ABCB11 p.Arg1153Cys
Reviews: |
p.Arg1153His
D
p.Arg1153Cys D |
Predicted by SNAP2: | A: D (85%), C: D (85%), D: D (95%), E: D (91%), F: D (91%), G: D (91%), H: D (85%), I: D (91%), K: D (85%), L: D (91%), M: D (85%), N: D (91%), P: D (95%), Q: D (85%), S: D (85%), T: D (85%), V: D (91%), W: D (91%), Y: D (91%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Bile salt transporters: molecular characterization... Physiol Rev. 2003 Apr;83(2):633-71. Trauner M, Boyer JL
Bile salt transporters: molecular characterization, function, and regulation.
Physiol Rev. 2003 Apr;83(2):633-71., [PMID:12663868]
Abstract [show]
Molecular medicine has led to rapid advances in the characterization of hepatobiliary transport systems that determine the uptake and excretion of bile salts and other biliary constituents in the liver and extrahepatic tissues. The bile salt pool undergoes an enterohepatic circulation that is regulated by distinct bile salt transport proteins, including the canalicular bile salt export pump BSEP (ABCB11), the ileal Na(+)-dependent bile salt transporter ISBT (SLC10A2), and the hepatic sinusoidal Na(+)- taurocholate cotransporting polypeptide NTCP (SLC10A1). Other bile salt transporters include the organic anion transporting polypeptides OATPs (SLC21A) and the multidrug resistance-associated proteins 2 and 3 MRP2,3 (ABCC2,3). Bile salt transporters are also present in cholangiocytes, the renal proximal tubule, and the placenta. Expression of these transport proteins is regulated by both transcriptional and posttranscriptional events, with the former involving nuclear hormone receptors where bile salts function as specific ligands. During bile secretory failure (cholestasis), bile salt transport proteins undergo adaptive responses that serve to protect the liver from bile salt retention and which facilitate extrahepatic routes of bile salt excretion. This review is a comprehensive summary of current knowledge of the molecular characterization, function, and regulation of bile salt transporters in normal physiology and in cholestatic liver disease and liver regeneration.
Comments [show]
None has been submitted yet.
No. Sentence Comment
631 G238V, E297G, G982R, R1153C, and R1268Q mutations prevent the protein from trafficking to the apical membrane, whereas the G238V mutant seems to be rapidly degraded by proteasomes.
X
ABCB11 p.Arg1153Cys 12663868:631:21
status: NEW[hide] Prediction of drug-induced intrahepatic cholestasi... Expert Opin Drug Saf. 2007 Jan;6(1):71-86. Sakurai A, Kurata A, Onishi Y, Hirano H, Ishikawa T
Prediction of drug-induced intrahepatic cholestasis: in vitro screening and QSAR analysis of drugs inhibiting the human bile salt export pump.
Expert Opin Drug Saf. 2007 Jan;6(1):71-86., [PMID:17181454]
Abstract [show]
Drug-induced intrahepatic cholestasis is one of the major causes of hepatotoxicity, which often occur during the drug discovery and development process. Human ATP-binding cassette transporter ABCB11 (sister of P-glycoprotein/bile salt export pump) mediates the elimination of cytotoxic bile salts from liver cells to bile, and, therefore, plays a critical role in the generation of bile flow. The authors have recently developed in vitro high-speed screening and quantitative structure-activity relationship analysis methods to investigate the interaction of ABCB11 with a variety of compounds. Based on the extent of inhibition of the bile salt export pump, the authors analysed the quantitative structure-activity relationship to identify chemical groups closely associated with the inhibition of ABCB11. This approach provides a new tool to predict compounds with a potential risk of drug-induced intrahepatic cholestasis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
120 H2N COOH S56L G238V G260D C336S L339V V444A K461E D482G T923P K930X G982R R1090X R1153C Outside Inside R1268Q A1228VE1186K R1128H R1057X R1050C A926P A865V R698H E636G M677V S593R E592Q N591S R575XA570T Q558H I498T R432T R415Q R299K E297G V284A I206V S194P E186G cholestasis Expert Opin. Drug Saf. (2007) 6(1) Table 1.
