ABCA4 p.Pro1948Leu
ClinVar: |
c.5843C>T
,
p.Pro1948Leu
N
, Benign
c.5844A>G , p.Pro1948= N , Benign |
Predicted by SNAP2: | A: N (53%), C: D (59%), D: D (85%), E: D (59%), F: D (71%), G: D (66%), H: D (53%), I: D (63%), K: D (53%), L: D (71%), M: D (59%), N: D (53%), Q: N (53%), R: D (59%), S: N (53%), T: N (57%), V: D (53%), W: D (80%), Y: D (66%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, F: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, Q: N, R: N, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Stargardt macular dystrophy: common ABCA4 mutation... Mol Vis. 2012;18:280-9. Epub 2012 Feb 1. Roberts LJ, Nossek CA, Greenberg LJ, Ramesar RS
Stargardt macular dystrophy: common ABCA4 mutations in South Africa--establishment of a rapid genetic test and relating risk to patients.
Mol Vis. 2012;18:280-9. Epub 2012 Feb 1., [PMID:22328824]
Abstract [show]
PURPOSE: Based on the previous indications of founder ATP-binding cassette sub-family A member 4 gene (ABCA4) mutations in a South African subpopulation, the purpose was to devise a mechanism for identifying common disease-causing mutations in subjects with ABCA4-associated retinopathies (AARs). Facilitating patient access to this data and determining the frequencies of the mutations in the South African population would enhance the current molecular diagnostic service offered. METHODS: The majority of subjects in this study were of Caucasian ancestry and affected with Stargardt macular dystrophy. The initial cohort consisted of DNA samples from 181 patients, and was screened using the ABCR400 chip. An assay was then designed to screen a secondary cohort of 72 patients for seven of the most commonly occurring ABCA4 mutations in this population. A total of 269 control individuals were also screened for the seven ABCA4 mutations. RESULTS: Microarray screening results from a cohort of 181 patients affected with AARs revealed that seven ABCA4 mutations (p.Arg152*, c.768G>T, p.Arg602Trp, p.Gly863Ala, p.Cys1490Tyr, c.5461-10T>C, and p.Leu2027Phe) occurred at a relatively high frequency. The newly designed genetic assay identified two of the seven disease-associated mutations in 28/72 patients in a secondary patient cohort. In the control cohort, 12/269 individuals were found to be heterozygotes, resulting in an estimated background frequency of these mutations in this particular population of 4.46 per 100 individuals. CONCLUSIONS: The relatively high detection rate of seven ABCA4 mutations in the primary patient cohort led to the design and subsequent utility of a multiplex assay. This assay can be used as a viable screening tool and to reduce costs and laboratory time. The estimated background frequency of the seven ABCA4 mutations, together with the improved diagnostic service, could be used by counselors to facilitate clinical and genetic management of South African families with AARs.
Comments [show]
None has been submitted yet.
No. Sentence Comment
139 of alleles detected Frequency p.Cys54Tyr c. 161 G>A 2 0.55% p.Arg152* c. 454 C>T 12 3.31% p.Arg152Gln c. 455 G>A 3 0.83% p.Gly172Ser c. 514 G>A 1 0.28% p.Arg212Cys c. 634 C>T 1 0.28% p.Lys223Gln c. 667 A>C 1 0.28% p.V256V (Splice) c. 768 G>T 18 4.97% p.Pro291Leu c. 872 C>T 1 0.28% p.Trp439* c. 1317 G>A 1 0.28% p.Ala538Asp c. 1613 C>A 1 0.28% p.Leu541Pro c. 1622 T>C 1 0.28% p.Arg602Trp c. 1885C>T 30 8.29% p.Val643Met c. 1927 G>A 1 0.28% p.Arg653Cys c. 1957 C>T 1 0.28% p.Arg681* c. 2041 C>T 3 0.83% p.Val767Asp c. 2300 T>A 1 0.28% p.Trp855* c.2564_2571delGGTACCTT 2 0.55% p.Gly863Ala c. 2588 G>C 11 3.04% p.Val931Met c. 2791 G>A 1 0.28% p.Asn965Ser c. 2894 A>G 4 1.10% p.Val989Ala c. 2966 T>C 1 0.28% p.Gly991Arg c. 2971 G>C 1 0.28% p.Thr1019Met c. 3056 C>T 1 0.28% p.Ala1038Val c. 3113 C>T 3 0.83% p.Glu1087Lys c. 3259 G>A 1 0.28% p.Arg1108Cys c. 3322 C>T 2 0.55% p.Leu1201Arg c. 3602 T>G 4 1.10% p.Arg1300Gln c. 3899 G>A 4 1.10% p.Pro1380Leu c. 4139 C>T 3 0.83% p.Trp1408Arg c. 4222 T>C 1 0.28% - c. 4253+5G>A 1 0.28% p.Phe1440Ser c. 4319 T>C 1 0.28% p.Arg1443His c. 4328 G>A 1 0.28% p.Cys1490Tyr c.4469 G>A 54 14.92% p.Gln1513Pro fs*42 c. 4535 insC 1 0.28% p.Ala1598Asp c. 4793C>A 1 0.28% p.Arg1640Trp c. 4918 C>T 2 0.55% p.Ser1642Arg c. 4926 C>G 1 0.28% p.V1681_C1685del c. 5041 del15 1 0.28% - c. 5461-10T>C 24 6.63% - c. 5714+5 G>A 2 0.55% p.Pro1948Leu c. 5843 C>T 1 0.28% p.Gly1961Glu c. 5882 G>A 4 1.10% p.Leu2027Phe c.6079 C>T 30 8.29% p.Arg2030* c. 6088 C>T 1 0.28% p.Arg2030Gln c. 6089 G>A 3 0.83% p.Arg2038Trp c. 6112 C>T 1 0.28% p.Arg2107His c. 6320 G>A 2 0.55% p.Arg2118Glu fs*27 c. 6352 delA 1 0.28% p.Cys2150Tyr c. 6449 G>A 1 0.28% p.Gln2220* c. 6658 C>T 1 0.28% p.Gly863Ala mutation, which appears to have a founder effect in the Netherlands [13,15], the results obtained from the current study are in agreement with September et al.`s conclusions [9].
X
ABCA4 p.Pro1948Leu 22328824:139:1351
status: NEW[hide] Further associations between mutations and polymor... Invest Ophthalmol Vis Sci. 2011 Aug 5;52(9):6206-12. Print 2011 Aug. Aguirre-Lamban J, Gonzalez-Aguilera JJ, Riveiro-Alvarez R, Cantalapiedra D, Avila-Fernandez A, Villaverde-Montero C, Corton M, Blanco-Kelly F, Garcia-Sandoval B, Ayuso C
Further associations between mutations and polymorphisms in the ABCA4 gene: clinical implication of allelic variants and their role as protector/risk factors.
Invest Ophthalmol Vis Sci. 2011 Aug 5;52(9):6206-12. Print 2011 Aug., [PMID:21330655]
Abstract [show]
PURPOSE: Mutations in ABCA4 have been associated with autosomal recessive Stargardt disease, autosomal recessive cone-rod dystrophy, and autosomal recessive retinitis pigmentosa. The purpose of this study was to determine (1) associations among mutations and polymorphisms and (2) the role of the polymorphisms as protector/risk factors. METHODS: A case-control study was designed in which 128 Spanish patients and 84 control individuals were analyzed. Patient samples presented one or two mutated alleles previously identified using ABCR400 microarray and sequencing. RESULTS: A total of 18 previously described polymorphisms were studied in patients and control individuals. All except one presented a polymorphisms frequency higher than 5% in patients, and five mutations were found to have a frequency >5%. The use of statistical methods showed that the frequency of the majority of polymorphisms was similar in patients and controls, except for the IVS10+5delG, p.Asn1868Ile, IVS48+21C>T, and p.Arg943Gln polymorphisms. In addition, IVS48+21C>T and p.Arg943Gln were found to be in linkage disequilibrium with the p.Gly1961Glu and p.Arg602Trp mutations, respectively. CONCLUSIONS: Although the high allelic heterogeneity in ABCA4 and the wide spectrum of many common and rare polymorphisms complicate the interpretation of clinical relevance, polymorphisms were identified that may act as risk factors (p.Asn1868Ile) and others that may act as protection factors (p.His423Arg and IVS10+5 delG).
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 Most Frequent ABCA4 Polymorphisms Found in Patients and Controls Exon Nucleotide Change Amino Acid Change Patients n (%) Allele Frequency n (%) Controls n (%) Allele Frequency n (%) P - IVS48؉21C>T SPLICE 13 (10.2) 13 (5.1) 0 (0.0) 0 (0.0) 0.003 - IVS10؉5 delG SPLICE 36 (28.1) 40 (15.6) 39 (46.4) 43 (25.6) 0.006 40 c.5603A>T p.Asn1868Ile 27 (21.1) 30 (11.7) 9 (10,7) 9 (5.3) 0.049 19 c.2828GϾA p.Arg943Gln 13 (10.2) 15 (5.8) 3 (3.6) 3 (1.8) 0.076 45 c.6249CϾT p.Ile2083Ile 14 (10.9) 15 (5.8) 16 (19.0) 18 (10.7) 0.098 49 c.6764GϾT p.Ser2255Ile 13 (10.2) 13 (5.1) 15 (17.9) 16 (9.5) 0.105 10 c.1268AϾG p.His423Arg 68 (53.1) 84 (32.8) 54 (64.3) 60 (35.7) 0.108 40 c.5682GϾC p.Leu1894Leu 70 (54.7) 90 (35.1) 37 (44.0) 41 (24.4) 0.130 42 c.5843CAϾTG p.Pro1948Leu 13 (10.2) 13 (5.1) 14 (16.7) 15 (8.9) 0.164 8 c.981CϾT p.Pro327Pro 2 (1.6) 2 (0.8) 0 (0.0) 0 (0.0) 0.250 6 c.635GϾA p.Arg212His 8 (6.3) 11 (4.3) 8 (9.5) 8 (4.7) 0.377 41 c.5814AϾG p.Leu1938Leu 40 (31.3) 48 (18.7) 31 (36.9) 35 (20.8) 0.394 44 c.6069CϾT p.Ile2023Ile 17 (13.3) 17 (6.6) 14 (16.7) 15 (8.9) 0.495 IVS33ϩ48CϾT SPLICE 109 (85.2) 170 (66.4) 74 (88.1) 93 (55.3) 0.542 28 c.4203CϾA/T p.Pro1401Pro 10 (7.8) 10 (3.9) 5 (6.0) 5 (2.9) 0.605 10 c.1269CϾT p.His423His 8 (6.3) 8 (3.1) 4 (4.8) 4 (2.4) 0.647 42 c.5844AϾG p.Pro1948Pro 36 (28.1) 42 (16.4) 23 (27.4) 25 (14.9) 0.906 46 c.6285TϾC p.Asp2095Asp 39 (30.5) 43 (16.8) 25 (29.8) 27 (16.1) 0.913 Variants revealing significant differences between both groups are shown in bold.
