ABCD1 p.Gly512Ser
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Mutational and protein analysis of patients and he... Am J Hum Genet. 1996 Jun;58(6):1135-44. Feigenbaum V, Lombard-Platet G, Guidoux S, Sarde CO, Mandel JL, Aubourg P
Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy.
Am J Hum Genet. 1996 Jun;58(6):1135-44., [PMID:8651290]
Abstract [show]
X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder associated with impaired beta-oxidation of very-long-chain fatty acids (VLCFA), is due to mutations in a gene encoding a peroxisomal ATP-binding cassette (ABC) transporter (ALD protein [ALDP]). We analyzed the open reading frame of the ALD gene in 44 French ALD kindred by using SSCP or denaturing gradient-gel electrophoresis and studied the effect of mutations on ALDP by immunocytofluorescence and western blotting of fibroblasts and/or white blood cells. Mutations were detected in 37 of 44 kindreds and were distributed over the whole protein-coding region, with the exception of the C terminus encoded in exon 10. Except for two mutations (delAG1801 and P560L) observed four times each, nearly every ALD family has a different mutation. Twenty-four of 37 mutations were missense mutations leading to amino acid changes located in or close to putative transmembrane segments (TMS 2, 3, 4, and 5), in the EAA-like motif and in the nucleotide fold of the ATP-binding domain of ALDP. Of 38 ALD patients tested, 27 (71%) lacked ALDP immunoreactivity in their fibroblasts and/or white blood cells. More than half of missense mutations studied (11 of 21) resulted in a complete lack of ALDP immunoreactivity, and six missense mutations resulted in decreased ALDP expression. The fibroblasts and/or white blood cells of 15 of 15 heterozygous carrier from ALD kindred with no ALDP showed a mixture of positive- and negative-ALDP immunoreactivity due to X-inactivation. Since 5%-15% of heterozygous women have normal VLCFA levels, the immunodetection of ALDP in white blood cells can be applicable in a majority of ALD kindred, to identify heterozygous women, particularly when the ALD gene mutation has not yet been identified.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 58:1135-1144, 1996 Table 2 Mutations in the ALD Gene in Studied Patients AMINO ACID MUTATIONSb HOMOLOGUE INd KINDRED CLINICAL LOCALIZATION AMINO ACID ALDP BY NUMBER PHENOTYPEa DNA CpG Exon IN PROTEINC ALTERATION h/m ALDRP hPMP70 IF/WB' CALD, AMN CALD CALD CALD, AS AD CALD, AMN CALC AD AD AD ALMD CALD CALD, AMN CALD CALD, AMN, AD AMN ALMD CALD ALMD CALD AMN ALD AD, AMN, AS CALD, AS CALD CALD AD CALD AMN, ALMD CALD CALD AMN, ALMD CALD CALD, AMN, ALMD CALD CALD, ALMD, AS ALMD CALD AMN CALD, AMN AD AD AMN CALD G416A Ins T524 C679T C679T C700T C709G G732A A829G C840T Del TA927-28 A928G A985T A1048G DeIGC1080-81 C1174T G1266A ins C1521 1636delC DelAG 1801-02 DelAG 1801-02 DelAG 1801-02 DelAG 1801-02 ins TGG 1848 G 1920 A C1938T C1938T G1950A C2065T C2065T C2065T C2065T C2065G G 2166+1 A T2202C DelGC 2335 C2364T C2364T No mutation found No mutation found No mutation found No mutation found No mutation found No mutation found No mutation found 1 1 + 1 + 1 1 1 + 1 1 + 1 1 1 1 1 1 1 + 1 3 4 S 5 S S S 6 + 6 + 6 6 + 7 + 7 + 7 + 7 + 7 + 7 8 9 9 9 W10 X Frameshift at L46 TMS2 S98L TMS2 S98L T1OSI S108W G116R TMS3 N148S TMS3 R152C Frameshift at Y180 Y181C TMS4 D200V TMS4 D221G Frameshift at R231 P263L EAA-like A294T Frameshift at V378 Frameshift at T416 Frameshift at E471 Frameshift at E471 Frameshift at E471 Frameshift at E471 ins val 491 Walker A G512S Walker A R518W Walker A R518W G 522 W P560L P560L P560L P560L P56OR Splice at G593 Walker B S606P Frameshift at D649 R660W R660W Absent Not done S A Present S A Present T T Absent S D Decreased G T Absent N N Present R K Present Absent Y Y Not done D D Not done D D Absent Absent P R Decreased A A Not done Absent Absent Absent Absent Absent Absent Absent G G Absent R R Absent R R Decreased G E Absent P P Decreased P P Decreased P P Decreased P P Absent P P Absent Not done S S Absent Absent R R Absent R R Absent Not done Absent Absent Absent Present Absent Absent a CALD = cerebral ALD (5-15 years); AMN = adrenomyeloneuropathy; ALMD = adrenomyeloneuropathy with cerebral involvement; AD = Addison disease; AS = Asymptomatic.
X
ABCD1 p.Gly512Ser 8651290:76:1356
status: NEW131 Lane 1, protein markers; lane 2, control; lane 3, patient 18 (S108W); lane 4, patient 32 (P263L); lane 5, patient 5 (P560L); lane 6, patient 4 (G116R); lane 7, patient 19 (D221G); lane 8, patient 33 (S98L); lane 9, patient 78 (S606P); lane 10, patient 3 (no mutation found); lane 11, patient 37 (P560L); lane 12, patient 22 (R660W); lane 13, control; lane 14, patient 39 (T1051); lane 15, patient 4 (G116R); lane 16, patient 43 (frameshift at Y180); lane 17, patient 5 (P560L); lane 18, patient 59 (G512S); lane 19, patient 29 (frameshift at D649); lane 20, patient 69 (P560L); lane 21, patient 19 (D221G); lane 22, patient 64 (W1OX); lane 23, patient 63 (frameshift at R231); lane 24, patient 52 (no mutation found); lane 25, patient 61 (frameshift at E471); and lane 26, patient 83 (G522W).
X
ABCD1 p.Gly512Ser 8651290:131:499
status: NEW144 Four missense mutations (G512S, R518W, G522W, and S606P) were found in the ATP-binding domain.
X
ABCD1 p.Gly512Ser 8651290:144:25
status: NEW145 Three of these mutations (G512S, G522W, and S606P) affect amino acid residues that are identical among other ABC transporters (see fig. 4 in Mosser et al. 1993 and fig. 1 in Fanen et al. 1994).
X
ABCD1 p.Gly512Ser 8651290:145:26
status: NEW172 Missense mutations leading to a lack of ALDP included three mutations located in the ATP-binding domain (G512S, G522W, and S606P).
X
ABCD1 p.Gly512Ser 8651290:172:105
status: NEW173 Four missense mutations (S108W, P263L, R518W, and P560L) resulted in decreased ALDP immunoreactivity reflecting likely instability and/or partial deficiency in the peroxisomal targeting of ALDP.
X
ABCD1 p.Gly512Ser 8651290:173:105
status: NEW75 58:1135-1144, 1996 Table 2 Mutations in the ALD Gene in Studied Patients AMINO ACID MUTATIONSb HOMOLOGUE INd KINDRED CLINICAL LOCALIZATION AMINO ACID ALDP BY NUMBER PHENOTYPEa DNA CpG Exon IN PROTEINC ALTERATION h/m ALDRP hPMP70 IF/WB' CALD, AMN CALD CALD CALD, AS AD CALD, AMN CALC AD AD AD ALMD CALD CALD, AMN CALD CALD, AMN, AD AMN ALMD CALD ALMD CALD AMN ALD AD, AMN, AS CALD, AS CALD CALD AD CALD AMN, ALMD CALD CALD AMN, ALMD CALD CALD, AMN, ALMD CALD CALD, ALMD, AS ALMD CALD AMN CALD, AMN AD AD AMN CALD G416A Ins T524 C679T C679T C700T C709G G732A A829G C840T Del TA927-28 A928G A985T A1048G DeIGC1080-81 C1174T G1266A ins C1521 1636delC DelAG 1801-02 DelAG 1801-02 DelAG 1801-02 DelAG 1801-02 ins TGG 1848 G 1920 A C1938T C1938T G1950A C2065T C2065T C2065T C2065T C2065G G 2166+1 A T2202C DelGC 2335 C2364T C2364T No mutation found No mutation found No mutation found No mutation found No mutation found No mutation found No mutation found 1 1 + 1 + 1 1 1 + 1 1 + 1 1 1 1 1 1 1 + 1 3 4 S 5 S S S 6 + 6 + 6 6 + 7 + 7 + 7 + 7 + 7 + 7 8 9 9 9 W10 X Frameshift at L46 TMS2 S98L TMS2 S98L T1OSI S108W G116R TMS3 N148S TMS3 R152C Frameshift at Y180 Y181C TMS4 D200V TMS4 D221G Frameshift at R231 P263L EAA-like A294T Frameshift at V378 Frameshift at T416 Frameshift at E471 Frameshift at E471 Frameshift at E471 Frameshift at E471 ins val 491 Walker A G512S Walker A R518W Walker A R518W G 522 W P560L P560L P560L P560L P56OR Splice at G593 Walker B S606P Frameshift at D649 R660W R660W Absent Not done S A Present S A Present T T Absent S D Decreased G T Absent N N Present R K Present Absent Y Y Not done D D Not done D D Absent Absent P R Decreased A A Not done Absent Absent Absent Absent Absent Absent Absent G G Absent R R Absent R R Decreased G E Absent P P Decreased P P Decreased P P Decreased P P Absent P P Absent Not done S S Absent Absent R R Absent R R Absent Not done Absent Absent Absent Present Absent Absent a CALD = cerebral ALD (5-15 years); AMN = adrenomyeloneuropathy; ALMD = adrenomyeloneuropathy with cerebral involvement; AD = Addison disease; AS = Asymptomatic.