X
ABCB11 p.Arg1153Cys 17181454:120:81
status: NEW131 - 25 3383 G→A Arg1128His BRIC2 [45] - 25 3457 C→T Arg1153Cys PFIC2 [35] rs1521808 26 3556 G→A Glu1186Lys - [102] - 26 3683 C→T Ala1228Val - [44] - 27 3767 - 3768 X→C Frame shift at position 1256 PFIC2 [35] - 27 3803 G→A Arg1268Gln PFIC2 [35] Intron 4 3 A→C - PFIC2 [43] Table 2.
X
ABCB11 p.Arg1153Cys 17181454:131:64
status: NEW[hide] Phenotypic differences in PFIC2 and BRIC2 correlat... Am J Physiol Gastrointest Liver Physiol. 2008 Jan;294(1):G58-67. Epub 2007 Oct 18. Kagawa T, Watanabe N, Mochizuki K, Numari A, Ikeno Y, Itoh J, Tanaka H, Arias IM, Mine T
Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells.
Am J Physiol Gastrointest Liver Physiol. 2008 Jan;294(1):G58-67. Epub 2007 Oct 18., [PMID:17947449]
Abstract [show]
Progressive familial cholestasis (PFIC) 2 and benign recurrent intrahepatic cholestasis (BRIC) 2 are caused by mutations in the bile salt export pump (BSEP, ABCB11) gene; however, their prognosis differs. PFIC2 progresses to cirrhosis and requires liver transplantation, whereas BRIC2 is clinically benign. To identify the molecular mechanism(s) responsible for the phenotypic differences, eight PFIC2 and two BRIC2 mutations were introduced in rat Bsep, which was transfected in MDCK II cells. Taurocholate transport activity, protein expression, and subcellular distribution of these mutant proteins were studied in a polarized MDCK II monolayer. The taurocholate transport activity was approximately half of the wild-type (WT) in BRIC2 mutants (A570T and R1050C), was substantially less in two PFIC2 mutants (D482G and E297G), and was almost abolished in six other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X). Bsep protein expression levels correlated closely with transport activity, except for R1057X. The half-life of the D482G mutant was shorter than that of the WT (1.35 h vs. 3.49 h in the mature form). BRIC2 mutants and three PFIC mutants (D482G, E297G, and R1057X) were predominantly distributed in the apical membrane. The other PFIC2 mutants remained intracellular. The R1057X mutant protein was stably expressed and trafficked to the apical membrane, suggesting that the COOH-terminal tail is required for transport activity but not for correct targeting. In conclusion, taurocholate transport function was impaired in proportion to rapid degradation of Bsep protein in the mutants, which were aligned in the following order: A570T and R1050C > D482G > E297G > K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X. These results may explain the phenotypic difference between BRIC2 and PFIC2.
Comments [show]
None has been submitted yet.
No. Sentence Comment
13 The taurocholate transport activity was approximately half of the wild-type (WT) in BRIC2 mutants (A570T and R1050C), was substantially less in two PFIC2 mutants (D482G and E297G), and was almost abolished in six other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X).
X
ABCB11 p.Arg1153Cys 17947449:13:248
status: NEW19 In conclusion, taurocholate transport function was impaired in proportion to rapid degradation of Bsep protein in the mutants, which were aligned in the following order: A570T and R1050C Ͼ D482G Ͼ E297G Ͼ K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X.
X
ABCB11 p.Arg1153Cys 17947449:19:237
status: NEW139 The positions of 8 PFIC2 mutations (E297G, K461E, D482G, G982R, R1057C, R1153C, 3767-3768insC, and R1268Q) and 2 BRIC2 mutations (A570T and R1050C) are indicated by ଝ and ଙ, respectively.
X
ABCB11 p.Arg1153Cys 17947449:139:72
status: NEW165 Other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X) did not show significant TC transport activity.