X
ABCA4 p.Pro1948Leu 21330655:85:798
status: NEW86 the patient group: p.Asn1868Ile (P ϭ 0.013) and p.His423Arg (P ϭ 0 0.023) (Table 3).
X
ABCA4 p.Pro1948Leu 21330655:86:798
status: NEW94 p.Arg212H is p.Pro327Pro p.H is423Arg p.H is423H is IVS10+5delG p.Arg602Trp p.Arg943G ln c.3211insG T p.Arg1129Leu p.Pro1401Pro IVS33+48C >Tp.Leu1894Leu p-Leu1938Leu p.Pro1948Leu p.Pro1948Pro p.G ly1961G lup.Leu2060Argp.Asp2095Asp IVS48+21C >T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - p.Asn1868Ile p.Ile2023Ile p.Ile2083Ile p.Ser2255Ile PATIENTSCONTROLS FIGURE 1.
X
ABCA4 p.Pro1948Leu 21330655:94:168
status: NEW97 This change was found to be associated with p.Leu1894Leu (P ϭ 0.016), p.Leu1938Leu, and p.Pro1948Leu polymorphic variants in 100% of the cases (P Ͻ 0.001).
X
ABCA4 p.Pro1948Leu 21330655:97:96
status: NEW109 Association between the Most Frequent ABCA4 Polymorphisms and Mutations Patients Variants Frequency P Status Predicted Effect Mutation, n (%) p.Arg1129Leu 34 (26.6) Present polymorphisms p.His423Arg 94.1% 0.000 Associated Risk IVS33؉48C>T 100% 0.011 Associated Risk IVS10ϩ5delG 20.6% 0.049 Associated Protector p.Leu1938Leu 17.6% 0.033 Associated Protector p.Ser2255Ile 2.9% 0.054 Associated Protector Mutation, n (%) p.Gly1961Glu 18 (14.1) Present polymorphisms p.Pro1948Pro 94.7% 0.000 Associated Risk p.Leu1938Leu 89.5% 0.000 Associated Risk p.Asp2095Asp 78.9% 0.000 Associated Risk IVS48؉21C>T 70.0% 0.000 Associated Risk IVS10؉5delG 57.9% 0.008 Associated Risk p.His423Arg 31.6% 0.016 Associated Protector p.Asn1868Ile 18.7% 0.039 Associated Protector Mutation, n (%) p.Arg602Trp 8 (6.3%) Present polymorphisms p.Arg943Gln 62.5% 0.000 Associated Risk p.Pro1401Pro 25% 0.044 Associated Protector p.Leu1938Leu 0% 0.041 Associated Protector Mutation, n (%) c.3211insGT 7 (5.5%) Present polymorphisms p.His423Arg 100% 0.021 Associated Risk p.Asn1868Ile 100% 0.000 Associated Risk IVS10ϩ5delG 0% 0.047 Associated Protector Mutation, n (%) p.Leu2060Arg 7 (5.5%) Present polymorphisms p.Leu1938Leu 100% 0.000 Associated Risk p.Pro1948Leu 100% 0.000 Associated Risk p.His423Arg 14.3% 0.019 Associated Protector TABLE 4.
X
ABCA4 p.Pro1948Leu 21330655:109:1255
status: NEW117 It also was found in other control populations, although less frequently.15,17 The p.Gly1961Glu variant is the second most frequent mutation in our group of patients, although it has been described as the most frequent variant in European populations.14,15 We observe that the p.Gly1961Glu and IVS48ϩ21CϾT variants are in linkage disequilibrium, and the high frequency of the p.Gly1961Glu mutation in Europe may be the result of a founder effect.
X
ABCA4 p.Pro1948Leu 21330655:117:96
status: NEW129 The p.Arg943Gln polymorphism is in linkage disequilibrium with the p.Arg602Trp mutation in Spanish STGD (P Ͻ 0.001, Table 3).
X
ABCA4 p.Pro1948Leu 21330655:129:1255
status: NEW[hide] Frequency of ABCA4 mutations in 278 Spanish contro... Br J Ophthalmol. 2009 Oct;93(10):1359-64. Epub 2008 Oct 31. Riveiro-Alvarez R, Aguirre-Lamban J, Lopez-Martinez MA, Trujillo-Tiebas MJ, Cantalapiedra D, Vallespin E, Avila-Fernandez A, Ramos C, Ayuso C
Frequency of ABCA4 mutations in 278 Spanish controls: an insight into the prevalence of autosomal recessive Stargardt disease.
Br J Ophthalmol. 2009 Oct;93(10):1359-64. Epub 2008 Oct 31., [PMID:18977788]
Abstract [show]
AIM: To determine the carrier frequency of ABCA4 mutations in order to achieve an insight into the prevalence of autosomal recessive Stargardt disease (arSTGD) in the Spanish population. METHODS: arSTGD patients (n = 133) were analysed using ABCR400 microarray and sequencing. Control subjects were analysed by two different strategies: 200 individuals were screened for the p.Arg1129Leu mutation by denaturing-HPLC and sequencing; 78 individuals were tested for variants with the microarray and sequencing. RESULTS: For the first strategy in control subjects, the p.Arg1129Leu variant was found in two heterozygous individuals, which would mean a carrier frequency for any variant of approximately 6.0% and a calculated arSTGD prevalence of 1:1000. For the second strategy, carrier frequency was 6.4% and therefore an estimated prevalence of the disease of 1:870. CONCLUSION: Calculated prevalence of arSTGD based on the ABCA4 carrier frequency could be considerably higher than previous estimation. This discrepancy between observed (genotypic) and estimated (phenotypic) prevalence could be due to the existence of non-pathological or low penetrance alleles, which may result in late-onset arSTGD or may be implicated in age-related macular degeneration. This situation should be regarded with special care when genetic counselling is given and further follow-up of these patients should be recommended.
Comments [show]
None has been submitted yet.
No. Sentence Comment
96 These Table 1 ABCA4 sequence variants identified in Spanish control population Mutant alleles Nucleotide change Amino acid change Number of cases Number of alleles Frequency (%) Homozygous individuals Mutations* c.661G.A p.Gly221Arg 1 1 0.64 None c.1140T.A p.Asn380Lys 1 1 0.64 None c.2588G.C p.Gly863Ala 1 1 0.64 None c.3113C.T p.Ala1038Val 1 1 0.64 None c.3899G.A p.Arg1300Gln 1 1 0.64 None c.5882G.A p.Gly1961Glu 1 1 0.64 None c.5908C.T p.Leu1970Phe 1 1 0.64 None c.6148G.C p.Val2050Leu 1 1 0.64 None c.6529G.A p.Asp2177Asn 2 2 1.28 None Total 10 Polymorphisms{ c.466A.G p.Ile156Val 5 5 3.2 None c.635G.A p.Arg212His 5 6 3.84 1 c.1268A.G p.His423Arg 43 48 30.7 5 c.1269C.T p.His423His 2 2 1.28 None IVS10+5delG 34 36 23 2 c.2828G.A p.Arg943Gln 1 1 0.64 None c.4203C.A p.Pro1401Pro 3 3 1.9 None IVS33+48C.T 59 75 48 16 c.5603A.T p.Asn1868Ile 4 4 2.5 None c.5682G.C p.Leu1894Leu 29 35 22.4 6 c.5814A.G p.Leu1938Leu 27 33 21.1 6 c.5843 C.T p.Pro1948Leu 9 10 6.4 1 c.5844A.G p.Pro1948Pro 27 32 20.5 5 c.6069C.T p.Ile2023Ile 11 12 7.7 1 c.6249C.T p.Ile2083Ile 12 14 8.9 2 c.6285T.C p.Asp2095Asp 24 26 16.6 2 c.6764G.T p.Ser2255Ile 12 13 8.3 1 *A total of 15 mutant alleles were detected.
X
ABCA4 p.Pro1948Leu 18977788:96:942
status: NEW97 These Table 1 ABCA4 sequence variants identified in Spanish control population Mutant alleles Nucleotide change Amino acid change Number of cases Number of alleles Frequency (%) Homozygous individuals Mutations* c.661G.A p.Gly221Arg 1 1 0.64 None c.1140T.A p.Asn380Lys 1 1 0.64 None c.2588G.C p.Gly863Ala 1 1 0.64 None c.3113C.T p.Ala1038Val 1 1 0.64 None c.3899G.A p.Arg1300Gln 1 1 0.64 None c.5882G.A p.Gly1961Glu 1 1 0.64 None c.5908C.T p.Leu1970Phe 1 1 0.64 None c.6148G.C p.Val2050Leu 1 1 0.64 None c.6529G.A p.Asp2177Asn 2 2 1.28 None Total 10 Polymorphisms{ c.466A.G p.Ile156Val 5 5 3.2 None c.635G.A p.Arg212His 5 6 3.84 1 c.1268A.G p.His423Arg 43 48 30.7 5 c.1269C.T p.His423His 2 2 1.28 None IVS10+5delG 34 36 23 2 c.2828G.A p.Arg943Gln 1 1 0.64 None c.4203C.A p.Pro1401Pro 3 3 1.9 None IVS33+48C.T 59 75 48 16 c.5603A.T p.Asn1868Ile 4 4 2.5 None c.5682G.C p.Leu1894Leu 29 35 22.4 6 c.5814A.G p.Leu1938Leu 27 33 21.1 6 c.5843 C.T p.Pro1948Leu 9 10 6.4 1 c.5844A.G p.Pro1948Pro 27 32 20.5 5 c.6069C.T p.Ile2023Ile 11 12 7.7 1 c.6249C.T p.Ile2083Ile 12 14 8.9 2 c.6285T.C p.Asp2095Asp 24 26 16.6 2 c.6764G.T p.Ser2255Ile 12 13 8.3 1 *A total of 15 mutant alleles were detected.