X
ABCD1 p.Gly512Ser 8651290:75:1356
status: NEW[hide] ABCD1 mutations and the X-linked adrenoleukodystro... Hum Mutat. 2001 Dec;18(6):499-515. Kemp S, Pujol A, Waterham HR, van Geel BM, Boehm CD, Raymond GV, Cutting GR, Wanders RJ, Moser HW
ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations.
Hum Mutat. 2001 Dec;18(6):499-515., [PMID:11748843]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC half-transporter (ALDP) involved in the import of very long-chain fatty acids (VLCFA) into the peroxisome. The disease is characterized by a striking and unpredictable variation in phenotypic expression. Phenotypes include the rapidly progressive childhood cerebral form (CCALD), the milder adult form, adrenomyeloneuropathy (AMN), and variants without neurologic involvement. There is no apparent correlation between genotype and phenotype. In males, unambiguous diagnosis can be achieved by demonstration of elevated levels of VLCFA in plasma. In 15 to 20% of obligate heterozygotes, however, test results are false-negative. Therefore, mutation analysis is the only reliable method for the identification of heterozygotes. Since most X-ALD kindreds have a unique mutation, a great number of mutations have been identified in the ABCD1 gene in the last seven years. In order to catalog and facilitate the analysis of these mutations, we have established a mutation database for X-ALD ( http://www.x-ald.nl). In this review we report a detailed analysis of all 406 X-ALD mutations currently included in the database. Also, we present 47 novel mutations. In addition, we review the various X-ALD phenotypes, the different diagnostic tools, and the need for extended family screening for the identification of new patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
280 For two missense mutations located in functional regions of the ATP-binding domain it was demonstrated that the mutations resulted in either decreased ATP-binding capacity (S606L) or reduced ATPase activity (G512S) [Roerig et al., 2001].
X
ABCD1 p.Gly512Ser 11748843:280:208
status: NEW[hide] Mammalian peroxisomal ABC transporters: from endog... Br J Pharmacol. 2011 Dec;164(7):1753-66. doi: 10.1111/j.1476-5381.2011.01435.x. Kemp S, Theodoulou FL, Wanders RJ
Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance.
Br J Pharmacol. 2011 Dec;164(7):1753-66. doi: 10.1111/j.1476-5381.2011.01435.x., [PMID:21488864]
Abstract [show]
Peroxisomes are indispensable organelles in higher eukaryotes. They are essential for a number of important metabolic pathways, including fatty acid alpha- and beta-oxidation, and biosynthesis of etherphospholipids and bile acids. However, the peroxisomal membrane forms an impermeable barrier to these metabolites. Therefore, peroxisomes need specific transporter proteins to transfer these metabolites across their membranes. The mammalian peroxisomal membrane harbours three ATP-binding cassette (ABC) transporters. In recent years, significant progress has been made in unravelling the functions of these ABC transporters. There is ample evidence that they are involved in the transport of very long-chain fatty acids, pristanic acid, di- and trihydroxycholestanoic acid, dicarboxylic acids and tetracosahexaenoic acid (C24:6omega3). Surprisingly, only one disease is associated with a deficiency of a peroxisomal ABC transporter. Mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein are the cause for X-linked adrenoleukodystrophy, an inherited metabolic storage disorder. This review describes the current state of knowledge on the mammalian peroxisomal ABC transporters with a particular focus on their function in metabolite transport.
Comments [show]
None has been submitted yet.
No. Sentence Comment
259 Two X-ALD causing missense mutations located in the ATP-binding domain of ALDP resulted in either decreased ATP-binding capacity (p.Ser606Leu) or reduced ATPase activity (p.Gly512Ser), when analysed in the context of recombinant nucleotide binding domains (Roerig et al., 2001).
X
ABCD1 p.Gly512Ser 21488864:259:173
status: NEW[hide] Komrower Lecture. Adrenoleukodystrophy: natural hi... J Inherit Metab Dis. 1995;18(4):435-47. Moser HW
Komrower Lecture. Adrenoleukodystrophy: natural history, treatment and outcome.
J Inherit Metab Dis. 1995;18(4):435-47., [PMID:7494402]
Abstract [show]
Our laboratory has identified nearly 2000 patients with X-linked adrenoleukodystrophy (ALD) and conducted therapeutic trials in groups of patients who represent the major phenotypes. We report recent results of dietary therapy with a mixture of glyceryl trioleate and glyceryl trierucate oil, also referred to as Lorenzo's Oil, in the asymptomatic and childhood cerebral phenotypes. Fifty-three patients started this therapy at a mean age of 7.5 years at a time when they were free of neurological symptoms. Although analysis of data is hampered by the lack of a concurrent control group, follow-up studies after 39 months of therapy suggest that subsequent neurological involvement was less frequent and less severe than anticipated from historical controls. Retrospective analysis of the effect of the oil in patients with the severe childhood cerebral phenotype indicates that there was a slight but statistically significant slowing of clinical progression and delay of death.
Comments [show]
None has been submitted yet.
No. Sentence Comment
29 Mutation Predicted consequence Phenotype a 1 310 C -4 T R104C AMN 2 420 G -4 A A140T Cer 3 454 C -4 T R152C Cer 4 545 G -4 C R182P Addis 5 692 G -4 C Addis 693-4 del GG Frameshift at AA 231 6 770 G -4 T G277W Cer 7 1166 G -4 A R389H AMN 8 I224 G -4 A Spl mutation at AA 408 AMN 9 1389 G --+ A R464 stop AMN 10 1411 ins A Frameshift at AA 470 AMN 11 1412-3 del AA Frameshift at AA 470 Cer 12 1415-6 del AG Frameshift at AA 472 Cer 13 1415-6 del AG Frarneshift at AA 472 Cer 14 1415-6 del AG Frameshift at AA 472 Addis 15 1415-6 del AG Frameshift at AA 472 AMN 16 t415-6 del AG Frameshift at AA 472 AMN 17 1415-6 del AG Frameshift at AA 472 Cer 18 1534 G -4 A G512S Cer 19 1698 T -4 A M567K AMN 20 t817 C -4 T $604F Addis 1548 G -4 A L516L 21 1850 G -+ A R617H AMN 22 1978 G -4 A R660W AMN ~Cer=childhoodcerebralALD; Addis=Addisondisease the multiple binding sites on bovine albumin for shorter-chain fatty acids, there is only a single binding site for C26:0.
X
ABCD1 p.Gly512Ser 7494402:29:658
status: NEW[hide] X-linked adrenoleukodystrophy: very long-chain fat... Mol Genet Metab. 2007 Mar;90(3):268-76. Epub 2006 Nov 7. Kemp S, Wanders RJ
X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism, ABC half-transporters and the complicated route to treatment.
Mol Genet Metab. 2007 Mar;90(3):268-76. Epub 2006 Nov 7., [PMID:17092750]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene that encodes a peroxisomal membrane located ABC half-transporter named ALDP. Mutations in ALDP result in elevated levels of very long-chain fatty acids (VLCFA) and reduced VLCFA beta-oxidation in peroxisomes. The peroxisomal membrane harbors three additional closely related ABC half-transporters, ALDRP, PMP70 and PMP69 (PMP70R). ABC half-transporters must dimerize to form a functional full-transporter. Whether ALDP forms a homodimer or a heterodimer has not yet been resolved, but most indirect evidence favors homodimerization. The peroxisomal ABC half-transporters are functionally related. Over-expression of ALDRP can correct the biochemical defect both in X-ALD patients cells and the Abcd1 knockout mouse, providing an exciting new possibility for treatment of X-ALD patients. This paper provides an overview of current knowledge and the problems that have been encountered.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 ATP-binding and ATPase activity has been demonstrated for ALDP [17], and Roerig and coworkers demonstrated that two disease causing missense mutations located in the ATP-binding domain resulted in either decreased ATP-binding capacity (Ser606Leu), or reduced ATPase activity (Gly512Ser) [18].
X
ABCD1 p.Gly512Ser 17092750:57:276
status: NEW56 ATP-binding and ATPase activity has been demonstrated for ALDP [17], and Roerig and coworkers demonstrated that two disease causing missense mutations located in the ATP-binding domain resulted in either decreased ATP-binding capacity (Ser606Leu), or reduced ATPase activity (Gly512Ser) [18].
X
ABCD1 p.Gly512Ser 17092750:56:276
status: NEW[hide] Role of ATP-binding cassette transporters in brain... J Neurochem. 2008 Mar;104(5):1145-66. Epub 2007 Oct 31. Kim WS, Weickert CS, Garner B
Role of ATP-binding cassette transporters in brain lipid transport and neurological disease.
J Neurochem. 2008 Mar;104(5):1145-66. Epub 2007 Oct 31., [PMID:17973979]
Abstract [show]
The brain is lipid-rich compared to other organs and although previous studies have highlighted the importance of ATP-binding cassette (ABC) transporters in the regulation of lipid transport across membranes in peripheral tissues, very little is known regarding ABC transporter function in the CNS. In this study, we bring together recent literature focusing on potential roles for ABC transporters in brain lipid transport and, where appropriate, identify possible links between ABC transporters, lipid transport and neurological disease. Of the 48 transcriptionally active ABC transporters in the human genome, we have focused on 13 transporters (ABCA1, ABCA2, ABCA3, ABCA4, ABCA7 and ABCA8; ABCB1 and ABCB4; ABCD1 and ABCD2; ABCG1, ABCG2, and ABCG4) for which there is evidence suggesting they may contribute in some way to brain lipid transport or homeostasis. The transporters are discussed in terms of their location within brain regions and brain cell types and, where possible, in terms of their known functions and established or proposed association with human neurological diseases. Specific examples of novel treatment strategies for diseases, such as Alzheimer's disease and X-linked adrenoleukodystrophy that are based on modulation of ABC transporter function are discussed and we also examine possible functions for specific ABC transporters in human brain development.