X
ABCB11 p.Arg1153Cys 17947449:165:35
status: NEW184 Subcellular distribution study revealed that E297G, R1057X, A570T, and R1050C mutants were predominantly located along the apical membrane, whereas the other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, and 3767-3768insC) remained intracellular (Fig. 7).
X
ABCB11 p.Arg1153Cys 17947449:184:187
status: NEW188 Other PFIC2 mutant proteins (K461E, G982R, R1153C, R1268Q, and 3767-3768insC) were unstable and lost all transport activity.
X
ABCB11 p.Arg1153Cys 17947449:188:43
status: NEW245 The mature form of Bsep protein (band C) of K461E, G982R, R1153C, R1268Q, and 3767-3768insC mutants was hardly detected (Fig. 6B) and, consequently, TC transport activity was abolished (Fig. 6A).
X
ABCB11 p.Arg1153Cys 17947449:245:58
status: NEW290 From the view of maintenance of TC transport activity, the mutants could be aligned in the following order: A570T and R1050C Ͼ D482G Ͼ E297G Ͼ K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X.
X
ABCB11 p.Arg1153Cys 17947449:290:175
status: NEW[hide] Update on progressive familial intrahepatic choles... J Pediatr Gastroenterol Nutr. 2008 Mar;46(3):241-52. Alissa FT, Jaffe R, Shneider BL
Update on progressive familial intrahepatic cholestasis.
J Pediatr Gastroenterol Nutr. 2008 Mar;46(3):241-52., [PMID:18376240]
Abstract [show]
Three distinct forms of familial intrahepatic cholestasis are the result of mutations in the ATP8B1, ABCB11, and ABCB4 genes. The pathophysiologies of the latter 2 of these diseases are well characterized and are the result of abnormalities in canalicular excretion of bile acids and phospholipids, respectively. The molecular pathophysiology of the systemic disease associated with mutations in ATP8B1 remains unclear. In all of these diseases, wide variations in clinical phenotypes have been observed. The variability can be ascribed at least in part to predicted genotype:phenotype correlations. Disease- and genotype-specific prognoses and therapeutic approaches may exist, although much more information needs to be ascertained before clinicians can confidently make decisions based on genetic information.
Comments [show]
None has been submitted yet.
No. Sentence Comment
188 Other common mutations include R575X, R1057X, G982R, C336S, R1153C, D482G, K461E, R1153C, R1268Q, R1090X, G238V, S114R, S593R, del 695, and del 3213 (66,67).
X
ABCB11 p.Arg1153Cys 18376240:188:60
status: NEWX
ABCB11 p.Arg1153Cys 18376240:188:82
status: NEW[hide] Degradation of the bile salt export pump at endopl... Hepatology. 2008 Nov;48(5):1558-69. Wang L, Dong H, Soroka CJ, Wei N, Boyer JL, Hochstrasser M
Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II.
Hepatology. 2008 Nov;48(5):1558-69., [PMID:18798335]
Abstract [show]
The bile salt export pump (Bsep) represents the major bile salt transport system at the canalicular membrane of hepatocytes. When examined in model cell lines, genetic mutations in the BSEP gene impair its targeting and transport function, contributing to the pathogenesis of progressive familial intrahepatic cholestasis type II (PFIC II). PFIC II mutations are known to lead to a deficiency of BSEP in human hepatocytes, suggesting that PFIC II mutants are unstable and degraded in the cell. To investigate this further, we have characterized the impact of several PFIC II mutations on the processing and stability of rat Bsep. G238V, D482G, G982R, R1153C, and R1286Q all retain Bsep to the endoplasmic reticulum (ER) to different extents. Except for R1153C, the PFIC II mutants are degraded with varying half-lives. G238V and D482G are partially misfolded and can be stabilized by low temperature and glycerol. The proteasome provides the major degradation pathway for the PFIC II mutants, whereas the lysosome also contributes to the degradation of D482G. The PFIC II mutants appear to be more heavily ubiquitinated compared with the wild-type (wt) Bsep, and their ubiquitination is increased by the proteasome inhibitors. Overexpression of several E3 ubiquitin ligases, which are involved in ER-associated degradation (ERAD), lead to the decrease of both mutant and wt Bsep. Gene knockdown studies showed that the ERAD E3s Rma1 and TEB4 contribute to the degradation of G238V, whereas HRD1 contributes to the degradation of a mutant lacking the lumenal glycosylation domain (DeltaGly). Furthermore, we present evidence that G982R weakly associates with various components of the ER quality control system. These data together demonstrate that the PFIC II mutants except R1153C and DeltaGly are degraded by the ERAD pathway.