X
ABCA4 p.Pro1948Leu 18977788:97:942
status: NEW[hide] ABCA4 mutations in Portuguese Stargardt patients: ... Mol Vis. 2009;15:584-91. Epub 2009 Mar 25. Maia-Lopes S, Aguirre-Lamban J, Castelo-Branco M, Riveiro-Alvarez R, Ayuso C, Silva ED
ABCA4 mutations in Portuguese Stargardt patients: identification of new mutations and their phenotypic analysis.
Mol Vis. 2009;15:584-91. Epub 2009 Mar 25., [PMID:19365591]
Abstract [show]
PURPOSE: To resolve the spectrum of causative retina-specific ATP-binding cassette transporter gene (ABCA4) gene mutations in Portuguese Stargardt (STGD) patients and compare allele frequencies obtained in this cohort with those of previous population surveys. METHODS: Using a microarray technique (ABCR400 gene chip), we screened all previously reported ABCA4 gene mutations in the genomic DNA of 27 patients from 21 unrelated Stargardt families whose phenotypes had been clinically evaluated using psychophysics and electrophysiological measurements. Furthermore, we performed denaturing high performance liquid chromatography whenever one or both mutant alleles failed to be detected using the ABCR gene chip. RESULTS: A total of 36 mutant alleles (out of the 54 tested) were identified in STGD patients, resulting in a detection rate of 67%. Two mutant alleles were present in 12 out of 21 STGD families (57%), whereas in four out of 21 (19%) of the families, only one mutant allele was found. We report the presence of 22 putative pathogenic alterations, including two sequence changes not found in other populations, c.2T>C (p.Met1Thr) and c.4036_4037delAC (p.Thr1346fs), and two novel disease-associated variants, c.400C>T (p.Gln134X) and c.4720G>T (p.Glu1574X). The great majority of the mutations were missense (72.7%). Seven frameshift variants (19.4%), three nonsense mutations (8.3%), and one splicing sequence change (2.7%) were also found in STGD chromosomes. The most prevalent pathologic variant was the missense mutation p.Leu11Pro. Present in 19% of the families, this mutation represents a quite high prevalence in comparison to other European populations. In addition, 23 polymorphisms were also identified, including four novel intronic sequence variants. CONCLUSIONS: To our knowledge, this study represents the first report of ABCA4 mutations in Portuguese STGD patients and provides further evidence of different mutation frequency across populations. Phenotypic characterization of novel putative mutations was addressed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
111 Exon Nucleotide Change Effect STGD Families Frequency References IVS3 c.302+20C>T - 12 4.8% [6] IVS3 c.302+26A>G - 7,12,13,14 1.91% [6] 6 c.635G>A p.Arg212His 13,19 9.5% [15] IVS7 c.859+8T>C - 17 4.8% Present study 10 c.1268A>G p.His423Arg 2,4,5,6,10,11,12,13,14,18,19 53% [13] 10 c.1269C>T p.His423His 16 4.8% [13] IVS10 c.1356+5delG SPLICE 1,7,11,15,20 23.8% [13] IVS14 c.2161+47T>C - 18 4.8% Present study 19 c.2828G>A p.Arg943Gln 3,10,18,19 19.1% [5] IVS19 c.2919+34C>T - 12 4.8% Present study 20 c.2964T>C p.Leu988Leu 12 4.8% [6] IVS22 c.3326-19G>A - 2 4.8% Present study IVS33 c.4773+48C>T Splice 1,2,3,5,6,8,9,10,12,13,14,16,17,18,19,20 76.2% [13] 40 c.5603A>T p.Asn1868Ile 4,10,17 14.3% [6] 40 c.5682G>C p.Leu1894Leu 1,2,4,5,8,10,12,13,17,18 47.6% [6] 41 c.5814A>G p.Leu1938Leu 1,2,5,8,10,12,13,18 3.81% [6] 42 c.5843CA>TG/c.5843C>T p.Pro1948Leu 11 4.8% [14] 42 c.5844A>G p.Pro1948Pro 1,2,5,8,10,12,13 33.3% [14] 44 c.6069C>T p.Ile2023Ile 9,12,14,19 19.1% [6] 45 c.6249C>T p.Ile2083Ile 9,12,14,19 19.1% [5] 46 c.6285T>C p.Asp2095Asp 1,2,8,9,10,12,14,19 38.1% [14] IVS48 c.6769+21C>T SPLICE 1,10 9.5% [6] 49 c.6764G>T p.Ser2255Ile 1,9,14,19 19.1% [5] Several polymorphisms in exons and introns (IVS) throughout the entire ABCA4 gene were found in our study population.
X
ABCA4 p.Pro1948Leu 19365591:111:843
status: NEW110 Exon Nucleotide Change Effect STGD Families Frequency References IVS3 c.302+20C>T - 12 4.8% [6] IVS3 c.302+26A>G - 7,12,13,14 1.91% [6] 6 c.635G>A p.Arg212His 13,19 9.5% [15] IVS7 c.859+8T>C - 17 4.8% Present study 10 c.1268A>G p.His423Arg 2,4,5,6,10,11,12,13,14,18,19 53% [13] 10 c.1269C>T p.His423His 16 4.8% [13] IVS10 c.1356+5delG SPLICE 1,7,11,15,20 23.8% [13] IVS14 c.2161+47T>C - 18 4.8% Present study 19 c.2828G>A p.Arg943Gln 3,10,18,19 19.1% [5] IVS19 c.2919+34C>T - 12 4.8% Present study 20 c.2964T>C p.Leu988Leu 12 4.8% [6] IVS22 c.3326-19G>A - 2 4.8% Present study IVS33 c.4773+48C>T Splice 1,2,3,5,6,8,9,10,12,13,14,16,17,18,19,20 76.2% [13] 40 c.5603A>T p.Asn1868Ile 4,10,17 14.3% [6] 40 c.5682G>C p.Leu1894Leu 1,2,4,5,8,10,12,13,17,18 47.6% [6] 41 c.5814A>G p.Leu1938Leu 1,2,5,8,10,12,13,18 3.81% [6] 42 c.5843CA>TG/c.5843C>T p.Pro1948Leu 11 4.8% [14] 42 c.5844A>G p.Pro1948Pro 1,2,5,8,10,12,13 33.3% [14] 44 c.6069C>T p.Ile2023Ile 9,12,14,19 19.1% [6] 45 c.6249C>T p.Ile2083Ile 9,12,14,19 19.1% [5] 46 c.6285T>C p.Asp2095Asp 1,2,8,9,10,12,14,19 38.1% [14] IVS48 c.6769+21C>T SPLICE 1,10 9.5% [6] 49 c.6764G>T p.Ser2255Ile 1,9,14,19 19.1% [5] Several polymorphisms in exons and introns (IVS) throughout the entire ABCA4 gene were found in our study population.
X
ABCA4 p.Pro1948Leu 19365591:110:843
status: NEW[hide] Molecular testing for hereditary retinal disease a... Arch Ophthalmol. 2007 Feb;125(2):252-8. Downs K, Zacks DN, Caruso R, Karoukis AJ, Branham K, Yashar BM, Haimann MH, Trzupek K, Meltzer M, Blain D, Richards JE, Weleber RG, Heckenlively JR, Sieving PA, Ayyagari R
Molecular testing for hereditary retinal disease as part of clinical care.
Arch Ophthalmol. 2007 Feb;125(2):252-8., [PMID:17296903]
Abstract [show]
OBJECTIVE: To describe clinical molecular testing for hereditary retinal degenerations, highlighting results, interpretation, and patient education. METHODS: Mutation analysis of 8 retinal genes was performed by dideoxy sequencing. Pretest and posttest genetic counseling was offered to patients. The laboratory report listed results and provided individualized interpretation. RESULTS: A total of 350 tests were performed. The molecular basis of disease was determined in 133 of 266 diagnostic tests; the disease-causing mutations were not identified in the remaining 133 diagnostic tests. Predictive and carrier tests were requested for 9 and 75 nonsymptomatic patients with known familial mutations, respectively. CONCLUSIONS: Molecular testing can confirm a clinical diagnosis, identify carrier status, and confirm or rule out the presence of a familial mutation in nonsymptomatic at-risk relatives. Because causative mutations cannot be identified in all patients with retinal diseases, it is essential that patients are counseled before testing regarding the benefits and limitations of this emerging diagnostic tool. CLINICAL RELEVANCE: The molecular definition of the genetic basis of disease provides a unique adjunct to the clinical care of patients with hereditary retinal degenerations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
118 5843C → T This sequence change alters the amino acid at position 1948, from proline to leucine.
X
ABCA4 p.Pro1948Leu 17296903:118:71
status: NEW[hide] Genotyping microarray (gene chip) for the ABCR (AB... Hum Mutat. 2003 Nov;22(5):395-403. Jaakson K, Zernant J, Kulm M, Hutchinson A, Tonisson N, Glavac D, Ravnik-Glavac M, Hawlina M, Meltzer MR, Caruso RC, Testa F, Maugeri A, Hoyng CB, Gouras P, Simonelli F, Lewis RA, Lupski JR, Cremers FP, Allikmets R
Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.
Hum Mutat. 2003 Nov;22(5):395-403., [PMID:14517951]
Abstract [show]
Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research.
Comments [show]
None has been submitted yet.
No. Sentence Comment
88 Several common polymorphisms were also included, mainly from the coding region (R212H, H423R, R943Q, N1868I, P1948L, S2255I).
X
ABCA4 p.Pro1948Leu 14517951:88:109
status: NEW[hide] Detailed analysis of allelic variation in the ABCA... Invest Ophthalmol Vis Sci. 2003 Jul;44(7):2868-75. Schmidt S, Postel EA, Agarwal A, Allen IC Jr, Walters SN, De la Paz MA, Scott WK, Haines JL, Pericak-Vance MA, Gilbert JR
Detailed analysis of allelic variation in the ABCA4 gene in age-related maculopathy.
