ABCC7 p.Arg347Cys

ClinVar: c.1039C>T , p.Arg347Cys ? , not provided
c.1040G>A , p.Arg347His D , Pathogenic
c.1040G>T , p.Arg347Leu D , Pathogenic
c.1040G>C , p.Arg347Pro D , Pathogenic
CF databases: c.1040G>C , p.Arg347Pro D , CF-causing ; CFTR1: This mutation destroys a Hha I restriciton site and creates an NcoI site and occurred in a family diagnosed as PS. The mutation have been identified and analyzed using the SSCP technique.
c.1040G>A , p.Arg347His D , CF-causing ; CFTR1: The patient is of Italian origin and carries the [delta]F508 mutation on the other chromosome. Initially we thought this was the same mutation as R347 because it destroys the same hhai site; however, R347H does not create the NcoI site.
c.1040G>T , p.Arg347Leu (CFTR1) D , A nucleotide change, G->T at position 1172, was detected leading to R347L. The other chromosome carries a [delta]F508. This mutation was found on one chromosome among 150 CF chromosomes screened.
c.1039C>T , p.Arg347Cys (CFTR1) ? , This mutation was identified by DGGE and direct sequencing.
Predicted by SNAP2: A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (71%), I: D (95%), K: D (95%), L: D (80%), M: D (95%), N: D (95%), P: D (75%), Q: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%),
Predicted by PROVEAN: A: N, C: D, D: D, E: N, F: D, G: D, H: N, I: D, K: N, L: N, M: N, N: N, P: N, Q: N, S: N, T: N, V: D, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cotten JF, Welsh MJ
Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge.
J Biol Chem. 1999 Feb 26;274(9):5429-35., 1999-02-26 [PMID:10026154]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Clain J, Fritsch J, Lehmann-Che J, Bali M, Arous N, Goossens M, Edelman A, Fanen P
Two mild cystic fibrosis-associated mutations result in severe cystic fibrosis when combined in cis and reveal a residue important for cystic fibrosis transmembrane conductance regulator processing and function.
J Biol Chem. 2001 Mar 23;276(12):9045-9. Epub 2000 Dec 15., 2001-03-23 [PMID:11118444]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Smith SS, Liu X, Zhang ZR, Sun F, Kriewall TE, McCarty NA, Dawson DC
CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction.
J Gen Physiol. 2001 Oct;118(4):407-31., [PMID:11585852]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Ravnik-Glavac M, Atkinson A, Glavac D, Dean M
DHPLC screening of cystic fibrosis gene mutations.
Hum Mutat. 2002 Apr;19(4):374-83., [PMID:11933191]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Kerem E
Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
Pediatr Pulmonol. 2005 Sep;40(3):183-96., [PMID:15880796]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Beck EJ, Yang Y, Yaemsiri S, Raghuram V
Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
J Biol Chem. 2008 Feb 22;283(8):4957-66. Epub 2007 Dec 3., 2008-02-22 [PMID:18056267]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Caci E, Caputo A, Hinzpeter A, Arous N, Fanen P, Sonawane N, Verkman AS, Ravazzolo R, Zegarra-Moran O, Galietta LJ
Evidence for direct CFTR inhibition by CFTR(inh)-172 based on Arg347 mutagenesis.
Biochem J. 2008 Jul 1;413(1):135-42., 2008-07-01 [PMID:18366345]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cui G, Zhang ZR, O'Brien AR, Song B, McCarty NA
Mutations at arginine 352 alter the pore architecture of CFTR.
J Membr Biol. 2008 Mar;222(2):91-106. Epub 2008 Apr 18., [PMID:18421494]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC
Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore.
Biochemistry. 2009 Oct 27;48(42):10078-88., 2009-10-27 [PMID:19754156]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Bai Y, Li M, Hwang TC
Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
J Gen Physiol. 2010 Sep;136(3):293-309., [PMID:20805575]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Sheppard DN, Welsh MJ
Structure and function of the CFTR chloride channel.
Physiol Rev. 1999 Jan;79(1 Suppl):S23-45., [PMID:9922375]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Dawson DC, Smith SS, Mansoura MK
CFTR: mechanism of anion conduction.
Physiol Rev. 1999 Jan;79(1 Suppl):S47-75., [PMID:9922376]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cheung M, Akabas MH
Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel.
J Gen Physiol. 1997 Mar;109(3):289-99., [PMID:9089437]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Linsdell P, Hanrahan JW
Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a mammalian cell line and its regulation by a critical pore residue.
J Physiol. 1996 Nov 1;496 ( Pt 3):687-93., [PMID:8930836]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cheung M, Akabas MH
Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment.
Biophys J. 1996 Jun;70(6):2688-95., [PMID:8744306]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Morral N, Llevadot R, Casals T, Gasparini P, Macek M Jr, Dork T, Estivill X
Independent origins of cystic fibrosis mutations R334W, R347P, R1162X, and 3849 + 10kbC-->T provide evidence of mutation recurrence in the CFTR gene.
Am J Hum Genet. 1994 Nov;55(5):890-8., [PMID:7526685]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA
Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR.
J Gen Physiol. 2014 Aug;144(2):159-79. doi: 10.1085/jgp.201311122. Epub 2014 Jul 14., [PMID:25024266]

Abstract [show]
Comments [show]
Sentences [show]