Comments [show]
None has been submitted yet.
No. Sentence Comment
208 Two ABCD1 mutations associated with X-ALD (Ser606Leu and Gly512Ser) result in decreased ATP binding and reduced ATPase activity, respectively, thereby indicating that an energy dependent transport activity is crucial to the function of ABCD1 (Roerig et al. 2001).
X
ABCD1 p.Gly512Ser 17973979:208:57
status: NEW212 Two ABCD1 mutations associated with X-ALD (Ser606Leu and Gly512Ser) result in decreased ATP binding and reduced ATPase activity, respectively, thereby indicating that an energy dependent transport activity is crucial to the function of ABCD1 (Roerig et al. 2001).
X
ABCD1 p.Gly512Ser 17973979:212:57
status: NEW[hide] Two novel missense mutations in the ATP-binding do... Clin Genet. 1997 May;51(5):322-5. Imamura A, Suzuki Y, Song XQ, Fukao T, Uchiyama A, Shimozawa N, Kamijo K, Hashimoto T, Orii T, Kondo N
Two novel missense mutations in the ATP-binding domain of the adrenoleukodystrophy gene: immunoblotting and immunocytological study of two patients.
Clin Genet. 1997 May;51(5):322-5., [PMID:9212180]
Abstract [show]
Two novel missense mutations, 1939G to A (R518Q) and 2017A to G (Q544R) were identified in Japanese patients with adrenoleukodystrophy (ALD). They are located in exon 6, which encodes part of the putative adenosine triphosphate binding domain of ALD protein. The ALD protein carrying the R518Q mutation was undetectable in fibroblasts, by immunoblot and immunofluorescence analysis, while the Q544R mutation had no apparent effect on the stability and localization of the ALD protein, but is expected to affect its function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
63 G512S, R518W and G522W (Feigenbaum et al. 1996).
X
ABCD1 p.Gly512Ser 9212180:63:0
status: NEW[hide] Molecular analysis of X-linked adrenoleukodystroph... J Neurol Sci. 1995 Jul;131(1):58-64. Yasutake T, Yamada T, Furuya H, Shinnoh N, Goto I, Kobayashi T
Molecular analysis of X-linked adrenoleukodystrophy patients.
J Neurol Sci. 1995 Jul;131(1):58-64., [PMID:7561948]
Abstract [show]
A molecular analysis of 4 Japanese adrenoleukodystrophy (ALD) patients was carried out, according to the recently published report on ALD gene cDNA. In a Southern blot analysis, we were not able to detect a large deletion in all patients. In a Northern blot analysis, no mRNA was detected in one patient, while the others had normal mRNA in both size and amount. Three patients had missense mutations including; 534Pro-->Leu (1987C-->T), 660Arg-->Trp (2364C-->T), and 512Gly-->Ser (1920G-->A), respectively. These mutations existed in the C-terminal region conserved in the ATP-binding cassette superfamily of transporters. In a Western blot analysis using polyclonal antibodies against the C-terminal peptide as well as the whole peptide of ALD protein, no 80 kDa protein was found in any of the 4 patients, which was observed in the control cells. The ALD protein in 3 patients with a missense mutation might be degraded immediately after translation because of the unstable higher structure or by the disruption of the hitherto unknown targetting signal to the peroxisome. The molecular analysis of the ALD gene as done in this study is thus considered to be the first step to further elucidate the pathogenic mechanism of ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 The mutation gave a single amino acid substitution to serine from 512glycine (G512S), which was located in the ATP-binding cassette motif, and conserved among the ABC transporters (Fig. 4).
X
ABCD1 p.Gly512Ser 7561948:85:78
status: NEW115 So far, however, the #240 #225 G512S P534L 486 - 667 5.
X
ABCD1 p.Gly512Ser 7561948:115:31
status: NEW84 The mutation gave a single amino acid substitution to serine from 512glycine (G512S), which was located in the ATP-binding cassette motif, and conserved among the ABC transporters (Fig. 4).
X
ABCD1 p.Gly512Ser 7561948:84:78
status: NEW114 So far, however, the #240 #225 G512S P534L 486 - 667 5.
X
ABCD1 p.Gly512Ser 7561948:114:31
status: NEW[hide] X-linked adrenoleukodystrophy: diagnostic and foll... J Hum Genet. 2011 Feb;56(2):106-9. Epub 2010 Nov 11. Shimozawa N, Honda A, Kajiwara N, Kozawa S, Nagase T, Takemoto Y, Suzuki Y
X-linked adrenoleukodystrophy: diagnostic and follow-up system in Japan.
J Hum Genet. 2011 Feb;56(2):106-9. Epub 2010 Nov 11., [PMID:21068741]
Abstract [show]
X-linked adrenoleukodystrophy (ALD) is an intractable neurodegenerative disease associated with the accumulation of very long-chain saturated fatty acids (VLCFA) in tissues and body fluids. We have established a Japanese referral center for the diagnosis of ALD, using VLCFA measurements and mutation analysis of the ABCD1 gene, and have identified 60 kinds of mutations in 69 Japanese ALD families, which included 38 missense mutations, 6 nonsense mutations, 8 frame-shift mutations, 3 amino acid deletions, 2 exon-skip mutations and 3 large deletions. A total of 24 kinds of mutations (40%) were identified only in Japanese patients by referring to the current worldwide ALD mutation database. There was no clear correlation between these mutations and phenotypes of 81 male patients in these 69 families. About 12% of the individuals with ALD had de novo mutations by mutation analysis in the male probands and their mothers, which should be helpful data for genetic counseling. The only effective therapy for the cerebral form of ALD should be hematopoietic stem cell transplantation at the early stages of the cerebral symptoms, therefore, we performed presymptomatic diagnosis of ALD by extended familial screening of the probands with careful genetic counseling, and established a long follow-up system for these patients to prevent the progression of brain involvement and to monitor the adrenocortical insufficiency. Further elucidation of pathology in ALD, especially concerning the mechanisms of the onset of brain involvement, is expected.
Comments [show]
None has been submitted yet.
No. Sentence Comment
21 Although most probands with ALD identified by us had a unique gene mutation, 6 missense mutations (p.Gly266Arg, p.Arg401Gln, p.Gly512Ser, p.Ser514Ile, p.Arg617His and p.Arg660Trp) and 1 frame-shift mutation (p.Gln472fs) were detected in two or three families (* in Figure 2).
X
ABCD1 p.Gly512Ser 21068741:21:127
status: NEW[hide] Adrenoleukodystrophy: subcellular localization and... J Neurochem. 2007 Jun;101(6):1632-43. Takahashi N, Morita M, Maeda T, Harayama Y, Shimozawa N, Suzuki Y, Furuya H, Sato R, Kashiwayama Y, Imanaka T
Adrenoleukodystrophy: subcellular localization and degradation of adrenoleukodystrophy protein (ALDP/ABCD1) with naturally occurring missense mutations.
J Neurochem. 2007 Jun;101(6):1632-43., [PMID:17542813]
Abstract [show]
Mutation in the X-chromosomal adrenoleukodystrophy gene (ALD; ABCD1) leads to X-linked adrenoleukodystrophy (X-ALD), a severe neurodegenerative disorder. The encoded adrenoleukodystrophy protein (ALDP/ABCD1) is a half-size peroxisomal ATP-binding cassette protein of 745 amino acids in humans. In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior. When expressed in X-ALD fibroblasts lacking ALDP, the expression level of mutant His-ALDPs (S606L, R617H, and H667D) was lower than that of wild type and other mutant ALDPs. Furthermore, mutant ALDP-green fluorescence proteins (S606L and H667D) stably expressed in CHO cells were not detected due to rapid degradation. Interestingly, the wild type ALDP co-expressed in these cells also disappeared. In the case of X-ALD fibroblasts from an ALD patient (R617H), the mutant ALDP was not detected in the cells, but appeared upon incubation with a proteasome inhibitor. When CHO cells expressing mutant ALDP-green fluorescence protein (H667D) were cultured in the presence of a proteasome inhibitor, both the mutant and wild type ALDP reappeared. In addition, mutant His-ALDP (Y174C), which has a mutation between transmembrane domain 2 and 3, did not exhibit peroxisomal localization by immunofluorescense study. These results suggest that mutant ALDPs, which have a mutation in the COOH-terminal half of ALDP, including S606L, R617H, and H667D, were degraded by proteasomes after dimerization. Further, the region between transmembrane domain 2 and 3 is important for the targeting of ALDP to the peroxisome.
Comments [show]
None has been submitted yet.
No. Sentence Comment
255 In an early study, Yamada et al. showed that degradation of endogenous mutant ALDP (G512S and R660W) as well as wild type ALDP was suppressed by E-64 or leupeptin, which inhibit thiol proteases including lysosomal cathepsins and cytosolic calcium-activated neutral proteases in human fibroblasts (Yamada et al. 1997).
X
ABCD1 p.Gly512Ser 17542813:255:84
status: NEW[hide] Variability of endocrinological dysfunction in 55 ... Eur J Endocrinol. 1997 Jul;137(1):40-7. Korenke GC, Roth C, Krasemann E, Hufner M, Hunneman DH, Hanefeld F
Variability of endocrinological dysfunction in 55 patients with X-linked adrenoleucodystrophy: clinical, laboratory and genetic findings.