Invest Ophthalmol Vis Sci. 2003 Jul;44(7):2868-75., [PMID:12824224]
Abstract [show]
PURPOSE: Age-related maculopathy (ARM) is one of the most common causes of blindness in older adults worldwide. Sequence variants in a gene coding for a retina-specific ATP-binding cassette (ABCA4) transporter protein, which is responsible for a phenotypically similar Mendelian form of retinal disease, were proposed to increase the risk of ARM. To examine the potential relationship of ABCA4 sequence variation and ARM risk in an independent data set, a clinically well-characterized population of 165 multiplex patients with ARM from 70 families, 33 unaffected relatives, and 59 unrelated control subjects with confirmed absence of ARM was screened for variants in any of the 50 exons and exon-intron boundaries of this gene. METHODS: A combination of denaturing high-performance liquid chromatography (DHPLC) and bidirectional sequencing was used to detect ABCA4 sequence variants. The data set was analyzed with both case-control and family-based association analysis methods. RESULTS: No evidence was found of significantly different allele frequencies of ABCA4 sequence variants in patients compared with control subjects, and no evidence for association or cosegregation with disease in family-based analyses. CONCLUSIONS: This study confirmed the very high degree of ABCA4 sequence polymorphism in the general population, which makes the detection of potential disease-associated alleles particularly challenging. While this study does not definitively exclude ABCA4 from contributing to a small or moderate fraction of ARM, it adds to the body of evidence suggesting that ABCA4 is not a major susceptibility gene for this disorder.
Comments [show]
None has been submitted yet.
No. Sentence Comment
123 Polymorphisms and Rare Sequence Variants in Exons of the ABCA4 Gene Exon Nucleotide Change Effect Allele Frequency* P† P§ Referenceሻ Independent ARM (n ؍ 140) All ARM (n ؍ 330) Control Subjects (n ؍ 118) 6 589G3C Asp197Asn 0.000 0.000 0.009 0.46 0.12 - 6 635G3A Arg212His 0.030 0.026 0.000 0.13 0.11 W, R 10 1268A3G His423Arg 0.394 0.371 0.427 0.62‡ 0.34 W, R 10 1269C3T His423His(syn) 0.033 0.039 0.031 1.0 0.74 W 18 2701A3G Thr901Ala 0.000 0.003 0.000 NA 0.58 W, R 23 3495C3T Asn1165Asn(syn) 0.000 0.003 0.000 NA 0.75 - 30 4469G3A Cys1490Tyr 0.007 0.003 0.000 1.0 0.59 W 37 5206T3C Ser1736Pro 0.009 0.008 0.000 1.0 0.44 W 40 5603T3A Asn1868Ile 0.100 0.102 0.054 0.29 0.18 W 40 5682G3C Leu1894Leu(syn) 0.293 0.272 0.298 1.0 0.64 W 41 5814A3G Leu1938Leu(syn) 0.160 0.169 0.218 0.33 0.38 W 42 5843C3T Pro1948Leu 0.052 0.038 0.054 1.0 0.50 W 42 5844A3G Pro1948Pro(syn) 0.199 0.192 0.205 1.0 0.77 W 44 6069C3T Ile2023Ile(syn) 0.040 0.050 0.044 1.0 0.82 W 44 6079C3T Leu2027Phe 0.000 0.000 0.009 0.48 0.13 W * Actual n (number of chromosomes) varies, as frequencies were calculated relative to nonmissing data only.
X
ABCA4 p.Pro1948Leu 12824224:123:892
status: NEW[hide] Different clinical expressions in two families wit... Acta Ophthalmol Scand. 2001 Oct;79(5):524-30. Eksandh L, Ekstrom U, Abrahamson M, Bauer B, Andreasson S
Different clinical expressions in two families with Stargardt's macular dystrophy (STGD1).
Acta Ophthalmol Scand. 2001 Oct;79(5):524-30., [PMID:11594993]
Abstract [show]
PURPOSE: To describe the clinical expressions, with emphasis on electrophysiological examinations, in two Swedish families with Stargardt's macular dystrophy (STGD1). METHODS: Two pairs of siblings with STGD1, for whom diagnosis had been confirmed by genetic linkage to the ABCA4 gene region, were examined regarding visual acuity, kinetic perimetry, fundus photography, full-field ERG and multifocal ERG (MERG). Possible disease-causing mutations were screened for by DNA sequencing of selected regions of the ABCA4 gene. RESULTS: All STGD1 patients had visual acuity 0.07-0.1. The two families presented different fundus appearances, MERGs and implicit times on 30 Hz flicker white light full-field ERGs. Genetic analysis revealed one unique sequence variation in exon 19 of the ABCA4 gene, in one allele from the patients of one of the families. This point mutation causes the amino acid substitution T972N in the ABCR protein. CONCLUSION: Two pairs of siblings with STGD1 presented two different expressions of the disease regarding the distribution of the retinal dysfunction. One possible molecular explanation to the different clinical expressions may be the T972N substitution present in the ABCR protein in one of the STGD1 families investigated.
Comments [show]
None has been submitted yet.
No. Sentence Comment
98 So have the alterations found in exon 42, 5843CA»TG causing the substitution P1948L, and the 2828G»A mutation in exon 19 causing R943Q at the protein level (Table 3).
X
ABCA4 p.Pro1948Leu 11594993:98:82
status: NEW115 Polymorphism3 In 41 IVS41-40C-ϾA ª C/A C/A C/C C/A C/C C/C C/C C/C Polymorphism In 41 IVS41-37insCT ª insCT/ insCT/ insCT/ InsCT/ insCT/ insCT/ insCT/ insCT/ insCT insCT insCT insCT insCT insCT insCT insCT In 41 IVS41-16 insT - insT/insT insT/insT insT/insT InsT/insT insT/insT insT/insT insT/insT insT/insT In 41 IVS41-11G-ϾA ª G/A G/A G/G G/A G/G G/G G/G G/G Polymorphism4 Ex 42 5843CA-ϾTG P1948L CA/TG CA/TG CA/CA CA/TG CA/CA CA/CA CA/CA CA/CA Polymorphism2 1 As reported in Allikmets et al. 1997a; Maugeri et al. 2000; Papaiannou et al. 2000; Rivera et al. 2000.
X
ABCA4 p.Pro1948Leu 11594993:115:425
status: NEW[hide] Mutations in ABCR (ABCA4) in patients with Stargar... Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2229-36. Briggs CE, Rucinski D, Rosenfeld PJ, Hirose T, Berson EL, Dryja TP
Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration.
Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2229-36., [PMID:11527935]
Abstract [show]
PURPOSE: To determine the spectrum of ABCR mutations associated with Stargardt macular degeneration and cone-rod degeneration (CRD). METHODS: One hundred eighteen unrelated patients with recessive Stargardt macular degeneration and eight with recessive CRD were screened for mutations in ABCR (ABCA4) by single-strand conformation polymorphism analysis. Variants were characterized by direct genomic sequencing. Segregation analysis was performed on the families of 20 patients in whom at least two or more likely pathogenic sequence changes were identified. RESULTS: The authors found 77 sequence changes likely to be pathogenic: 21 null mutations (15 novel), 55 missense changes (26 novel), and one deletion of a consensus glycosylation site (also novel). Fifty-two patients with Stargardt macular degeneration (44% of those screened) and five with CRD each had two of these sequence changes or were homozygous for one of them. Segregation analyses in the families of 19 of these patients were informative and revealed that the index cases and all available affected siblings were compound heterozygotes or homozygotes. The authors found one instance of an apparently de novo mutation, Ile824Thr, in a patient. Thirty-seven (31%) of the 118 patients with Stargardt disease and one with CRD had only one likely pathogenic sequence change. Twenty-nine patients with Stargardt disease (25%) and two with CRD had no identified sequence changes. CONCLUSIONS: This report of 42 novel mutations brings the growing number of identified likely pathogenic sequence changes in ABCR to approximately 250.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Gly863Ala was detected in 9 of 252 patient alleles and 2 of 380 normal control alleles tested (P ϭ 0.009), and it was also considered pathogenic.
X
ABCA4 p.Pro1948Leu 11527935:64:60
status: NEW65 Four missense changes, Arg212His, His423Arg, Arg943Gln, and Pro1948Leu, were found at approximately equal frequency among patients and normal control subjects (P Ͼ 0.05 by Fisher`s two-tailed analysis) and were thus categorized as nonpathogenic polymorphisms.
X
ABCA4 p.Pro1948Leu 11527935:65:60
status: NEW[hide] Spectrum of ABCA4 (ABCR) gene mutations in Spanish... Hum Mutat. 2001 Jun;17(6):504-10. Paloma E, Martinez-Mir A, Vilageliu L, Gonzalez-Duarte R, Balcells S
Spectrum of ABCA4 (ABCR) gene mutations in Spanish patients with autosomal recessive macular dystrophies.
Hum Mutat. 2001 Jun;17(6):504-10., [PMID:11385708]
Abstract [show]
The ABCA4 gene has been involved in several forms of inherited macular dystrophy. In order to further characterize the complex genotype-phenotype relationships involving this gene, we have performed a mutation analysis of ABCA4 in 14 Spanish patients comprising eight STGD (Stargardt), four FFM (fundus flavimaculatus), and two CRD (Cone-rod dystrophy) patients. SSCP (single-strand conformation polymorphism) analysis and DNA sequencing of the coding and 5' upstream regions of this gene allowed the identification of 16 putatively pathogenic alterations, nine of which are novel. Most of these were missense changes, and no patient was found to carry two null alleles. Overall, the new data agree with a working model relating the different pathogenic phenotypes to the severity of the mutations. When considering the information presented here together with that of previous reports, a picture of the geographic distribution of three particular mutations emerges. The R212C change has been found in French, Italian, Dutch, German, and Spanish but not in British patients. In the Spanish collection, R212C was found in a CRD patient, indicating that it may be a rather severe change. In contrast, c.2588G>C, a very common mild allele in the Dutch population, is rarely found in Southern Europe. Interestingly, the c.2588G>C mutation has been found in a double mutant allele together with the missense R1055W. Finally, the newly described L1940P was found in two unrelated Spanish patients, and may be a moderate to severe allele.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 We examined the genomic sequences surrounding each of the changes looking for cryptic splice sites, and none was found, with the exception of c.1356+ TABLE 2. Summary of the Putative Polymorphisms Found in the Screening of the ABCA4 Gene Nucleotide change Exon/IVS Amino acid change No. of patients No. of controls Referencesa c.1239-14T->C IVS9 1 NT c.1239-63insC IVS9 1 NT c.1356+11delG IVS10 1 7/140 1 c.1762-54G->A IVS12 2 NT c.2829G->A E19 R943Q 1 8/70 2 c.3863-110G->C IVS26 1 0/50 c.4284G->A E29 T1466T 1 0/50 c.5461-50insA IVS38 1 NT c.5584+11C->G IVS39 1 NT c.5715-25C->A IVS40 1 NT c.5844A->G E42 P1948P 1 5/29 3 c.5843CA->TG E42 P1948L 1 NT 3 c.5835-43A->C IVS41 1 NT c.5835-11A->G IVS41 1 NT c.6249C->T E45 I2083I 2 NT 2 c.6285T->C E46 D2095D 1 NT 3 c.6480-21C->T IVS47 1 0/51 c.6730-5A->C IVS48 1 3/50 c.6764G->T E49 S2255I 2 6/26 2 c.6816+28G->C IVS49 1 4/14 a References: 1, Papaioannou et al. [2000]; 2, Allikmets et al. [1997]; 3, Maugeri et al. [1999].