Comments [show]
None has been submitted yet.
No. Sentence Comment
4 G238V, D482G, G982R, R1153C, and R1286Q all retain Bsep to the endoplasmic reticulum (ER) to different extents.
X
ABCB11 p.Arg1153Cys 18798335:4:21
status: NEW5 Except for R1153C, the PFIC II mutants are degraded with varying half-lives.
X
ABCB11 p.Arg1153Cys 18798335:5:11
status: NEW12 These data together demonstrate that the PFIC II mutants except R1153C and ⌬Gly are degraded by the ERAD pathway.
X
ABCB11 p.Arg1153Cys 18798335:12:64
status: NEW48 The following missense mutants were studied in this work: G238V, D482G, G982R, R1153C, and R1286Q.
X
ABCB11 p.Arg1153Cys 18798335:48:79
status: NEW82 The positions of G238V, D482G, G982R, R1153C, and R1286Q are indicated by star signs in a predicted topology model of rat Bsep.
X
ABCB11 p.Arg1153Cys 18798335:82:38
status: NEW95 As can be seen, there is substantial colocalization between GFP-Bsep and calnexin in mutants that are exclusively core-glycosylated or non-glycosylated, that is, G982R, R1153C, R1286Q, and ⌬Gly.
X
ABCB11 p.Arg1153Cys 18798335:95:169
status: NEW119 G982R, R1286Q, and ⌬Gly were degraded over time as indicated by the decrease in the core-glycosylated form (the only form detected), whereas R1153C was relatively stable.
X
ABCB11 p.Arg1153Cys 18798335:119:148
status: NEW123 R1153C is relatively stable.
X
ABCB11 p.Arg1153Cys 18798335:123:0
status: NEW246 Taken together, the data from this study show that G238V, D482G, G982R, R1153C, R1286Q, and ⌬Gly mutations cause retention of Bsep in the ER to different extents.
X
ABCB11 p.Arg1153Cys 18798335:246:72
status: NEW249 Except for R1153C, the PFIC II mutants are short-lived, displaying distinct half-lives as measured by both cycloheximide chase and pulse-chase analyses.
X
ABCB11 p.Arg1153Cys 18798335:249:11
status: NEW274 R1153C is an interesting mutant, in that it is stable yet retained in the ER.
X
ABCB11 p.Arg1153Cys 18798335:274:0
status: NEW275 The R1153C Bsep protein resembles two mutants of the yeast a-factor transporter Ste6p, Ste6- 13p, and Ste6-90p, which are retained in the ER and are hyperstable.24 In contrast, a large number of Ste6 mutants, such as Ste6-166p, are highly unstable and are degraded by the ERAD pathway.
X
ABCB11 p.Arg1153Cys 18798335:275:4
status: NEW277 The R1153C mutant might be an example of this latter mechanism.
X
ABCB11 p.Arg1153Cys 18798335:277:4
status: NEW278 R1153C most likely adopts a misfolded, bile salt transport-inactive conformation, because the mutant protein fails to transport taurocholate when expressed in Sf9 membrane vesicles.8 The misfolded R1153C is thus retained in the ER for continued folding attempts or sequestration instead of being degraded by the ERAD pathway.