Eur J Endocrinol. 1997 Jul;137(1):40-7., [PMID:9242200]
Abstract [show]
X-linked adrenoleucodystrophy (ALD) has been shown to be one of the most frequent causes of Addison's disease in men. It is characterized by an impaired peroxisomal beta-oxidation of very long chain fatty acids and is associated with mutations of the ALD gene resulting in a defective peroxisomal membrane transport protein. There is a striking variability of endocrinological and neurological symptoms in patients with ALD, with no clearly evident correlation between mutations of the ALD gene and the different neurological phenotypes. No data on endocrinological symptoms and the ALD genotype have been published so far. We report endocrinological, clinical, laboratory and molecular genetic data from 55 patients with ALD from 34 families. Endocrinological symptoms of adrenal insufficiency were observed in 33 patients, 20 of whom showed additional neurological symptoms of cerebral ALD or adrenomyeloneuropathy. Isolated neurological symptoms were seen in 12 patients; in nine patients there were neither endocrinological nor neurological symptoms. Mutations of the ALD gene (n = 28) were detected in 50 patients (including nine sets of brothers) from 32 families. No correlation was found between the ALD gene mutation and endocrinological dysfunction. However, we found that all sets of brothers were concordant for the endocrinological phenotype (cortisol synthesis was reduced in two sets and normal in seven sets), whereas four sets showed a discordant neurological phenotype. As yet unknown hereditary factors other than mutations within the ALD gene may interfere with the endocrinological phenotype more strongly than with the neurological phenotype of ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
120 Sixteen of these mutations have been published before (11, 21); the remaining 12 mutations comprise nine missense mutations (A141T, Y281H, R389H, G512S, P543L, R554H, Y559H, R617H, R679R), two frame-shift mutations (del 740, del 2132) and one splice site mutation (ins 8 bp 2252).
X
ABCD1 p.Gly512Ser 9242200:120:146
status: NEW[hide] Molecular characterization of 21 X-ALD Portuguese ... Mol Genet Metab. 2002 May;76(1):62-7. Guimaraes CP, Lemos M, Sa-Miranda C, Azevedo JE
Molecular characterization of 21 X-ALD Portuguese families: identification of eight novel mutations in the ABCD1 gene.
Mol Genet Metab. 2002 May;76(1):62-7., [PMID:12175782]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is the most common inherited peroxisomal disorder. The gene associated with X-ALD, ABCD1, encodes a peroxisomal ATP-binding cassette half-transporter. In this study, we describe the molecular characterization of 21 affected Portuguese families. The complete coding region of the ABCD1 gene was amplified by reverse transcription polymerase chain reaction (RT-PCR) or genomic PCR. After conformation-sensitive gel electrophoresis analysis, fragments with a conformational heteroduplex pattern were sequenced. Using this strategy, we have identified 14 missense mutations, two nonsense mutations, two splicing site defects, and three small deletions, two of them resulting in frameshifts. Eight of the genetic alterations characterized in this study are novel. The levels of the ABCD1 transcript as well as the levels of ALDP in cultured skin fibroblasts of male probands were also determined in most cases. The levels of the ABCD1 transcript in one patient (corresponding to a nonsense mutation) were below the detection limit of Northern-blotting analysis. ALDP was found at normal levels in only three patients, absent in five (corresponding to a double missense, two nonsense, and two frameshift mutations), and decreased in all the others.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 After sequencing two missense mutations-R236H and G512S-were found.
X
ABCD1 p.Gly512Ser 12175782:109:50
status: NEW[hide] Functional characterization of the adrenoleukodyst... Endocr Res. 2002 Nov;28(4):741-8. Gartner J, Dehmel T, Klusmann A, Roerig P
Functional characterization of the adrenoleukodystrophy protein (ALDP) and disease pathogenesis.
Endocr Res. 2002 Nov;28(4):741-8., [PMID:12530690]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder characterized by abnormal accumulation of saturated very long chain fatty acids in tissues and body fluids with predominance in brain white matter and adrenal cortex. The clinical phenotype is highly variable ranging from the severe childhood cerebral form to asymptomatic persons. The responsible ALD gene encodes the adrenoleukodystrophy protein (ALDP), a peroxisomal integral membrane protein that is a member of the ATP-binding cassette (ABC) transporter protein family. The patient gene mutations are heterogeneously distributed over the functional domains of ALDP. The extreme variability in clinical phenotype, even within one affected family, indicates that besides the ALD gene mutations other factors strongly influence the clinical phenotype. To understand the cell biology and function of mammalian peroxisomal ABC transporters and to determine their role in the pathogenesis of X-ALD we developed a system for expressing functional ABC protein domains in fusion with the maltose binding protein. Wild type and mutant fusion proteins of the nucleotide-binding fold were overexpressed, purified, and characterized by photoaffinity labeling with 8-azido ATP or 8-azido GTP and a coupled ATP regenerating enzyme assay for ATPase activity. Our studies provide evidence that peroxisomal ABC transporters utilize ATP to become a functional transporter and that ALD gene mutations alter peroxisomal transport function. The established disease model will be used further to study the influence of possible disease modifier proteins on ALDP function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
41 The mutant constructs included missense mutations of patients with X-ALD in the nucleotide binding fold regions Walker A and 19mer (ALDP-NBF-G512S, ALDP-NBF-Q544R, ALDP-NBF-P560L, ALDP-NBF-R591Q, ALDP-NBF-S606L, and ALDP-NBF-D629H) and corresponding mutations in another ABC transporter in the peroxisome membrane, the 70 kDa peroxisomal membrane protein (PMP70; PMP70-NBF-G478R, PMP70- NBF-S572I).
X
ABCD1 p.Gly512Ser 12530690:41:141
status: NEW59 This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc. MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016 EndocrResDownloadedfrominformahealthcare.combyUniversityofNorthCarolinaon03/06/12 patient mutation G512S in the ALD gene reduces considerable ATPase activity.
X
ABCD1 p.Gly512Ser 12530690:59:294
status: NEW79 The missense mutations of the first group like G512S in the ALD gene reduce considerable ATPase activity.
X
ABCD1 p.Gly512Ser 12530690:79:47
status: NEW[hide] Biochemical aspects of X-linked adrenoleukodystrop... Brain Pathol. 2010 Jul;20(4):831-7. Kemp S, Wanders R
Biochemical aspects of X-linked adrenoleukodystrophy.
Brain Pathol. 2010 Jul;20(4):831-7., [PMID:20626744]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder. The disease is characterized by the accumulation of very long-chain fatty acids (VLCFA; >C22) in plasma and tissues. X-ALD is caused by mutations in the ABCD1 gene encoding ALDP, an adenosine triphosphate (ATP)-binding-cassette (ABC) transporter located in the peroxisomal membrane. In this paper, we describe the current knowledge on the function of ALDP, its role in peroxisomal VLCFA beta-oxidation and the consequences of a defect in ALDP on VLCFA metabolism. Furthermore, we pay special attention to the role of the VLCFA elongation system in VLCFA homeostasis, with elongation of very long-chain fatty acids like-1 (ELOVL1) as key player, and its relevance to X-ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
47 ALDP is an integral peroxisomal membrane protein with the nucleotide-binding domain located toward the cytoplasmic surface of the peroxisomal membrane (14).ATP-binding andATPase activity has been demonstrated for ALDP (71), and Roerig et al demonstrated that two disease causing missense mutations located in the ATP-binding domain resulted in either decreased ATP-binding capacity (p.Ser606Leu) or reduced ATPase activity (p.Gly512Ser) (64).
X
ABCD1 p.Gly512Ser 20626744:47:426
status: NEW[hide] Molecular diagnosis of X-linked adrenoleukodystrop... Clin Chim Acta. 2011 May 12;412(11-12):970-4. Epub 2011 Feb 12. Lan F, Wang Z, Xie H, Huang L, Ke L, Yang B, Zhu Z
Molecular diagnosis of X-linked adrenoleukodystrophy: experience from a clinical genetic laboratory in mainland China with report of 13 novel mutations.
Clin Chim Acta. 2011 May 12;412(11-12):970-4. Epub 2011 Feb 12., [PMID:21300044]
Abstract [show]
BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by progressive demyelination of the nervous system, adrenocortical insufficiency and increase of very long chain fatty acids (VLCFAs) in the plasma and tissues. METHODS: A total of 131 individuals from 30 Chinese pedigrees were involved in this study, including 42 symptomatic patients, 44 female carriers, and 15 high-risk fetuses from 13 families. The mutation was first pinpointed through long distance RT-PCR-based RNA approach and confirmed through peripheral blood DNA approach. RESULTS: A total of 28 mutations were identified, of which 19 were missense, 3 nonsense and 6 frame-shift mutations. Thirteen mutations were novel, i.e. p.R280L, p.P580L, p.G343V, p.S108X, p.R259W, p.P534R, p.fs A246, p.L576P, p.K602X, p.A314P, p.N148D, p.H283R, and p.fs R89. Two mutations occurred de novo, for they were not found in somatic cells of their parents. Three females from the same family developed AMN-like symptoms and they were heterozygous for the p.H283R mutation. Four asymptomatic boys were diagnosed as X-ALD patients and prenatal molecular diagnosis were provided for 13 X-ALD-stricken families. CONCLUSIONS: Our work extended the spectrum of mutations in X-ALD and benefited genetic counseling through reliable identification of heterozygous females and asymptomatic males.
Comments [show]
None has been submitted yet.