X
ABCA4 p.Pro1948Leu 11385708:80:640
status: NEW[hide] An analysis of allelic variation in the ABCA4 gene... Invest Ophthalmol Vis Sci. 2001 May;42(6):1179-89. Webster AR, Heon E, Lotery AJ, Vandenburgh K, Casavant TL, Oh KT, Beck G, Fishman GA, Lam BL, Levin A, Heckenlively JR, Jacobson SG, Weleber RG, Sheffield VC, Stone EM
An analysis of allelic variation in the ABCA4 gene.
Invest Ophthalmol Vis Sci. 2001 May;42(6):1179-89., [PMID:11328725]
Abstract [show]
PURPOSE: To assess the allelic variation of the ATP-binding transporter protein (ABCA4). METHODS: A combination of single-strand conformation polymorphism (SSCP) and automated DNA sequencing was used to systematically screen this gene for sequence variations in 374 unrelated probands with a clinical diagnosis of Stargardt disease, 182 patients with age-related macular degeneration (AMD), and 96 normal subjects. RESULTS: There was no significant difference in the proportion of any single variant or class of variant between the control and AMD groups. In contrast, truncating variants, amino acid substitutions, synonymous codon changes, and intronic variants were significantly enriched in patients with Stargardt disease when compared with their presence in subjects without Stargardt disease (Kruskal-Wallis P < 0.0001 for each variant group). Overall, there were 2480 instances of 213 different variants in the ABCA4 gene, including 589 instances of 97 amino acid substitutions, and 45 instances of 33 truncating variants. CONCLUSIONS: Of the 97 amino acid substitutions, 11 occurred at a frequency that made them unlikely to be high-penetrance recessive disease-causing variants (HPRDCV). After accounting for variants in cis, one or more changes that were compatible with HPRDCV were found on 35% of all Stargardt-associated alleles overall. The nucleotide diversity of the ABCA4 coding region, a collective measure of the number and prevalence of polymorphic sites in a region of DNA, was found to be 1.28, a value that is 9 to 400 times greater than that of two other macular disease genes that were examined in a similar fashion (VMD2 and EFEMP1).
Comments [show]
None has been submitted yet.
No. Sentence Comment
102 Thirty-Three Truncated and 98 Amino Acid-Changing Variants in the ABCA4 Gene Exon Nucleotide Change Effect (A) (B) AMD (n ؍ 182) Control (n ؍ 96) STGD (n ؍ 374) Allele Prevalence 2 106delT FS NS 0 0 1 Ͻ0.01 2 160 ϩ 1g 3 a Splice site NS 0 0 1 Ͻ0.01 3 161G 3 A Cys54Tyr NS 0 0 6 Ͻ0.01 3 179C 3 T Ala60Val NS 0 0 2 Ͻ0.01 3 194G 3 A Gly65Glu NS 0 0 2 Ͻ0.01 3 223T 3 G Cys75Gly NS 0 0 2 Ͻ0.01 3 247delCAAA FS NS 0 0 2 Ͻ0.01 3 298C 3 T Ser100Pro NS 0 0 1 Ͻ0.01 5 454C 3 T Arg152Stop NS 0 0 2 Ͻ0.01 6 574G 3 A Ala192Thr NS 0 0 1 Ͻ0.01 6 618C 3 G Ser206Arg NS 0 0 3 Ͻ0.01 6 634C 3 T Arg212Cys 0.02 Yes 0 0 7 0.01 6 635G 3 A Arg212His NS 2 2 6 0.01 6 658C 3 T Arg220Cys NS 0 0 2 Ͻ0.01 6 661delG FS NS 0 0 1 Ͻ0.01 666delAAAGACGGTGC 6 GC FS NS 0 0 1 Ͻ0.01 6 746A 3 C Asp249Gly NS 0 0 1 Ͻ0.01 8 899C 3 A Thr300Asn NS 0 0 1 Ͻ0.01 8 997C 3 T Arg333Trp NS 0 0 1 Ͻ0.01 9 1140T 3 A Asn380Lys NS 0 0 1 Ͻ0.01 9 1222C 3 T Arg408Stop NS 0 0 1 Ͻ0.01 10 1268A 3 G His423Arg NS 1 0 7 0.01 10 1335C 3 G Ser445Arg NS 0 0 1 Ͻ0.01 10 1344delG FS NS 0 0 1 Ͻ0.01 11 1411G 3 A Glu471Lys NS 0 0 3 Ͻ0.01 11 1513delATCAC FS NS 0 0 1 Ͻ0.01 12 1622T 3 C Leu541Pro 0.001 Yes 0 0 11 0.01 13 1804C 3 T Arg602Trp NS 0 0 3 Ͻ0.01 13 1805G 3 A Arg602Gln NS 0 0 1 Ͻ0.01 13 1819G 3 T Gly607Trp NS 0 0 1 Ͻ0.01 13 1823T 3 A Phe608Ile NS 0 0 1 Ͻ0.01 13 1927G 3 A Val643Met NS 0 0 1 Ͻ0.01 14 1989G 3 T Trp663Stop NS 0 0 1 Ͻ0.01 14 2005delAT FS NS 0 0 3 Ͻ0.01 14 2041C 3 T Arg681Stop NS 0 0 2 Ͻ0.01 14 2147C 3 T Thr716Met NS 0 0 1 Ͻ0.01 15 2291G 3 A Cys764Tyr NS 0 0 1 Ͻ0.01 15 2294G 3 A Ser765Asn NS 0 0 1 Ͻ0.01 15 2300T 3 A Val767Asp NS 0 0 2 Ͻ0.01 16 2385del16bp FS NS 0 0 1 Ͻ0.01 16 2453G 3 A Gly818Glu NS 0 0 1 Ͻ0.01 16 2461T 3 A Trp821Arg NS 0 0 1 Ͻ0.01 16 2546T 3 C Val849Ala NS 0 0 4 Ͻ0.01 16 2552G 3 A Gly851Asp NS 0 0 1 Ͻ0.01 16 2560G 3 A Ala854Thr NS 0 0 1 Ͻ0.01 17 2588G 3 C Gly863Ala 0.0006 No 2 2 28 0.02 17 2617T 3 C Phe873Leu NS 0 0 1 Ͻ0.01 18 2690C 3 T Thr897Ile NS 0 0 1 Ͻ0.01 18 2701A 3 G Thr901Ala NS 0 1 0 Ͻ0.01 18 2703A 3 G Thr901Arg NS 0 0 2 Ͻ0.01 19 2828G 3 A Arg943Gln NS 20 13 37 0.05 19 2883delC FS NS 0 0 1 Ͻ0.01 20 2894A 3 G Asn965Ser NS 0 0 3 Ͻ0.01 19 2912C 3 A Thr971Asn NS 0 0 1 Ͻ0.01 19 2915C 3 A Thr972Asn NS 0 0 1 Ͻ0.01 20 2920T 3 C Ser974Pro NS 0 0 1 Ͻ0.01 20 2966T 3 C Val989Ala NS 0 0 2 Ͻ0.01 20 2977del8bp FS NS 0 0 1 Ͻ0.01 20 3041T 3 G Leu1014Arg NS 0 0 1 Ͻ0.01 21 3055A 3 G Thr1019Ala NS 0 0 1 Ͻ0.01 21 3064G 3 A Glu1022Lys NS 0 0 1 Ͻ0.01 21 3091A 3 G Lys1031Glu NS 0 0 1 Ͻ0.01 21 3113G 3 T Ala1038Val 0.001 Yes 1 0 17 0.01 22 3205insAA FS NS 0 0 1 Ͻ0.01 22 3261G 3 A Glu1087Lys NS 0 0 2 Ͻ0.01 22 3322C 3 T Arg1108Cys 0.04 Yes 0 0 6 Ͻ0.01 22 3323G 3 A Arg1108His NS 0 0 1 Ͻ0.01 23 3364G 3 A Glu1122Lys NS 0 0 1 Ͻ0.01 (continues) Exon Nucleotide Change Effect (A) (B) AMD (n ؍ 182) Control (n ؍ 96) STGD (n ؍ 374) Allele Prevalence 23 3386G 3 T Arg1129Leu NS 0 0 3 Ͻ0.01 24 3531C 3 A Cys1158Stop NS 0 0 1 Ͻ0.01 25 3749T 3 C Leu1250Pro NS 0 0 1 Ͻ0.01 26 3835delGATTCT FS NS 0 0 1 Ͻ0.01 27 3940C 3 A Pro1314Thr NS 0 1 0 Ͻ0.01 28 4139C 3 T Pro1380Leu 0.001 Yes 0 0 10 0.01 28 4222T 3 C Trp1408Arg NS 0 0 2 Ͻ0.01 28 4223G 3 T Trp1408Leu NS 0 0 2 Ͻ0.01 28 4234C 3 T Gln1412stop NS 0 0 1 Ͻ0.01 29 4297G 3 A Val1433Ile NS 1 0 0 Ͻ0.01 29 4319T 3 C Phe1440Ser NS 0 0 1 Ͻ0.01 30 4353 - 1g 3 t Splice site NS 0 0 1 Ͻ0.01 30 4457C 3 T Pro1486Leu NS 0 0 1 Ͻ0.01 30 4462T 3 C Cys1488Arg NS 0 0 3 Ͻ0.01 30 4463G 3 T Cys1488Phe NS 0 0 2 Ͻ0.01 30 4469G 3 A Cys1490Tyr NS 0 0 3 Ͻ0.01 30 4531insC FS NS 0 0 2 Ͻ0.01 32 4538A 3 G Gln1513Arg NS 0 0 1 Ͻ0.01 30 4539 ϩ 1g 3 t Splice site NS 0 0 1 Ͻ0.01 31 4574T 3 C Leu1525Pro NS 0 0 1 Ͻ0.01 33 4733delGTTT FS NS 0 0 1 Ͻ0.01 4859delATAACAinsTCC 35 T FS NS 0 0 1 Ͻ0.01 36 4909G 3 A Ala1637Thr NS 0 0 1 Ͻ0.01 35 4918C 3 T Arg1640Trp NS 0 0 1 Ͻ0.01 35 4919G 3 A Arg1640Gln NS 0 0 1 Ͻ0.01 35 4954T 3 G Tyr1652Asp NS 0 0 1 Ͻ0.01 36 5077G 3 A Val1693Ile NS 0 0 1 Ͻ0.01 36 5186T 3 C Leu1729Pro NS 0 0 2 Ͻ0.01 36 5206T 