X
ABCB11 p.Arg1153Cys 18798335:278:0
status: NEWX
ABCB11 p.Arg1153Cys 18798335:278:197
status: NEW[hide] Missense mutations and single nucleotide polymorph... Hepatology. 2009 Feb;49(2):553-67. Byrne JA, Strautnieks SS, Ihrke G, Pagani F, Knisely AS, Linton KJ, Mieli-Vergani G, Thompson RJ
Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing.
Hepatology. 2009 Feb;49(2):553-67., [PMID:19101985]
Abstract [show]
The gene encoding the human bile salt export pump (BSEP), ABCB11, is mutated in several forms of intrahepatic cholestasis. Here we classified the majority (63) of known ABCB11 missense mutations and 21 single-nucleotide polymorphisms (SNPs) to determine whether they caused abnormal ABCB11 pre-messenger RNA splicing, abnormal processing of BSEP protein, or alterations in BSEP protein function. Using an in vitro minigene system to analyze splicing events, we found reduced wild-type splicing for 20 mutations/SNPs, with normal mRNA levels reduced to 5% or less in eight cases. The common ABCB11 missense mutation encoding D482G enhanced aberrant splicing, whereas the common SNP A1028A promoted exon skipping. Addition of exogenous splicing factors modulated several splicing defects. Of the mutants expressed in vitro in CHO-K1 cells, most appeared to be retained in the endoplasmic reticulum and degraded. A minority had BSEP levels similar to wild-type. The SNP variant A444 had reduced levels of protein compared with V444. Treatment with glycerol and incubation at reduced temperature overcame processing defects for several mutants, including E297G. Taurocholate transport by two assessed mutants, N490D and A570T, was reduced compared with wild-type. Conclusion: This work is a comprehensive analysis of 80% of ABCB11 missense mutations and single-nucleotide polymorphisms at pre-mRNA splicing and protein processing/functional levels. We show that aberrant pre-mRNA splicing occurs in a considerable number of cases, leading to reduced levels of normal mRNA. Thus, primary defects at either the protein or the mRNA level (or both) contribute significantly to BSEP deficiency. These results will help to develop mutation-specific therapies for children and adults suffering from intrahepatic cholestasis due to BSEP deficiency.
Comments [show]
None has been submitted yet.
No. Sentence Comment
68 Continued Exon Nucleotide Change Predicted Protein Effect Location in Protein Associated Phenotype Prevalence or frequency* Any Defect(s) Identified Reference BRIC, 1 family (both hom) 15 c.1757CϾT T586I Adj WB BRIC 1 family (het) No splicing † 15 c.1763CϾT A588V Adj WB PFIC 2 families (both het) No protein 31, 32 15 c.1772AϾG N591S Adj WB SNP-ICP 2.6% 42 15 c.1779TϾA S593R NBF1 PFIC 1 family (het) 29 15 c.1791GϾT V597V NBF1 SNP 2.6% 42 16 c.1880TϾC I627T IC3 PFIC 1 family (het) ‡ 16 c.1964CϾT T655I IC3 BRIC / ICP / DC 1 family (het) Reduced levels of mature protein ‡ 17 c.2029AϾG M677V IC3 SNP 1.6-5.6% 39, 42-45 18 c.2093GϾA R698H IC3 SNP 0.3 - 0.8% 43, 45 18 c.2125GϾA E709K IC3 SNP-PFIC 1 family (het) ‡ 18 c.2130TϾC P710P IC3 SNP-PBC 0.5 - 3.1% 43 20-21 c.2412AϾC A804A TM8 SNP 1.1% 45 20-21 c.2453AϾT Y818F IC4 SNP-PFIC 2 families (hom) Reduced levels of mature protein ‡ 20-21 c.2494CϾT R832C IC4 PFIC 2 families (1 het, 1 consanguineous) Moderate differential splicing 31, 32 20-21 c.2576CϾG T859R IC4 PFIC 1 family (het) 31 22 c.2767AϾC T923P IC5 BRIC 1 family (het) 8 22 c.2776GϾC A926P IC5 BRIC 1 family (het) Mild exon skipping 8 23 c.2842CϾT R948C IC5 PFIC 2 families (both het) Immature protein 31 23 c.2935AϾG N979D TM11 PFIC 1 family (consanguineous) 31 23 c.2944GϾA G982R TM11 PFIC 4 families (1 hom, 1 consanguineous, 2 het) Immature protein 7, 29, 31 23 c.3011GϾA G1004D EC6 PFIC 1 family (hom) 28 24 c.3084AϾG A1028A TM12 SNP-PBC 39.86 - 56.3% Severe exon skipping 8, 43, 45 24 c.3148CϾT R1050C C term BRIC 2 familes (1 hom, 1 het) Immature protein 8 25 c.3329CϾA A1110E Adj WA PFIC 2 familes (both het) Mild exon skipping; immature protein 31 25 c.3346GϾC G1116R WA PFIC / BRIC 1 family (consanguineous) Mild exon skipping ‡ 25 c.3382CϾT R1128C NBF2 PFIC 1 family (consanguineous) Mild exon skipping; immature protein 31 25 c.3383GϾA R1128H NBF2 BRIC 1 family (hom) Mild exon skipping; greatly reduced levels of mature protein 8 26 c.3432CϾA S1144R NBF2 PFIC 1 family (het) Severe differential splicing 29 26 c.3457CϾT R1153C NBF2 PFIC 4 families (2 consanguineous, 2 het) Immature protein 7, 31, 36 26 c.3458GϾA R1153H NBF2 PFIC 4 families (2 consanguineous, 2 het) Severe differential splicing; immature protein 31 26 c.3460TϾC S1154P NBF2 PFIC 1 family (het) Severe differential splicing 31 26 c.3556GϾA E1186K NBF2 SNP 1%-10% Mild exon skipping ‡ 26 c.3589_3590 delCTinsGG L1197G NBF2 BRIC 1 family (het) † 27 c.3628AϾC T1210P Adj ABCm PFIC 1 family (hom) Immature protein 31 27 c.3631AϾG N1211D Adj ABCm SNP-PFIC 1 family (het) ‡ 27 c.3669GϾC E1223D ABCm Prolonged NNH 1 family (het) ‡ 27 c.3683CϾT A1228V Adj ABCm/WB SNP-PBC 0.8% 43 27 c.3691CϾT R1231W Adj ABCm/WB PFIC 1 family (het) Severe exon skipping; immature protein 30, 31 27 c.3692GϾA R1231Q Adj ABCm/WB PFIC 2 families (1 consanguineous, 1 het) No splicing; immature protein 31, 34 27 c.3724CϾA L1242I WB PFIC 1 family (het) 31 28 c.3892GϾA R1268Q¶ NBF2 PFIC 1 family (hom) Immature protein 7 *Prevalence or frequency is quoted depending on how data were presented in the original publication(s).
X
ABCB11 p.Arg1153Cys 19101985:68:2263
status: NEW[hide] Polymorphic variants in the human bile salt export... Pharmacogenet Genomics. 2010 Jan;20(1):45-57. Ho RH, Leake BF, Kilkenny DM, Meyer Zu Schwabedissen HE, Glaeser H, Kroetz DL, Kim RB
Polymorphic variants in the human bile salt export pump (BSEP; ABCB11): functional characterization and interindividual variability.