No. Sentence Comment
99 Pedigree Number of patient Number of carriere Phenotype of patient Base change Amino acid change Position of mutation Feature of mutation Prenatal diagnosis 1 1 2 AdolCALD 1225GNT R280L Exon 1 Missense 2 1 1 CCALD 1909CNT P508L Exon 6 Missense 3 4 3 CCALD 1987CNG P534R Exon 6 Missense Y 4 1 1 CCALD 1182GNA G266R Exon 1 Missense 5 1a +1b 1 CCALD 2235CNG R617G Exon 8 Missense Y 6 1+1a +1c 1 CCALD 1414GNT G343V Exon 2 Missense 7 1 1 CCALD 1415_02 del AG fs E471 Exon 5 Frameshift 8 1+1b 1 CCALD 2235CNT R617C Exon 8 Missense Yh 9 1 1 CCALD 2065CNT P560L Exon 7 Y 10 1+1a 2+1b CCALD [709 NA; 1161CNT] [S108X; R259W] Exon 1 Nonsense; Missense Y 11 1 1 CCALD 1126ins GCCATCG fs I246 Exon 1 Frameshift 12 1 1 CCALD 2113TNC L576P Exon 7 Missense 13 1a +2c 3 CCALD 807GNA A141T Exon 1 Missense 14 1 1 CCALD 1415_02 del AG fs E471 Exon 5 Frameshift Y 15 1 1+1b CCALD 915CNA Q177X Exon 1 Nonsense Yh 16 1+1a 1 CCALD 1588GNA R401Q Exon 3 Missense 17 1 1 CCALD 1212 ANG K276E Exon 1 Missense Y 18 1 1 CCALD 907 ANG Y174C Exon 1 Missense 19 1 2 CCALD 2190 ANT K602X Exon 8 Nonsense 20 1 1 CCALD 1326GNC A314P Exon 2 Missense 21 1 1 CCALD 828 ANG N148D Exon 1 Missense Y 22 1 1 CCALD 1588GNA R401Q Exon 3 Missense Y 23 1 0f CCALD 2278GNA C631Y Exon 9 Missense 24 1a 1 CCALD 1008insG fs S207 Exon 1 Frameshift Y 25 1 0f CCALD 1920GNA G512S Exon 6 Missense 26 1+1c 3 CCALD 1415_02 del AG fs E471 Exon 5 Frameshift Y 27 1+1b 1 CCALD [1035ANG; 1853GNA] [K217E; V489V] Exon 1 Missense; same sense Y 28 1+3d 4 AMNg 1234ANG H283R Exon 1 Missense 29 1+2a 3 CCALD 1233CNG H283D Exon 1 Missense 30 2 3 AMN; CCALD 656_57 delGA fs R89 Exon 1 Frameshift a patient or proband died at the time of referral; b fetus by prenatal diagnosis; c presymptomatic at the time of referral; d female heterozygote patient; e determined by molecular ananlysis or deduced by the fact that the carrier was the daughter of an X-ALD, or the mother of at least one X-ALD patients; f de novo mutation; g including three heterozygote female patients; h twice for two pregnancies.
X
ABCD1 p.Gly512Ser 21300044:99:1322
status: NEW[hide] Protease inhibitors suppress the degradation of mu... Neurochem Res. 1997 Mar;22(3):233-7. Yamada T, Shinnoh N, Kobayashi T
Protease inhibitors suppress the degradation of mutant adrenoleukodystrophy proteins but do not correct impairment of very long chain fatty acid metabolism in adrenoleukodystrophy fibroblasts.
Neurochem Res. 1997 Mar;22(3):233-7., [PMID:9051655]
Abstract [show]
The adrenoleukodystrophy (ALD) gene product, ALD protein (ALDP), was not detected in fibroblasts from our or most other patients with ALD as determined by immunoblot or immunocytochemistry. We investigated the stability of mutant ALDP and found from pulse-chase experiments that the respective half-lives of the normal and mutant #140 (Gly512Ser) and #249 (Arg660Trp) were 72.6, 32.1 and 26.1 min, indicative that mutant ALDPs are less stable than normal ones. The mutant ALDPs were detectable in fibroblasts cultured with the protease inhibitor E-64 or leupeptin. Protease inhibitor treatment for 2 to 28 days did not affect the amount of very long chain fatty acid (VLCFA), C26:0, or VLCFA beta-oxidation activity in ALD fibroblasts. Protease inhibitors therefore suppress the degradation of ALDP but do not correct the impairment of VLCFA metabolism in ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
3 We investigated the stability of mutant ALDP and found from pulse-chase experiments that the respective half-lives of the normal and mutant #140 (Gly512Ser) and #249 (Arg660Trp) were 72.6, 32.1 and 26.1 min, indicative that mutant ALDPs are less stable than normal ones.
X
ABCD1 p.Gly512Ser 9051655:3:146
status: NEW19 Two, #240 and #249, respectively had the missense mutations Gly512Ser (G1920A) and Arg660Trp (C2364T).
X
ABCD1 p.Gly512Ser 9051655:19:60
status: NEW37 Normal and mutant (Gly512Ser or Arg660Trp) ALDP cDNAs synthesized by reverse-transcription and PCR were inserted into the expression vector, pCAGGS (8).
X
ABCD1 p.Gly512Ser 9051655:37:19
status: NEW82 Gly512Ser and Arg660Trp mutations in their patients resulted in a complete lack of immunoreactivity, as they did in our patients (2).
X
ABCD1 p.Gly512Ser 9051655:82:0
status: NEW94 For example, Gly512Ser mutation, which is localized in the ATP-binding domain, may critically affect such functions.
X
ABCD1 p.Gly512Ser 9051655:94:13
status: NEW[hide] Mutational analysis of patients with X-linked adre... Hum Mutat. 1995;6(2):104-15. Kok F, Neumann S, Sarde CO, Zheng S, Wu KH, Wei HM, Bergin J, Watkins PA, Gould S, Sack G, et al.
Mutational analysis of patients with X-linked adrenoleukodystrophy.
Hum Mutat. 1995;6(2):104-15., [PMID:7581394]
Abstract [show]
Adrenoleukodystrophy (ALD) is an X-linked neurodegenerative disorder characterized by elevated very long chain fatty acid (VLCFA) levels, reduced activity of peroxisomal VLCFA-CoA ligase, and variable phenotypic expression. A putative gene for ALD was recently identified and surprisingly encodes a protein (ALDP) that belongs to a family of transmembrane transporters regulated or activated by ATP (the ABC proteins). We have examined genomic DNA from ALD probands for mutations in the putative ALD gene. We detected large deletions of the carboxyl-terminal portion of the gene in 4 of 112 probands. Twenty-five of the ALD probands whose ALD genes appeared normal by Southern blot analysis were surveyed for mutations by Single Strand Conformation Polymorphism (SSCP) procedures and DNA sequence analysis. SSCP variants were detected in 22 probands and none in 60 X-chromosomes from normal individuals. Mutations were detected in all of the ALD probands. The mutations were distributed throughout the gene and did not correlate with phenotype. Approximately half were non-recurrent missense mutations of which 64% occurred in CpG dinucleotides. There was a cluster of frameshift mutations in a small region of exon 5, including an identical AG deletion in 7 unrelated probands. These data strongly support the supposition that mutations in the putative ALD gene result in ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
131 3' deletion 3' deletion 3' deletion 3' deletion R104C A141T R152C R182P Frameshift at AA 231 G277W R389H Spl mutation at AA 408 Q466 stop Frameshift at AA 470 Frameshift at AA 470 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 G512S M566K S606L L516L R617H R660W - - Exons 3-10 Exons 7-10 Exons 8-10 Exons 7-10 33 Anglos 5 Scott 8 Anglos 7 Anglos 11 Jewish 36 Irish 51 Italian 37 Filipino 28 Anglos 23 Anglos 11 Anglos 8 Anglos 40 Italian 22 German 4 Anglos 5 black 8 Anglos 31 Anglos 10 Anglos 28 Anglos 22 Italian 8 German 35 German 7 Hispanic 28 German 24 Anglos 18 Jewish 9 Hispanic AMNa C E R ~ Cer Add' Cer AMN AMN AMN AMN Cer Cer Cer Add AMN AMN Cer Cer Cer AMN Add AMN AMN Cer AMN Cer AMN AMN AMN 5 Cer,AMN,Add 4 Cer,AMN 1 Cer 5 Cer,AMN,Add 1 4 2 1 2 2 5 Adopted 5 2 15 1 13 2 2 1 Cer AMN AMN,Add AMN Cer,AMN Cer,AMN Cer,AMN,Add ?
X
ABCD1 p.Gly512Ser 7581394:131:327
status: NEW234 Four mutations were found within the ATP bind- ing domain, one in Walker A (G512S), one in Walker B (R617H), one in the highly conserved sequence preceding Walker B (S606L),and one in the middle of the domain.
X
ABCD1 p.Gly512Ser 7581394:234:79
status: NEW[hide] Characterization and functional analysis of the nu... FEBS Lett. 2001 Mar 9;492(1-2):66-72. Roerig P, Mayerhofer P, Holzinger A, Gartner J
Characterization and functional analysis of the nucleotide binding fold in human peroxisomal ATP binding cassette transporters.
FEBS Lett. 2001 Mar 9;492(1-2):66-72., [PMID:11248239]
Abstract [show]
The 70-kDa peroxisomal membrane protein (PMP70) and the adrenoleukodystrophy protein (ALDP) are half ATP binding cassette (ABC) transporters in the peroxisome membrane. Mutations in the ALD gene encoding ALDP result in the X-linked neurodegenerative disorder adrenoleukodystrophy. Plausible models exist to show a role for ATP hydrolysis in peroxisomal ABC transporter functions. Here, we describe the first measurements of the rate of ATP binding and hydrolysis by purified nucleotide binding fold (NBF) fusion proteins of PMP70 and ALDP. Both proteins act as an ATP specific binding subunit releasing ADP after ATP hydrolysis; they did not exhibit GTPase activity. Mutations in conserved residues of the nucleotidases (PMP70: G478R, S572I; ALDP: G512S, S606L) altered ATPase activity. Furthermore, our results indicate that these mutations do not influence homodimerization or heterodimerization of ALDP or PMP70. The study provides evidence that peroxisomal ABC transporters utilize ATP to become a functional transporter.
Comments [show]
None has been submitted yet.
No. Sentence Comment
5 Mutations in conserved residues of the nucleotidases (PMP70: G478R, S572I; ALDP: G512S, S606L) altered ATPase activity.
X
ABCD1 p.Gly512Ser 11248239:5:81
status: NEW24 For the mutant constructs we selected X-ALD patient mutations in highly conserved residues in the Walker A and 19-mer region of the NBF of ALDP (G512S and S606L) and the corresponding PMP70 mutations (G478R and S572I).