3 C Ser1736Pro NS 0 0 1 Ͻ0.01 36 5212del11bp FS NS 0 0 1 Ͻ0.01 37 5225delTGGTGGTGGGC FS NS 0 0 1 Ͻ0.01 del LPA 37 5278del9bp 1760 NS 0 0 1 Ͻ0.01 37 5288delG FS NS 0 0 1 Ͻ0.01 38 5395A 3 G Asn1799Asp NS 0 0 1 Ͻ0.01 38 5451T 3 G Asp1817Glu NS 1 0 4 Ͻ0.01 39 5584 ϩ 5g 3 a Splice site 0.02 Yes 0 0 6 Ͻ0.01 40 5603A 3 T Asn1868Ile 0.0006 No 20 7 79 0.08 40 5651T 3 A Val1884GLu NS 0 0 1 Ͻ0.01 40 5657G 3 A Gly1886Glu NS 0 0 1 Ͻ0.01 40 5687T 3 A Val1896Asp NS 0 0 1 Ͻ0.01 40 5693G 3 A Arg1898His NS 0 0 1 Ͻ0.01 40 5714 ϩ 5g 3 a Splice site NS 0 0 1 Ͻ0.01 42 5843CA 3 TG Pro1948Leu NS 11 7 28 0.04 42 5882G 3 A Gly1961Glu Ͻ0.0001 Yes 1 0 43 0.03 43 5908C 3 T Leu1970Phe NS 1 0 1 Ͻ0.01 43 5917delG FS NS 0 0 1 Ͻ0.01 44 6079C 3 T Leu2027Phe 0.01 Yes 0 0 9 0.01 44 6088C 3 T Arg2030Stop NS 0 0 2 Ͻ0.01 44 6089G 3 A Arg2030Gln NS 0 0 1 Ͻ0.01 44 6112A 3 T Arg2038Trp NS 0 0 1 Ͻ0.01 45 6148A 3 C Val2050Leu NS 1 0 0 Ͻ0.01 46 6212A 3 T Tyr2071Phe NS 0 0 1 Ͻ0.01 45 6229C 3 T Arg2077Trp NS 0 0 2 Ͻ0.01 46 6320G 3 A Arg2107His 0.01 Yes 0 0 10 0.01 46 6383A 3 G His2128Arg NS 0 0 1 Ͻ0.01 47 6446G 3 T Arg2149Leu NS 0 0 1 Ͻ0.01 47 6449G 3 A Cys2150Tyr NS 0 0 5 Ͻ0.01 48 6529G 3 A Asp2177Asn NS 2 0 0 Ͻ0.01 48 6686T 3 C Leu2229Pro NS 0 0 1 Ͻ0.01 48 6707delTCACACAG FS NS 0 0 1 Ͻ0.01 48 6729 ϩ 1g 3 a Splice site NS 0 0 1 Ͻ0.01 49 6764G 3 T Ser2255Ile 0.009 No 16 4 54 0.06 49 6788G 3 T Arg2263Leu NS 0 0 1 Ͻ0.01 (A) The probability under the null hypothesis of similar prevalence of each variant in Stargardt (STGD) compared with non-STGD alleles (two-tailed Fisher`s exact test); (B) compatability of the variant existing in a ratio of 100:1 in STGD to control alleles, calculated using the binomial distribution.
X
ABCA4 p.Pro1948Leu 11328725:102:5257
status: NEW140 Two of these 13 were the common variants Ser2255Ile and Pro1948Leu.
X
ABCA4 p.Pro1948Leu 11328725:140:56
status: NEW152 These included two common polymorphisms Arg943Gln and Pro1948Leu that occurred on more than 3% of all alleles.
X
ABCA4 p.Pro1948Leu 11328725:152:54
status: NEW103 Thirty-Three Truncated and 98 Amino Acid-Changing Variants in the ABCA4 Gene Exon Nucleotide Change Effect (A) (B) AMD (n d1d; 182) Control (n d1d; 96) STGD (n d1d; 374) Allele Prevalence 2 106delT FS NS 0 0 1 b0d;0.01 2 160 af9; 1g 3 a Splice site NS 0 0 1 b0d;0.01 3 161G 3 A Cys54Tyr NS 0 0 6 b0d;0.01 3 179C 3 T Ala60Val NS 0 0 2 b0d;0.01 3 194G 3 A Gly65Glu NS 0 0 2 b0d;0.01 3 223T 3 G Cys75Gly NS 0 0 2 b0d;0.01 3 247delCAAA FS NS 0 0 2 b0d;0.01 3 298C 3 T Ser100Pro NS 0 0 1 b0d;0.01 5 454C 3 T Arg152Stop NS 0 0 2 b0d;0.01 6 574G 3 A Ala192Thr NS 0 0 1 b0d;0.01 6 618C 3 G Ser206Arg NS 0 0 3 b0d;0.01 6 634C 3 T Arg212Cys 0.02 Yes 0 0 7 0.01 6 635G 3 A Arg212His NS 2 2 6 0.01 6 658C 3 T Arg220Cys NS 0 0 2 b0d;0.01 6 661delG FS NS 0 0 1 b0d;0.01 666delAAAGACGGTGC 6 GC FS NS 0 0 1 b0d;0.01 6 746A 3 C Asp249Gly NS 0 0 1 b0d;0.01 8 899C 3 A Thr300Asn NS 0 0 1 b0d;0.01 8 997C 3 T Arg333Trp NS 0 0 1 b0d;0.01 9 1140T 3 A Asn380Lys NS 0 0 1 b0d;0.01 9 1222C 3 T Arg408Stop NS 0 0 1 b0d;0.01 10 1268A 3 G His423Arg NS 1 0 7 0.01 10 1335C 3 G Ser445Arg NS 0 0 1 b0d;0.01 10 1344delG FS NS 0 0 1 b0d;0.01 11 1411G 3 A Glu471Lys NS 0 0 3 b0d;0.01 11 1513delATCAC FS NS 0 0 1 b0d;0.01 12 1622T 3 C Leu541Pro 0.001 Yes 0 0 11 0.01 13 1804C 3 T Arg602Trp NS 0 0 3 b0d;0.01 13 1805G 3 A Arg602Gln NS 0 0 1 b0d;0.01 13 1819G 3 T Gly607Trp NS 0 0 1 b0d;0.01 13 1823T 3 A Phe608Ile NS 0 0 1 b0d;0.01 13 1927G 3 A Val643Met NS 0 0 1 b0d;0.01 14 1989G 3 T Trp663Stop NS 0 0 1 b0d;0.01 14 2005delAT FS NS 0 0 3 b0d;0.01 14 2041C 3 T Arg681Stop NS 0 0 2 b0d;0.01 14 2147C 3 T Thr716Met NS 0 0 1 b0d;0.01 15 2291G 3 A Cys764Tyr NS 0 0 1 b0d;0.01 15 2294G 3 A Ser765Asn NS 0 0 1 b0d;0.01 15 2300T 3 A Val767Asp NS 0 0 2 b0d;0.01 16 2385del16bp FS NS 0 0 1 b0d;0.01 16 2453G 3 A Gly818Glu NS 0 0 1 b0d;0.01 16 2461T 3 A Trp821Arg NS 0 0 1 b0d;0.01 16 2546T 3 C Val849Ala NS 0 0 4 b0d;0.01 16 2552G 3 A Gly851Asp NS 0 0 1 b0d;0.01 16 2560G 3 A Ala854Thr NS 0 0 1 b0d;0.01 17 2588G 3 C Gly863Ala 0.0006 No 2 2 28 0.02 17 2617T 3 C Phe873Leu NS 0 0 1 b0d;0.01 18 2690C 3 T Thr897Ile NS 0 0 1 b0d;0.01 18 2701A 3 G Thr901Ala NS 0 1 0 b0d;0.01 18 2703A 3 G Thr901Arg NS 0 0 2 b0d;0.01 19 2828G 3 A Arg943Gln NS 20 13 37 0.05 19 2883delC FS NS 0 0 1 b0d;0.01 20 2894A 3 G Asn965Ser NS 0 0 3 b0d;0.01 19 2912C 3 A Thr971Asn NS 0 0 1 b0d;0.01 19 2915C 3 A Thr972Asn NS 0 0 1 b0d;0.01 20 2920T 3 C Ser974Pro NS 0 0 1 b0d;0.01 20 2966T 3 C Val989Ala NS 0 0 2 b0d;0.01 20 2977del8bp FS NS 0 0 1 b0d;0.01 20 3041T 3 G Leu1014Arg NS 0 0 1 b0d;0.01 21 3055A 3 G Thr1019Ala NS 0 0 1 b0d;0.01 21 3064G 3 A Glu1022Lys NS 0 0 1 b0d;0.01 21 3091A 3 G Lys1031Glu NS 0 0 1 b0d;0.01 21 3113G 3 T Ala1038Val 0.001 Yes 1 0 17 0.01 22 3205insAA FS NS 0 0 1 b0d;0.01 22 3261G 3 A Glu1087Lys NS 0 0 2 b0d;0.01 22 3322C 3 T Arg1108Cys 0.04 Yes 0 0 6 b0d;0.01 22 3323G 3 A Arg1108His NS 0 0 1 b0d;0.01 23 3364G 3 A Glu1122Lys NS 0 0 1 b0d;0.01 (continues) Exon Nucleotide Change Effect (A) (B) AMD (n d1d; 182) Control (n d1d; 96) STGD (n d1d; 374) Allele Prevalence 23 3386G 3 T Arg1129Leu NS 0 0 3 b0d;0.01 24 3531C 3 A Cys1158Stop NS 0 0 1 b0d;0.01 25 3749T 3 C Leu1250Pro NS 0 0 1 b0d;0.01 26 3835delGATTCT FS NS 0 0 1 b0d;0.01 27 3940C 3 A Pro1314Thr NS 0 1 0 b0d;0.01 28 4139C 3 T Pro1380Leu 0.001 Yes 0 0 10 0.01 28 4222T 3 C Trp1408Arg NS 0 0 2 b0d;0.01 28 4223G 3 T Trp1408Leu NS 0 0 2 b0d;0.01 28 4234C 3 T Gln1412stop NS 0 0 1 b0d;0.01 29 4297G 3 A Val1433Ile NS 1 0 0 b0d;0.01 29 4319T 3 C Phe1440Ser NS 0 0 1 b0d;0.01 30 4353 afa; 1g 3 t Splice site NS 0 0 1 b0d;0.01 30 4457C 3 T Pro1486Leu NS 0 0 1 b0d;0.01 30 4462T 3 C Cys1488Arg NS 0 0 3 b0d;0.01 30 4463G 3 T Cys1488Phe NS 0 0 2 b0d;0.01 30 4469G 3 A Cys1490Tyr NS 0 0 3 b0d;0.01 30 4531insC FS NS 0 0 2 b0d;0.01 32 4538A 3 G Gln1513Arg NS 0 0 1 b0d;0.01 30 4539 af9; 1g 3 t Splice site NS 0 0 1 b0d;0.01 31 4574T 3 C Leu1525Pro NS 0 0 1 b0d;0.01 33 4733delGTTT FS NS 0 0 1 b0d;0.01 4859delATAACAinsTCC 35 T FS NS 0 0 1 b0d;0.01 36 4909G 3 A Ala1637Thr NS 0 0 1 b0d;0.01 35 4918C 3 T Arg1640Trp NS 0 0 1 b0d;0.01 35 4919G 3 A Arg1640Gln NS 0 0 1 b0d;0.01 35 