Pharmacogenet Genomics. 2010 Jan;20(1):45-57., [PMID:20010382]
Abstract [show]
OBJECTIVES: Our aims were to identify and functionally characterize coding region nonsynonymous single nucleotide polymorphisms in the hepatic efflux transporter, bile salt export pump (BSEP; ABCB11), and to assess interindividual variability in BSEP expression. METHODS: We identified 24 single nucleotide polymorphisms, including nine nonsynonymous variants, in ABCB11 from genomic DNA of approximately 250 ethnically diverse healthy individuals using denaturing high-performance liquid chromatography analysis and DNA sequencing. Wild type and variant BSEP were generated and functionally characterized for taurocholate transport activity in vitro in HeLa cells using a recombinant vaccinia-based method. BSEP expression was assessed by real-time mRNA analysis, western blot analysis, and immunofluorescence confocal microscopy. RESULTS: For the most part, polymorphisms were rare and ethnic-dependent. In vitro functional studies revealed several rare variants, including 616A>G, 1674G>C, 1772A>G, and 3556G>A, to be associated with significantly impaired taurocholate transport activity while the 890A>G variant trended towards impaired function but was not statistically significant. The 3556G>A variant was associated with reduced cell surface to total protein expression compared with wild-type BSEP. Expression of BSEP by mRNA and protein analysis was determined from a bank of human liver samples. Wide interindividual variability was noted in both mRNA (19-fold) and protein (31-fold) expression levels. The common variant 1331T>C was associated with significantly reduced hepatic BSEP mRNA levels. CONCLUSION: Accordingly, our study indicates there are functionally relevant polymorphisms in ABCB11 which may be of potential relevance in the predisposition to acquired liver disorders such as drug-induced cholestasis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
138 Functional analysis of bile salt export pump variants A panel of expression plasmids comprising wild-type BSEP, nine nonsynonymous BSEP variants, and two known PFIC2 BSEP missense mutants, 2944G > A (Gly982Arg) and 3457C >T (Arg1153Cys), was constructed for functional studies.
X
ABCB11 p.Arg1153Cys 20010382:138:225
status: NEW[hide] ATP8B1 and ABCB11 analysis in 62 children with nor... Hepatology. 2010 May;51(5):1645-55. Davit-Spraul A, Fabre M, Branchereau S, Baussan C, Gonzales E, Stieger B, Bernard O, Jacquemin E
ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history.
Hepatology. 2010 May;51(5):1645-55., [PMID:20232290]
Abstract [show]
Progressive familial intrahepatic cholestasis (PFIC) types 1 and 2 are characterized by normal serum gamma-glutamyl transferase (GGT) activity and are due to mutations in ATP8B1 (encoding FIC1) and ABCB11 (encoding bile salt export pump [BSEP]), respectively. Our goal was to evaluate the features that may distinguish PFIC1 from PFIC2 and ease their diagnosis. We retrospectively reviewed charts of 62 children with normal-GGT PFIC in whom a search for ATP8B1 and/or ABCB11 mutation, liver BSEP immunostaining, and/or bile analysis were performed. Based on genetic testing, 13 patients were PFIC1 and 39 PFIC2. The PFIC origin remained unknown in 10 cases. PFIC2 patients had a higher tendency to develop neonatal cholestasis. High serum alanine aminotransferase and alphafetoprotein levels, severe lobular lesions with giant hepatocytes, early liver failure, cholelithiasis, hepatocellular carcinoma, very low biliary bile acid concentration, and negative BSEP canalicular staining suggest PFIC2, whereas an absence of these signs and/or presence of extrahepatic manifestations suggest PFIC1. The PFIC1 and PFIC2 phenotypes were not clearly correlated with mutation types, but we found tendencies for a better prognosis and response to ursodeoxycholic acid (UDCA) or biliary diversion (BD) in a few children with missense mutations. Combination of UDCA, BD, and liver transplantation allowed 87% of normal-GGT PFIC patients to be alive at a median age of 10.5 years (1-36), half of them without liver transplantation. CONCLUSION: PFIC1 and PFIC2 differ clinically, biochemically, and histologically at presentation and/or during the disease course. A small proportion of normal-GGT PFIC is likely not due to ATP8B1 or ABCB11 mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
104 14b† p.I420T p.I1061VfsX34 na na PFIC2 no. 15*,‡ p.A167T p.G1058HfsX38 0.5 BSEP À PFIC2 no. 16* p.R1231W p.I528X na na PFIC2 no. 17 p.M62K p.I112T þ p.R698H 0.10 BSEP À PFIC2 no. 18* p.E297G p.H484RfsX5 0.16 BSEP À PFIC2 no. 19* p.E297G p.I610GfsX45 0.23 BSEP À PFIC2 no.