X
ABCD1 p.Gly512Ser 11248239:24:145
status: NEW84 We mutated the central glycine in the Walker A motif of PMP70 and ALDP making the evolutionary severe substitutions G478R and G512S.
X
ABCD1 p.Gly512Ser 11248239:84:126
status: NEW85 Additionally, we changed the conserved serine in the 19-mer motif of PMP70 and ALDP to isoleucine (S572I) and leucine (S606L), respectively.
X
ABCD1 p.Gly512Ser 11248239:85:126
status: NEW88 The K-subunit of L-galactosidase (L-Protein Synthetic oligonucleotide Mutation ALDP 5P-CCCCAATGGCTGCAGCAAGAGCTCCC-3P G512S 5P-GGATCCGGACAGGGAGCTCTTGCTGCAGC-3P ALDP 5P-ACTGGAAGGACGTCCTGTTGGG-3P S606L 5P-CGCCACCCAACAGGACGTCCTTCC-3P PMP70 5P-GGCTGCAGAAAGAGTTCACTTTTCCG-3P G478R 5P-GGCCATAATTCACCAAGAACACGGAAA AGTGAACTCTTTCTG-3P PMP70 5P-GACGTACTCATTGGTGGAG-3P S572I 5P-CCACCAATGAGTACGTCCATCCAATCC-3P gal) in fusion with the MBP was used as a control.
X
ABCD1 p.Gly512Ser 11248239:88:117
status: NEW117 G512S and S606L cause X-ALD.
X
ABCD1 p.Gly512Ser 11248239:117:0
status: NEW136 The S606L and G478R mutants have a decreased ATP binding a¤nity while the G512S and S572I mutants decrease the maximum velocity of ATPase activity.
X
ABCD1 p.Gly512Ser 11248239:136:79
status: NEW141 When testing the NBF of wild type ALDP and wild type PMP70 as well as the NBF of the mutant ALDP (G512S) against full length ALDP or full length PMP70, only background levels were detected (data not shown).
X
ABCD1 p.Gly512Ser 11248239:141:98
status: NEW169 The missense mutation G512S in the ALD gene causes X-ALD and reduces considerable ATPase activity in our recombinant polypeptide models.
X
ABCD1 p.Gly512Ser 11248239:169:22
status: NEW182 Previous studies on MDR suggest that the ATPase activity of the native protein Table 1 Kinetic parameters of ATPase activity in wild type and mutant ALDP and PMP70 NBF fusion proteins Fusion protein KM (WM) Vmax (nmol/Wmol NBF/min) Speci'c activity (1033 U/mg) ALDP (wild type) 11.5 þ 0.97 641.9 þ 10.7 10.0 þ 0.17 ALDP (G512S) 17.9 þ 1.23 279.3 þ 4.2 4.4 þ 0.06 ALDP (S606L) 45.6 þ 2.40 666.0 þ 8.7 10.4 þ 0.14 PMP70 (wild type) 8.2 þ 0.52 580.8 þ 6.7 9.0 þ 0.10 PMP70 (G478R) 161.8 þ 34.40 641.2 þ 28.2 10.0 þ 0.44 PMP70 (S572I) 9.9 þ 0.82 298.1 þ 4.7 4.6 þ 0.07 The kinetic data of all fusion proteins are mean values and standard deviations of 15^20 measurements at various protein concentrations using at least two distinct protein preparations.
X
ABCD1 p.Gly512Ser 11248239:182:336
status: NEW89 The K-subunit of L-galactosidase (LProtein Synthetic oligonucleotide Mutation ALDP 5P-CCCCAATGGCTGCAGCAAGAGCTCCC-3P G512S 5P-GGATCCGGACAGGGAGCTCTTGCTGCAGC-3P ALDP 5P-ACTGGAAGGACGTCCTGTTGGG-3P S606L 5P-CGCCACCCAACAGGACGTCCTTCC-3P PMP70 5P-GGCTGCAGAAAGAGTTCACTTTTCCG-3P G478R 5P-GGCCATAATTCACCAAGAACACGGAAA AGTGAACTCTTTCTG-3P PMP70 5P-GACGTACTCATTGGTGGAG-3P S572I 5P-CCACCAATGAGTACGTCCATCCAATCC-3P gal) in fusion with the MBP was used as a control.
X
ABCD1 p.Gly512Ser 11248239:89:116
status: NEW118 G512S and S606L cause X-ALD.
X
ABCD1 p.Gly512Ser 11248239:118:0
status: NEW137 The S606L and G478R mutants have a decreased ATP binding a&#a4;nity while the G512S and S572I mutants decrease the maximum velocity of ATPase activity.
X
ABCD1 p.Gly512Ser 11248239:137:78
status: NEW142 When testing the NBF of wild type ALDP and wild type PMP70 as well as the NBF of the mutant ALDP (G512S) against full length ALDP or full length PMP70, only background levels were detected (data not shown).
X
ABCD1 p.Gly512Ser 11248239:142:98
status: NEW170 The missense mutation G512S in the ALD gene causes X-ALD and reduces considerable ATPase activity in our recombinant polypeptide models.
X
ABCD1 p.Gly512Ser 11248239:170:22
status: NEW183 Previous studies on MDR suggest that the ATPase activity of the native protein Table 1 Kinetic parameters of ATPase activity in wild type and mutant ALDP and PMP70 NBF fusion proteins Fusion protein KM (WM) Vmax (nmol/Wmol NBF/min) Speci'c activity (1033 U/mg) ALDP (wild type) 11.5 &#fe; 0.97 641.9 &#fe; 10.7 10.0 &#fe; 0.17 ALDP (G512S) 17.9 &#fe; 1.23 279.3 &#fe; 4.2 4.4 &#fe; 0.06 ALDP (S606L) 45.6 &#fe; 2.40 666.0 &#fe; 8.7 10.4 &#fe; 0.14 PMP70 (wild type) 8.2 &#fe; 0.52 580.8 &#fe; 6.7 9.0 &#fe; 0.10 PMP70 (G478R) 161.8 &#fe; 34.40 641.2 &#fe; 28.2 10.0 &#fe; 0.44 PMP70 (S572I) 9.9 &#fe; 0.82 298.1 &#fe; 4.7 4.6 &#fe; 0.07 The kinetic data of all fusion proteins are mean values and standard deviations of 15^20 measurements at various protein concentrations using at least two distinct protein preparations.
X
ABCD1 p.Gly512Ser 11248239:183:333
status: NEW[hide] [Adrenoleukodystrophy: structure and function of A... Yakugaku Zasshi. 2007 Jan;127(1):163-72. Takahashi N, Morita M, Imanaka T
[Adrenoleukodystrophy: structure and function of ALDP, and intracellular behavior of mutant ALDP with naturally occurring missense mutations].
Yakugaku Zasshi. 2007 Jan;127(1):163-72., [PMID:17202797]
Abstract [show]
Adrenoleukodystrophy (ALD) is an inherited disorder characterized by progressive demyelination of the central nervous system and adrenal dysfunction. The biochemical characterization is based on the accumulation of pathgnomonic amounts of saturated very long-chain fatty acid (VLCFA; C>22) in all tissues, including the brain white matter, adrenal glands, and skin fibroblasts, of the patients. The accumulation of VLCFA in ALD is linked to a mutation in the ALD (ABCD1) gene, an ABC subfamily D member. The ALD gene product, so-called ALDP (ABCD1), is thought to be involved in the transport of VLCFA or VLCFA-CoA into the peroxisomes. ALDP is a half-sized peroxisomal ABC protein and it has 745 amino acids in humans. ALDP is thought to be synthesized on free polysomes, posttranslationally transported to peroxisomes, and inserted into the membranes. During this process, ALDP interacts with Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane protein (PMP), the complex targets Pex3p on the peroxisomal membranes, and ALDP is inserted into the membranes. After integration into the membranes, ALDP is thought to form mainly homodimers. Here, we chose nine arbitrary mutations of human ALDP with naturally occurring missense mutations and examined the intracellular behavior of their ALDPs. We found that mutant ALDP (S606L, R617H, and H667D) was degraded together with wild-type ALDP by proteasomes. These results suggest that the complex of mutant and wild-type ALDP is recognized as misfolded proteins and degraded by the protein quality control system associated with proteasomes. Further, we found fragmentation of mutant ALDP (R104C) on peroxisomes and it was not inhibited by proteasomes inhibitors, suggesting that an additional protease(s) is also involved in the quality control of mutant ALDP. In addition, mutation of ALDP (Y174C) suggests that a loop between transmembrane domains 2 and 3 is important for the targeting of ALDP to peroxisomes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
49 変異型 ALDP の分解過程の解析 新生タンパク質が正しいフォールディングを受け ることは,そのタンパク質の正常な機能発現のため に必須である.遺伝子変異などが存在すると,タン パク質がミスフォールディングされる.このミスフ ォールドタンパクが細胞外へ分泌されたり,細胞内 に蓄積したりすると生体にとって極めて有害になる ため,このようなタンパクはプロテアソーム,リソ ソーム等によって迅速に分解される.ちなみに,嚢 胞性線維症の原因タンパク質 CFTR は細胞膜イオ ンチャネルとして機能する ABC タンパク質である が,変異 CFTR は小胞体膜からプロテアソームに リクルートされ分解されることが報告されてい る.32,33) しかしながら,変異型 ALDP を始めとし て,ペルオキシソーム膜タンパク質についての解析 はほとんど行われていない. 変異型 ALDP の一過性発現と安定過剰発現実験 より,ALDP(S606L, R617H, H667D, R104C)は, プロテアーゼにより分解されていると推定された. そこで,ALDP-GFP(H667D)を発現している CHO 細胞に各種プロテアーゼ阻害剤を処理し,解 析を行った.その結果,プロテアソーム阻害剤であ る lactacystin を処理した細胞では ALDP-GFP 及び ALDP の バ ン ド が 出 現 し た ( Fig. 4 ). 一 方 , leupeptin, AEBSF, E64d には効果がなかった.ま た他のプロテアソーム阻害剤である MG132 も有効 であった.さらにプロテアソーム阻害剤により分解 を逃れた変異型 ALDP-GFP(H667D)の細胞内局 在を蛍光抗体法で観察すると,ペルオキシソームに 局在していることが確認された.一方,変異型 ALDP(R104C)のフラグメント化は上記プロテアー ゼ処理では阻害されなかった. さらに ALD 患者由来細胞の内因性変異 ALDP の分解とプロテアソーム分解系の関与について確認 するため,変異型 ALDP(R617H)を持つ患者由 来線維芽細胞を用いてタンパク分解の阻害実験を行 った.その結果,lactacystin と MG132 処理により, ALDP のバンドが出現した.以上の結果より,ペ ルオキシソーム膜上にはミスフォールドしたタンパ ク質を認識する仕組みが存在し,プロテアソーム及 び他のプロテアーゼを介して排除していることが示 唆された. 一方,山田らは ALD 患者線維芽細胞を[35 S]メチ オニンでパルスチェイスすることにより,変異型 ALDP(G512S, R660W)の分解が E-64 と leupepu- tin により抑制されることを報告している.34) 彼ら の実験ではプロテアソーム阻害剤については実験し ていないので,プロテアソームの関与は不明である が,変異型 ALDP の分解には,複数のプロテアー ゼが関与している可能性がある. 7.