4954T 3 G Tyr1652Asp NS 0 0 1 b0d;0.01 36 5077G 3 A Val1693Ile NS 0 0 1 b0d;0.01 36 5186T 3 C Leu1729Pro NS 0 0 2 b0d;0.01 36 5206T 3 C Ser1736Pro NS 0 0 1 b0d;0.01 36 5212del11bp FS NS 0 0 1 b0d;0.01 37 5225delTGGTGGTGGGC FS NS 0 0 1 b0d;0.01 del LPA 37 5278del9bp 1760 NS 0 0 1 b0d;0.01 37 5288delG FS NS 0 0 1 b0d;0.01 38 5395A 3 G Asn1799Asp NS 0 0 1 b0d;0.01 38 5451T 3 G Asp1817Glu NS 1 0 4 b0d;0.01 39 5584 af9; 5g 3 a Splice site 0.02 Yes 0 0 6 b0d;0.01 40 5603A 3 T Asn1868Ile 0.0006 No 20 7 79 0.08 40 5651T 3 A Val1884GLu NS 0 0 1 b0d;0.01 40 5657G 3 A Gly1886Glu NS 0 0 1 b0d;0.01 40 5687T 3 A Val1896Asp NS 0 0 1 b0d;0.01 40 5693G 3 A Arg1898His NS 0 0 1 b0d;0.01 40 5714 af9; 5g 3 a Splice site NS 0 0 1 b0d;0.01 42 5843CA 3 TG Pro1948Leu NS 11 7 28 0.04 42 5882G 3 A Gly1961Glu b0d;0.0001 Yes 1 0 43 0.03 43 5908C 3 T Leu1970Phe NS 1 0 1 b0d;0.01 43 5917delG FS NS 0 0 1 b0d;0.01 44 6079C 3 T Leu2027Phe 0.01 Yes 0 0 9 0.01 44 6088C 3 T Arg2030Stop NS 0 0 2 b0d;0.01 44 6089G 3 A Arg2030Gln NS 0 0 1 b0d;0.01 44 6112A 3 T Arg2038Trp NS 0 0 1 b0d;0.01 45 6148A 3 C Val2050Leu NS 1 0 0 b0d;0.01 46 6212A 3 T Tyr2071Phe NS 0 0 1 b0d;0.01 45 6229C 3 T Arg2077Trp NS 0 0 2 b0d;0.01 46 6320G 3 A Arg2107His 0.01 Yes 0 0 10 0.01 46 6383A 3 G His2128Arg NS 0 0 1 b0d;0.01 47 6446G 3 T Arg2149Leu NS 0 0 1 b0d;0.01 47 6449G 3 A Cys2150Tyr NS 0 0 5 b0d;0.01 48 6529G 3 A Asp2177Asn NS 2 0 0 b0d;0.01 48 6686T 3 C Leu2229Pro NS 0 0 1 b0d;0.01 48 6707delTCACACAG FS NS 0 0 1 b0d;0.01 48 6729 af9; 1g 3 a Splice site NS 0 0 1 b0d;0.01 49 6764G 3 T Ser2255Ile 0.009 No 16 4 54 0.06 49 6788G 3 T Arg2263Leu NS 0 0 1 b0d;0.01 (A) The probability under the null hypothesis of similar prevalence of each variant in Stargardt (STGD) compared with non-STGD alleles (two-tailed Fisher`s exact test); (B) compatability of the variant existing in a ratio of 100:1 in STGD to control alleles, calculated using the binomial distribution.
X
ABCA4 p.Pro1948Leu 11328725:103:5167
status: NEW141 Two of these 13 were the common variants Ser2255Ile and Pro1948Leu.
X
ABCA4 p.Pro1948Leu 11328725:141:56
status: NEW153 These included two common polymorphisms Arg943Gln and Pro1948Leu that occurred on more than 3% of all alleles.
X
ABCA4 p.Pro1948Leu 11328725:153:54
status: NEW[hide] A comprehensive survey of sequence variation in th... Am J Hum Genet. 2000 Oct;67(4):800-13. Epub 2000 Aug 24. Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH
A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration.
Am J Hum Genet. 2000 Oct;67(4):800-13. Epub 2000 Aug 24., [PMID:10958763]
Abstract [show]
Stargardt disease (STGD) is a common autosomal recessive maculopathy of early and young-adult onset and is caused by alterations in the gene encoding the photoreceptor-specific ATP-binding cassette (ABC) transporter (ABCA4). We have studied 144 patients with STGD and 220 unaffected individuals ascertained from the German population, to complete a comprehensive, population-specific survey of the sequence variation in the ABCA4 gene. In addition, we have assessed the proposed role for ABCA4 in age-related macular degeneration (AMD), a common cause of late-onset blindness, by studying 200 affected individuals with late-stage disease. Using a screening strategy based primarily on denaturing gradient gel electrophoresis, we have identified in the three study groups a total of 127 unique alterations, of which 90 have not been previously reported, and have classified 72 as probable pathogenic mutations. Of the 288 STGD chromosomes studied, mutations were identified in 166, resulting in a detection rate of approximately 58%. Eight different alleles account for 61% of the identified disease alleles, and at least one of these, the L541P-A1038V complex allele, appears to be a founder mutation in the German population. When the group with AMD and the control group were analyzed with the same methodology, 18 patients with AMD and 12 controls were found to harbor possible disease-associated alterations. This represents no significant difference between the two groups; however, for detection of modest effects of rare alleles in complex diseases, the analysis of larger cohorts of patients may be required.
Comments [show]
None has been submitted yet.
No. Sentence Comment
83 Table 4 Polymorphisms in the ABCA4 Gene EXON AND NUCLEOTIDE CHANGE EFFECT NO. OF ALLELES REFERENCE(S) STGD (n p 288) AMD (n p 400) Control (n p 440) 6: 635GrA R212H 8 8 32 This study 7: IVS6-32TrC Unknown 53 115 130 This study 10: 1267ArG H423R 52 79 101 This study 1268CrT H423H 11 17 17 This study 14: IVS14ϩ50TrCa Unknown 22 18 9 This study 19: 2828GrAa R943Q 23 14 10 Allikmets et al. (1997a, 1997b), Maugeri et al. (1999), Papaioannou et al. (2000) 28: 4203CrA P1401P 29 13 20 Maugeri et al. (1999) 33: IVS32-38CrT Unknown 1 4 12 This study 34: IVS33-16delGT Unknown 24 8 12 This study 40: 5603ArT N1868I 37 40 46 Maugeri et al. (1999) 5682GrC L1894L 73 52 91 Maugeri et al. (1999), Papaioannou et al. (2000) 41: 5814ArG L1938L 50 68 70 This study 42: IVS41-11GrA Unknown 46 56 55 Maugeri et al. (1999) 5844ArG P1948P 40 40 39 Maugeri et al. (1999), Papaioannou et al. (2000) 5843CArTG P1948L 5 14 13 Maugeri et al. (1999) 44: IVS43-16GrA Unknown 46 48 55 Papaioannou et al. (2000) 45: IVS45ϩ7GrA Unknown 10 15 11 Papaioannou et al. (2000) 6249CrT I2083I 13 17 27 Allikmets et al. (1997a), Maugeri et al. (1999) 46: 6285TrC D2095D 38 36 33 Maugeri et al. (1999) a 2828GrA and IVS14ϩ50TrC occur on the same haplotype together with 2588GrC.
X
ABCA4 p.Pro1948Leu 10958763:83:897
status: NEW101 Nineteen different alterations were present in 11% of the control alleles and were classified as polymorphisms (table 4); these include five nonconservative amino acid substitutions (R212H, H423R, R943Q, N1868I, and P1948L).
X
ABCA4 p.Pro1948Leu 10958763:101:216
status: NEW[hide] ABCR gene analysis in familial exudative age-relat... Invest Ophthalmol Vis Sci. 2000 Jan;41(1):244-7. Souied EH, Ducroq D, Rozet JM, Gerber S, Perrault I, Munnich A, Coscas G, Soubrane G, Kaplan J
ABCR gene analysis in familial exudative age-related macular degeneration.
