ABCC8 p.Asp854Glu
Predicted by SNAP2: | A: D (91%), C: D (85%), E: D (80%), F: D (91%), G: D (91%), H: D (91%), I: D (91%), K: D (95%), L: D (91%), M: D (91%), N: D (85%), P: D (91%), Q: D (91%), R: D (91%), S: D (85%), T: D (85%), V: D (91%), W: D (85%), Y: D (91%), |
Predicted by PROVEAN: | A: D, C: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Insight in eukaryotic ABC transporter function by ... FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19. Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]
Abstract [show]
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
155 The model described by Campbell et al. [98] suggested that mutation E1506 (NBD2) in SUR1 to aspartate reduces ATP hydrolysis, whereas D854E (NBD1) enhances the hydrolytic activity.
X
ABCC8 p.Asp854Glu 16442101:155:134
status: NEW[hide] Potassium channel regulation. EMBO Rep. 2003 Nov;4(11):1038-42. Campbell JD, Sansom MS, Ashcroft FM
Potassium channel regulation.
EMBO Rep. 2003 Nov;4(11):1038-42., [PMID:14593442]
Abstract [show]
The sulphonylurea receptor (SUR) is a member of the ATP-binding cassette (ABC) family of membrane proteins. It functions as the regulatory subunit of the ATP-sensitive potassium (KATP) channel, which comprises SUR and Kir6.x proteins. Here, we review data demonstrating functional differences between the two nucleotide binding domains (NBDs) of SUR1. In addition, to explain the structural basis of these functional differences, we have constructed a molecular model of the NBD dimer of human SUR1. We discuss the experimental data in the context of this model, and show how the model can be used to design experiments aimed at elucidating the relationship between the structure and function of the KATP channel.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 Our model suggests that mutation of E1506 in NBD2 to aspartate might reduce ATP hydrolysis, whereas the D854E mutation in site 1 might enhance hydrolytic activity.
X
ABCC8 p.Asp854Glu 14593442:77:104
status: NEW