X
ABCD1 p.Gly512Ser 17202797:49:6648
status: NEW46 ᜕ᶒɂb; ALDP IJe;ᑖYe3;Έe;a0b;IJe;Ye3;᪆ Ab0;˯f;bf;f3;d1;af;cea;İc;b63;௱d5;a9;fc;eb;c7;a3;f3;b0;ఔ5d7;௫ Ĵb;௭IJf;,ıd;IJe;bf;f3;d1;af;cea;IJe;b63;e38;IJa;a5f;Pfd;˿a;Ife;IJe;ıf;ఉ IJb;fc5;♐Ĵb;&#ff0e;a;f1d;b50;᜕ᶒIJa;İc;b58;ᙠ௳Ĵb;,bf;f3; d1;af;cea;İc;df;b9;d5;a9;fc;eb;c7;a3;f3;b0;௯Ĵc;Ĵb;&#ff0e;௭IJe;df;b9;d5; a9;fc;eb;c9;bf;f3;d1;af;İc;d30;Pde;ఆᑖccc;௯Ĵc;ıf;Ĵa;,d30;Pde;ᑁ IJb;Tc4;a4d;௱ıf;Ĵa;௳Ĵb;˯f;f53;IJb;௷௺ᬿఉ௺ᨵbb3;IJb;IJa;Ĵb; ıf;ఉ,௭IJe;ఐ௦IJa;bf;f3;d1;af;IJf;d7;ed;c6;a2;bd;fc;e0;,ea;bd; bd;fc;e0;b49;IJb;ఐ௷௺fc5;΅f;IJb;ᑖYe3;௯Ĵc;Ĵb;&#ff0e;௵IJa;ijf;IJb;,8a2; Pde;ឋdda;dad;Kc7;IJe;țf;8e0;bf;f3;d1;af;cea; CFTR IJf;d30;Pde;̳c;a4;aa; f3;c1;e3;cd;eb;௱௺a5f;Pfd;௳Ĵb; ABC bf;f3;d1;af;cea;Ĵb; İc;,᜕ᶒ CFTR IJf;c0f;Pde;f53;̳c;İb;d7;ed;c6;a2;bd;fc;e0;IJb; ea;af;eb;fc;c8;௯Ĵc;ᑖYe3;௯Ĵc;Ĵb;௭İc;ᛇȠa;௯Ĵc;௺ Ĵb;&#ff0e; 32,33) ௱İb;௱IJa;İc;,᜕ᶒɂb; ALDP ఔ;cb;ఉ௱ ௺,da;eb;aa;ad;b7;bd;fc;e0;̳c;bf;f3;d1;af;cea;IJb;௸௺IJe;Ye3;᪆ IJf;ijb;కʹc;Ĵf;Ĵc;௺IJa;&#ff0e; ᜕ᶒɂb; ALDP IJe;e00;Έe;ឋ˿a;Ife;b89;b9a;Έe;ᒖ˿a;Ife;b9f; a13; ఐĴa;,ALDP (S606L, R617H, H667D, R104C) IJf;, d7;ed;c6;a2;fc;bc;IJb;ఐĴa;ᑖYe3;௯Ĵc;௺Ĵb;?a8;b9a;௯Ĵc;ıf;&#ff0e; ıd;௭,ALDP-GFP(H667D)ఔ˿a;Ife;௱௺Ĵb; CHO d30;Pde;IJb;ᔜa2e;d7;ed;c6;a2;fc;bc;σb;bb3;ᒐఔ3e6;ᳮ௱,Ye3; ᪆ఔʹc;௷ıf;&#ff0e;ıd;IJe;d50;ʧc;,d7;ed;c6;a2;bd;fc;e0;σb;bb3;ᒐ Ĵb; lactacystin ఔ3e6;ᳮ௱ıf;d30;Pde;IJf; ALDP-GFP 5ca;ఁ ALDP IJe; d0; f3; c9; İc; 3fa; Ife; ௱ ıf; ( Fig. 4 ) &#ff0e; e00; Ab9; , leupeptin, AEBSF, E64d IJb;IJf;4b9;ʧc;İc;IJa;İb;௷ıf;&#ff0e;ije; ıf;ed6;IJe;d7;ed;c6;a2;bd;fc;e0;σb;bb3;ᒐĴb; MG132 ఊᨵ4b9; ௷ıf;&#ff0e;௯IJb;d7;ed;c6;a2;bd;fc;e0;σb;bb3;ᒐIJb;ఐĴa;ᑖYe3; ఔ⌫Ĵc;ıf;᜕ᶒɂb; ALDP-GFP(H667D)IJe;d30;Pde;ᑁc40; ᙠఔVcd;ᐝᢙf53;cd5;Yb3;bdf;௳Ĵb;,da;eb;aa;ad;b7;bd;fc;e0;IJb; c40;ᙠ௱௺Ĵb;௭İc;Nba;a8d;௯Ĵc;ıf;&#ff0e;e00;Ab9;,᜕ᶒɂb; ALDP (R104C) IJe;d5;e9;b0;e1;f3;c8;ᓄIJf;e0a;a18;d7;ed;c6;a2;fc; bc;3e6;ᳮIJf;σb;bb3;௯Ĵc;IJa;İb;௷ıf;&#ff0e; ௯IJb; ALD <a3;ὅᵫᩭd30;Pde;IJe;ᑁ8e0;ឋ᜕ᶒ ALDP IJe;ᑖYe3;d7;ed;c6;a2;bd;fc;e0;ᑖYe3;cfb;IJe;_a2;e0e;IJb;௸௺Nba;a8d; ௳Ĵb;ıf;ఉ,᜕ᶒɂb; ALDP(R617H)ఔᢝ௸<a3;ὅᵫ ᩭdda;dad;Rbd;d30;Pde;ఔᵨ௺bf;f3;d1;af;ᑖYe3;IJe;σb;bb3;b9f; a13;ఔʹc; ௷ıf;&#ff0e;ıd;IJe;d50;ʧc;,lactacystin MG132 3e6;ᳮIJb;ఐĴa;, ALDP IJe;d0;f3;c9;İc;3fa;Ife;௱ıf;&#ff0e;ee5;e0a;IJe;d50;ʧc;ఐĴa;,da; eb;aa;ad;b7;bd;fc;e0;̳c;e0a;IJb;IJf;df;b9;d5;a9;fc;eb;c9;௱ıf;bf;f3;d1; af;cea;ఔa8d;b58;௳Ĵb;ed5;d44;ijf;İc;b58;ᙠ௱,d7;ed;c6;a2;bd;fc;e0;5ca; ఁed6;IJe;d7;ed;c6;a2;fc;bc;ఔecb;௱௺◀௱௺Ĵb;௭İc;̙a; ᖂ௯Ĵc;ıf;&#ff0e; e00;Ab9;,c71;ᵪIJf; ALD <a3;ὅdda;dad;Rbd;d30;Pde;ఔ &#ff3b;35 S&#ff3d; e1;c1; aa;cb;f3;d1;eb;b9;c1;a7;a4;b9;௳Ĵb;௭IJb;ఐĴa;,᜕ᶒɂb; ALDP (G512S, R660W) IJe;ᑖYe3;İc; E-64 leupepu- tin IJb;ఐĴa;ᢓᑴ௯Ĵc;Ĵb;௭ఔᛇȠa;௱௺Ĵb;&#ff0e; 34) f7c; IJe;b9f; a13;IJf;d7;ed;c6;a2;bd;fc;e0;σb;bb3;ᒐIJb;௸௺IJf;b9f; a13;௱ ௺IJa;IJe;,d7;ed;c6;a2;bd;fc;e0;IJe;_a2;e0e;IJf;e0d;ʔe;Ĵb; İc;,᜕ᶒɂb; ALDP IJe;ᑖYe3;IJb;IJf;,⋋ᦪIJe;d7;ed;c6;a2;fc; bc;İc;_a2;e0e;௱௺Ĵb;5ef;Pfd;ឋİc;Ĵb;&#ff0e; 7.