Invest Ophthalmol Vis Sci. 2000 Jan;41(1):244-7., [PMID:10634626]
Abstract [show]
PURPOSE: Identification of genetic factors in the pathogenesis of age-related macular degeneration (AMD) is of crucial importance in this common cause of blindness. Mutations in the Stargardt disease gene (ABCR) were previously reported in patients with atrophic forms of AMD. The purpose of this study was to analyze familial segregation of ABCR gene mutations in 52 unrelated multiplex cases of exudative AMD. METHODS: A complete ophthalmological examination including visual acuity measurement, fundus examination, and fluorescein angiography (FA) was performed on each exudative AMD patient. The entire coding sequence of the ABCR gene was analyzed using a combination of single-strand conformation polymorphism and confirmatory sequencing of the exons showing an abnormal pattern of migration. RESULTS: Six heterozygous missense changes were identified. A lack of familial segregation was observed in 4 of 6 codon changes (Arg943Gln, Val1433Ile, Pro1948Leu, and Ser2255Ile). Conversely, 2 codon changes cosegregated with the disease in 2 small families: Pro940Arg and Leu1970Phe. CONCLUSIONS: The authors believe that segregation of the ABCR gene mutations with familial cases of AMD has not yet been shown. The analysis of familial segregation allowed the authors to exclude 4 of 6 codon changes as disease-causing mutations. Furthermore, it was shown here that the ABCR gene may be rarely involved in exudative AMD, with at best 2 of 52 familial cases (4%) related to this susceptibility factor.
Comments [show]
None has been submitted yet.
No. Sentence Comment
8 A lack of familial segregation was observed in 4 of 6 codon changes (Arg943Gln, Val1433Ile, Pro1948Leu, and Ser2255Ile).
X
ABCA4 p.Pro1948Leu 10634626:8:92
status: NEW40 The heterozygous codon changes observed were Pro940Arg, Arg943Gln (2 families), Pro1948Leu (2 families), Leu1970Phe, Val1433Ile, and Ser2255Ile.
X
ABCA4 p.Pro1948Leu 10634626:40:80
status: NEW41 The Arg943Gln, Pro1948Leu, and Ser2255Ile substitutions were observed in the control group: in 3 of 90, 3 of 90, and 1 of 90, respectively.
X
ABCA4 p.Pro1948Leu 10634626:41:15
status: NEW43 No cosegregation of the base substitution with the disease was observed in the families harboring either Arg943Gln, Val1433Ile, Pro1948Leu, or Ser2255Ile changes.
X
ABCA4 p.Pro1948Leu 10634626:43:128
status: NEW45 It is worth noting that the Pro1948Leu codon change seen in a patient belonging to a large family (13 siblings were alive and analyzed) did not segregate with the disease.
X
ABCA4 p.Pro1948Leu 10634626:45:28
status: NEW54 Here, the lack of detection of Arg943Gln, Pro1948Leu, and Ser2255Ile in controls was not particularly meaningful and did not permit us to establish statistical significance.
X
ABCA4 p.Pro1948Leu 10634626:54:42
status: NEW63 First, a lack of segregation was observed, for the Arg943Gln, Val1433Ile, Pro1948Leu, and Ser2255Ile changes.
X
ABCA4 p.Pro1948Leu 10634626:63:74
status: NEW[hide] An analysis of ABCR mutations in British patients ... Invest Ophthalmol Vis Sci. 2000 Jan;41(1):16-9. Papaioannou M, Ocaka L, Bessant D, Lois N, Bird A, Payne A, Bhattacharya S
An analysis of ABCR mutations in British patients with recessive retinal dystrophies.
Invest Ophthalmol Vis Sci. 2000 Jan;41(1):16-9., [PMID:10634594]
Abstract [show]
PURPOSE: Several reports have shown that mutations in the ABCR gene can lead to Stargardt disease (STGD)/fundus flavimaculatus (FFM), autosomal recessive retinitis pigmentosa (arRP), and autosomal recessive cone-rod dystrophy (arCRD). To assess the involvement of ABCR in these retinal dystrophies, the gene was screened in a panel of 70 patients of British origin. METHODS: Fifty-six patients exhibiting the STGD/FFM phenotype, 6 with arRP, and 8 with arCRD, were screened for mutations in the 50 exons of the ABCR gene by heteroduplex analysis and direct sequencing. Microsatellite marker haplotyping was used to determine ancestry. RESULTS: In the 70 patients analyzed, 31 sequence changes were identified, of which 20 were considered to be novel mutations, in a variety of phenotypes. An identical haplotype was associated with the same pair of in-cis alterations in 5 seemingly unrelated patients and their affected siblings with STGD/FFM. Four of the aforementioned patients were found to carry three alterations in the coding sequence of the ABCR gene, with two of them being in-cis. CONCLUSIONS: These results suggest that ABCR is a relatively polymorphic gene. Because putative mutations have been identified thus far only in 25 of 70 patients, of whom only 8 are compound heterozygotes, a large number of mutations have yet to be ascertained. The disease haplotype seen in the 5 patients carrying the same "complex" allele is consistent with the presence of a common ancestor.
Comments [show]
None has been submitted yet.
No. Sentence Comment
46 TABLE 2. List of Polymorphisms Found in 70 Patients of British Origin Nucleotide Change Exon Amino Acid Change No. of Patients (/70) No. of Controls (/96) 1356ϩ11delG 10 intron - 2 NF *G2828A 19 Arg-943-Gln 8 16/176 3815-82G3C 25 intron - 1 NF G5682C 40 Leu-1894-Leu 1 30 C5842T 42 Pro-1948-Leu 4 7 G5844A 42 Pro-1948-Pro 12 22 T5885C 42 Val-1962-Val 9 NF 6006-16G3A 43 intron - 19 NF 6729ϩ21C3T 48 intron - 2 NF 6816ϩ27G3C 49 intron - 4 NF * Independently reported by Allikmets et al.6 NF, not found.
X
ABCA4 p.Pro1948Leu 10634594:46:288
status: NEW[hide] Common synonymous variants in ABCA4 are protective... BMC Ophthalmol. 2015 Mar 6;15:18. doi: 10.1186/s12886-015-0008-0. Grassmann F, Bergholz R, Mandl J, Jagle H, Ruether K, Weber BH
Common synonymous variants in ABCA4 are protective for chloroquine induced maculopathy (toxic maculopathy).
BMC Ophthalmol. 2015 Mar 6;15:18. doi: 10.1186/s12886-015-0008-0., [PMID:25884411]
Abstract [show]
BACKGROUND: Chloroquine (CQ) and hydroxychloroquine (HCQ) are used to treat auto-immune related diseases such as rheumatoid arthritis (RA) or systemic lupus erythematosus. Both drugs however can cause retinal toxicity eventually leading to irreversible maculopathy and retinopathy. Established risk factors are duration and dosage of treatment while the involvement of genetic factors contributing to toxic maculopathy is largely unclear. To address the latter issue, this study aimed to expand on earlier efforts by (1) evaluating risk-altering variants known to be associated with age-related macular degeneration (AMD), a frequent maculopathy in individuals over 55 years of age, and (2) determining the contribution of genetic variants in the coding sequence of the ABCA4 gene. METHODS: The ABCA4 gene was analyzed by deep sequencing technology using a personal genome machine (Ion Torrent) with 200 bp read length. Assessment of AMD variants was done by restriction enzyme digestion of PCR products and TaqMan SNP genotyping. Effect sizes, p-values and confidence intervals of common variants were evaluated by logistic regression (Firth's bias corrected). To account for multiple testing, p-values were adjusted according to the false discovery rate. RESULTS: We found no effects of known AMD-associated variants on the risk of toxic maculopathy. In contrast, we report a statistically significant association of common variants in the ABCA4 gene with retinal disease, assessed by a score-based variance-component test (PSKAT = 0.0055). This association remained significant after adjustment for environmental factors like age and duration of medication and was driven by three common variants in ABCA4 (c.5682G > C, c.5814A > G, c.5844A > G), all conferring a reduced risk for toxic maculopathy. CONCLUSIONS: Our findings demonstrate that minor alleles of common genetic variants in ABCA4 significantly reduce susceptibility to develop toxic maculopathy under CQ treatment. A refined risk profile based on genetic and environmental factors may have implications for revised recommendations in CQ as well as HCQ treatment.
Comments [show]
None has been submitted yet.
No. Sentence Comment
95 Table 2 Genetic variants identified in ABCA4 sequence analysis in CQ-treated patients with (cases) and without (controls) toxic maculopathy Frequency in Variant (NM_000350.2) Amino acid exchange (NP_000341.2) Cases Controls EURߤ Raw p-value FDR# c.324G > A M114I 0.00 0.04 - - - c.635G > A R212H 0.06 0.08 0.06 - - c.1268A > G* H423R 0.29 0.23 0.30 0.58783 0.58783 c.1269C > T H423H 0.13 0.04 0.07 - - c.1622T > C L541P 0.02 0.00 - - - c.2588G > C G863A 0.00 0.04 0.00 - - c.2828G > A R943Q 0.04 0.12 0.04 - - c.3113C > T A1038V 0.02 0.00 0.00 - - c.4203C > A P1401P 0.00 0.04 - - - c.4297G > A V1433I 0.00 0.04 0.00 - - c.5603A > T N1868I 0.06 0.08 0.07 - - c.5682G > C* L1894L 0.13 0.38 0.26 0.02292 0.030 c.5814A > G* L1938L 0.06 0.31 0.18 0.00722 0.014 c.5843C > T P1948L 0.04 0.08 0.04 - - c.5844A > G* P1948P 0.06 0.31 0.19 0.00722 0.014 c.6069T > C I2023I 0.04 0.08 0.06 - c.6148G > C V2050L 0.02 0.00 0.00 - - c.6249C > T I2083I 0.04 0.08 0.05 - - c.6282 + 7G > A - 0.04 0.08 0.05 - - c.6285T > C D2095D 0.08 0.15 0.10 - - c.6357A > G E2119E 0.02 0.00 - - - c.6730-3T > C - 0.02 0.12 0.02 - - c.6764G > T S2255I 0.02 0.12 0.02 - - *Common variants (combined frequency in cases and controls > 11.6%).
X
ABCA4 p.Pro1948Leu 25884411:95:775
status: NEW