg 4016insT c.3884_3885insT CF-PI CF-causing p.Ser1297PhefsX5 4040delA c.3908delA CF-PI nd p.Asn1303ThrfsX25 N1303K c.3909C>G CF-PI CF-causing p.Asn1303Lys ex22-24del c.3964-3890_4443+3143del9454ins5 CF-PI nd ex22,23del c.3964-78_4242+577del1532 CF-PI CF-causing 4168delCTAAGCC c.4036_4042del CF-PI nd p.Leu1346MetfsX6 G1349D c.4046G>A CF-PI CF-causing p.Gly1349Asp H1375P c.4124A>C uncertain: CF-PI and/or CF-PS nd p.His1375Pro S1455X c.4364C>G CF-PS,CFTR-RD nd p.Ser1455* Q1476X c.4426C>T CFTR-RD nd p.Gln1476* nd,Not determined.According to the three rules described (see Materials and Methods),each mutated allele was classified according to its clinical outcome.It was impossible to univocally assign 16 of the 125 different mutated alleles to one or more macrocategories.A comparison with the CFTR2 project (11) (http://www.cftr2.org) is shown.The alleles are ordered according to their nucleotidic position.
X
ABCC7 p.Leu1077Pro 25910067:390:0
status: NEWX
ABCC7 p.Leu1077Pro 25910067:390:36
status: NEW[hide] The improvement of the best practice guidelines fo... Eur J Hum Genet. 2015 May 27. doi: 10.1038/ejhg.2015.99. Girardet A, Viart V, Plaza S, Daina G, De Rycke M, Des Georges M, Fiorentino F, Harton G, Ishmukhametova A, Navarro J, Raynal C, Renwick P, Saguet F, Schwarz M, SenGupta S, Tzetis M, Roux AF, Claustres M
The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: toward an international consensus.
Eur J Hum Genet. 2015 May 27. doi: 10.1038/ejhg.2015.99., [PMID:26014425]
Abstract [show]
Cystic fibrosis (CF) is one of the most common indications for preimplantation genetic diagnosis (PGD) for single gene disorders, giving couples the opportunity to conceive unaffected children without having to consider termination of pregnancy. However, there are no available standardized protocols, so that each center has to develop its own diagnostic strategies and procedures. Furthermore, reproductive decisions are complicated by the diversity of disease-causing variants in the CFTR (cystic fibrosis transmembrane conductance regulator) gene and the complexity of correlations between genotypes and associated phenotypes, so that attitudes and practices toward the risks for future offspring can vary greatly between countries. On behalf of the EuroGentest Network, eighteen experts in PGD and/or molecular diagnosis of CF from seven countries attended a workshop held in Montpellier, France, on 14 December 2011. Building on the best practice guidelines for amplification-based PGD established by ESHRE (European Society of Human Reproduction and Embryology), the goal of this meeting was to formulate specific guidelines for CF-PGD in order to contribute to a better harmonization of practices across Europe. Different topics were covered including variant nomenclature, inclusion criteria, genetic counseling, PGD strategy and reporting of results. The recommendations are summarized here, and updated information on the clinical significance of CFTR variants and associated phenotypes is presented.European Journal of Human Genetics advance online publication, 27 May 2015; doi:10.1038/ejhg.2015.99.
Comments [show]
None has been submitted yet.
No. Sentence Comment
83 In several countries, when at least one Table 1 (Continued ) HGVS nomenclature Legacy name cDNA nucleotide name Protein name 3121-1G4A c.2989-1G4A 3199del6 (3195del6) c.3067_3072delATAGTG p.Ile1023_Val1024del 3272-26 A4G c.3140-26 A4G L1065P c.3194 T4C p.Leu1065Pro R1066C c.3196C4T p.Arg1066Cys R1066H c.3197G4A p.Arg1066His L1077P c.3230 T4C p.Leu1077Pro W1089X c.3266G4A p.Trp1089* Y1092X c.3276C4A p.Tyr1092* E1104X c.3310G4T p.Glu1104* R1158X c.3472C4T p.Arg1158* S1196X c.3587C4G p.Ser1196* W1204X(3743G4A) c.3611G4A p.Trp1204* W1204X(3744G4A) c.3612G4A p.Trp1204* 3791delC c.3659delC p.Thr1220Lysfs*8 3849+10kbC4T c.3718-2477C4T p.(?)
X
ABCC7 p.Leu1077Pro 26014425:83:326
status: NEWX
ABCC7 p.Leu1077Pro 26014425:83:346
status: NEW
admin on 2016-08-19 15:16:22