X
ABCD1 p.Gly512Ser 17202797:46:5867
status: NEW[hide] Mutations, clinical findings and survival estimate... PLoS One. 2012;7(3):e34195. doi: 10.1371/journal.pone.0034195. Epub 2012 Mar 29. Pereira Fdos S, Matte U, Habekost CT, de Castilhos RM, El Husny AS, Lourenco CM, Vianna-Morgante AM, Giuliani L, Galera MF, Honjo R, Kim CA, Politei J, Vargas CR, Jardim LB
Mutations, clinical findings and survival estimates in South American patients with X-linked adrenoleukodystrophy.
PLoS One. 2012;7(3):e34195. doi: 10.1371/journal.pone.0034195. Epub 2012 Mar 29., [PMID:22479560]
Abstract [show]
In this study, we analyzed the ABCD1 gene in X-linked adrenoleukodystrophy (X-ALD) patients and relatives from 38 unrelated families from South America, as well as phenotypic proportions, survival estimates, and the potential effect of geographical origin in clinical characteristics. METHODS: X- ALD patients from Brazil, Argentina and Uruguay were invited to participate in molecular studies to determine their genetic status, characterize the mutations and improve the genetic counseling of their families. All samples were screened by SSCP analysis of PCR fragments, followed by automated DNA sequencing to establish the specific mutation in each family. Age at onset and at death, male phenotypes, genetic status of women, and the effect of family and of latitude of origin were also studied. RESULTS: We identified thirty-six different mutations (twelve novel). This population had an important allelic heterogeneity, as only p.Arg518Gln was repeatedly found (three families). Four cases carried de novo mutations. Intra-familiar phenotype variability was observed in all families. Out of 87 affected males identified, 65% had the cerebral phenotype (CALD). The mean (95% CI) ages at onset and at death of the CALD were 10.9 (9.1-12.7) and 24.7 (19.8-29.6) years. No association was found between phenotypic manifestations and latitude of origin. One index-case was a girl with CALD who carried an ABCD1 mutation, and had completely skewed X inactivation. CONCLUSIONS: This study extends the spectrum of mutations in X-ALD, confirms the high rates of de novo mutations and the absence of common mutations, and suggests a possible high frequency of cerebral forms in our population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
24 Family/Index case Phenotype at diagnosis Mutation Exon/IVS Mutation type Effect on protein (cDNA) Effect on protein (mRNA) Protein localization Origin of mutations Origin of family 1/Female asymptomatic p.Gly512Ser (Feigenbaum V et al. 1996) E6 Missense c.1534G.A GGC.AGC NBF de novo Southern Brazil 2/Female asymptomatic p.Ser606Leu (Fanen P et al., 1994) E8 Missense c.1817C.T UCG.UUG NBF Inherited Southern Brazil 3/Male AMN p.Trp601X (Gartner J et al.,1998) E8 Stop codon c.1802C.A Truncated NBF Inherited Southern Brazil 4/Female asymptomatic p.Arg617His (Fanen P et al., 1994) E8 Missense c.1850G.A CGC.CAC NBF ND Southern Brazil 5/Male AMN p.Pro623Leu # E9 Missense c.1868C.T CCC.CUC NBF Inherited Southern Brazil 6/Male AO p.Trp326X (Barcelo A et al, 1996) E2 Stop codon c.978G.A Truncated TMD Inherited Southern Brazil 8/Female asymptomatic p.Glu577X # E7 Stop codon c.1729G.T Truncated NBF Inherited Southern Brazil 9/Male asymptomatic p.Arg554His (Smith KD et al., 1999) E7 Missense c.1661G.A CGU.CAU NBF Inherited Southern Brazil 10/Male CALD p.Arg518Gln (Imamura A et al., 1997) E6 Missense c.1553G.A CGG.CAG NBF Inherited Southern Brazil 11/Male AO p.Tyr33_Pro34fsX34 # E1A Frameshift+stop codon c.99_102delC Truncated - Inherited Southern Brazil 12/Female asymptomatic p.Gly266Arg (Fuchs S et al., 1994) E7 Missense c.1653insG Truncated TMD ND Southern Brazil 20/Male CALD p.Arg538fs # E6 Frameshift c.1614_1615dup27 Elonged NBF de novo Southern Brazil 21/Male CALD p.Ala232fsX64 # E2 Frameshift+stop codon c.696_697del11 Truncated TMD Inherited Southern Brazil 22/Male CALD p.Trp137fsX57 # E1B Frameshift+stop codon c.411_412insC Truncated TMD Inherited Northern Brazil 23/Male asymptomatic p.Trp679X (Waterham HR et al, 1998) E10 Stop codon c.2037G.A Truncated NBF ND Southern Brazil 24/Male AO p.Tyr296Cys (Takano H et al., 1999) E2 Missense c.887A.G UAU.UGU TMD Inherited Southern Brazil 27/Male CALD p.Leu628Glu # E9 Missense c.1883T.A CUG.GAG NBF Inherited Southern Brazil 29/Male CALD p.Pro546fsX?
X
ABCD1 p.Gly512Ser 22479560:24:205
status: NEW[hide] ABCD1 mutations and phenotype distribution in Chin... Gene. 2013 Jun 10;522(1):117-20. doi: 10.1016/j.gene.2013.03.067. Epub 2013 Apr 5. Niu YF, Ni W, Wu ZY
ABCD1 mutations and phenotype distribution in Chinese patients with X-linked adrenoleukodystrophy.
Gene. 2013 Jun 10;522(1):117-20. doi: 10.1016/j.gene.2013.03.067. Epub 2013 Apr 5., [PMID:23566833]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder resulting from mutations within the ABCD1 gene. Adrenomyeloneuropathy (AMN) and childhood cerebral ALD (CCALD) are most common phenotypes in the Western ALD patients. Here we performed mutation analysis of ABCD1 in 10 Chinese ALD families and identified 8 mutations, including one novel deletion (c.1477_1488+11del23) and 7 known mutations. Mutations c.1772G>A and c.1816T>C were first reported in the Chinese patients. Mutations c.1661G>A and c.1679C>T were demonstrated to be de novo mutations. The dinucleotide deletion 1415_16delAG, described as a mutational hotspot in different ethnic groups, was identified in two families. In addition, we performed a retrospective nation-wide mutation study of X-linked ALD in China based on a literature review. The retrospective study further confirmed the hypothesis that exon 6 is a potential mutation cluster region in the Asian populations. Furthermore, it suggested that CCALD is the most common phenotype in China.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 Exon Nucleotide change Amino acid change Phenotype P1 None None None CCALD P2 7 c.1661G>A p.Arg554His CCALD P3 5 c.1477_1488 + 11del 23 p.Leu493_Arg496del Adolescent ALD P4 2 c.1028G>T p.Gly343Val CCALD P5 6 c.1553G>A p.Arg518Gln CCALD P6 5 c.1415_16delAG p.Gln472fsX83 CCALD P7 6 c.1534G>A p.Gly512Ser Adolescent ALD P8 7 c.1679C>T p.Pro560Leu CCALD P9 7 c.1772G>A p.Arg591Gln ACALD P10 5 c.1415_16delAG p.Gln472fsX83 ACALD Fig. 1.
X
ABCD1 p.Gly512Ser 23566833:74:293
status: NEW[hide] An unusual presentation of X-linked adrenoleukodys... Endocrinol Diabetes Metab Case Rep. 2015;2015:150098. doi: 10.1530/EDM-15-0098. Epub 2015 Nov 3. Suryawanshi A, Middleton T, Ganda K
An unusual presentation of X-linked adrenoleukodystrophy.
Endocrinol Diabetes Metab Case Rep. 2015;2015:150098. doi: 10.1530/EDM-15-0098. Epub 2015 Nov 3., [PMID:26609365]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is a rare genetic condition caused by mutations in the ABCD1 gene that result in accumulation of very long chain fatty acids (VLCFAs) in various tissues. This leads to demyelination in the CNS and impaired steroidogenesis in the adrenal cortex and testes. A 57-year-old gentleman was referred for the assessment of bilateral gynaecomastia of 6 months duration. He had skin hyperpigmentation since 4 years of age and spastic paraparesis for the past 15 years. Physical examination findings included generalised hyperpigmentation (including skin, buccal mucosa and palmar creases), blood pressure of 90/60 mmHg, non-tender gynaecomastia and bilateral hypoplastic testes. Lower limb findings were those of a profoundly ataxic gait associated with significant paraparesis and sensory loss. Primary adrenal insufficiency was confirmed and investigations for gynaecomastia revealed normal testosterone with mildly elevated luteinising hormone level and normal prolactin. The combination of primary adrenal insufficiency (likely childhood onset), partial testicular failure (leading to gynaecomastia) and spastic paraparesis suggested X-ALD as a unifying diagnosis. A serum VLCFA panel was consistent with X-ALD. Subsequent genetic testing confirmed the diagnosis. Treatment with replacement doses of corticosteroid resulted in improvement in blood pressure and increased energy levels. We have reported the case of a 57-year-old man with a very late diagnosis of X-ALD manifested by childhood onset of primary adrenal insufficiency followed by paraparesis and primary hypogonadism in adulthood. Thus, X-ALD should be considered as a possibility in a patient with non-autoimmune primary adrenal insufficiency and neurological abnormalities. LEARNING POINTS: Adult patients with X-ALD may be misdiagnosed as having multiple sclerosis or idiopathic spastic paraparesis for many years before the correct diagnosis is identified.Screening for X-ALD with a VLCFA panel should be strongly considered in male children with primary adrenal insufficiency and in male adults presenting with non-autoimmune primary adrenal insufficiency.Confirmation of a genetic diagnosis of X-ALD can be very useful for a patient's family as genetic testing enables detection of pre-symptomatic female heterozygotes who can then be offered pre-natal testing to avoid transmission of the disease to male offsprings.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 The diagnosis of X-ALD was then confirmed by gene testing with a hemizygous mutation in the ABCD1 gene (c.1534GOA(p.Gly512Ser)).
X
ABCD1 p.Gly512Ser 26609365:57:116
status: NEW