X
ABCB11 p.Arg1153Cys 20232290:104:13
status: NEW107 24† p.R1153C c.3213 14 A>G 0.13 BSEP À PFIC2 no. 25* p.G982R p.Q101DfsX8 0.10 BSEP À PFIC2 no. 26* p.N591S þ p.V597V nf 0.39 BSEP À PFIC2 no. 27* p.G982R p.R1001R na BSEP À PFIC2 no. 28 p.L232CfsX9 nf na BSEP À PFIC2 no. 29 p.W114R nf 0.50 BSEP À PFIC2 no.
X
ABCB11 p.Arg1153Cys 20232290:107:13
status: NEW[hide] The bile salt export pump: clinical and experiment... Semin Liver Dis. 2010 May;30(2):125-33. Epub 2010 Apr 26. Lam P, Soroka CJ, Boyer JL
The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease.
Semin Liver Dis. 2010 May;30(2):125-33. Epub 2010 Apr 26., [PMID:20422495]
Abstract [show]
The primary transporter responsible for bile salt secretion is the bile salt export pump (BSEP, ABCB11), a member of the ATP-binding cassette (ABC) superfamily, which is located at the bile canalicular apical domain of hepatocytes. In humans, BSEP deficiency results in several different genetic forms of cholestasis, which include progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), as well as other acquired forms of cholestasis such as drug-induced cholestasis (DIC) and intrahepatic cholestasis of pregnancy (ICP). Because bile salts play a pivotal role in a wide range of physiologic and pathophysiologic processes, regulation of BSEP expression has been a subject of intense research. The authors briefly describe the molecular characteristics of BSEP and then summarize what is known about its role in the pathogenesis of genetic and acquired cholestatic disorders, emphasizing experimental observations from animal models and cell culture in vitro systems.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 Ubiquitylation is involved in the degradation of receptors, channels, and transporters from the endoplasmic reticulum and cell surface of yeast and higher eukaryotes.86-88 Wang et al, showed for the first time that specific E3 ubiquitin ligases are involved in Bsep degradation.58 Bsep mutants (p.G238V, p.D482G, p.G982R, p.R1153C, and p.R1268Q) were highly ubiquitinated following overexpression of different E3 ubiquitin ligases and were rapidly degraded by proteasomes resulting in shorter half-lives compared with the wild-type protein.58 This study suggests that stabilizing aberrant BSEP proteins by inactivating key E3 ubiquitin ligases might be a novel therapeutic approach, providing that global effects on proteasomal degradation can be avoided.
X
ABCB11 p.Arg1153Cys 20422495:77:324
status: NEW[hide] Living-related liver transplantation for siblings ... Am J Transplant. 2011 Feb;11(2):394-8. doi: 10.1111/j.1600-6143.2010.03397.x. Epub 2011 Jan 10. Shimizu H, Migita O, Kosaki R, Kasahara M, Fukuda A, Sakamoto S, Shigeta T, Uemoto S, Nakazawa A, Kakiuchi T, Arai K
Living-related liver transplantation for siblings with progressive familial intrahepatic cholestasis 2, with novel genetic findings.
Am J Transplant. 2011 Feb;11(2):394-8. doi: 10.1111/j.1600-6143.2010.03397.x. Epub 2011 Jan 10., [PMID:21219577]
Abstract [show]
Progressive familial intrahepatic cholestasis is a syndrome of severe cholestasis progressing to biliary cirrhosis and liver failure that develops in childhood. This report describes two siblings with PFIC-2 who underwent living-related liver transplantation from their genetically proven heterozygous parents. Both patients had normal gamma-glutamyl transpeptidase levels, but showed severe pruritus with sleep disturbance, cholestasis, jaundice and growth failure. Genetic testing of each patient revealed two missense mutations of the bile salt export pump, S901R and C1083Y, which have not previously been associated with PFIC-2. Usual medical treatment failed to improve their clinical symptoms, and the two siblings underwent living-related liver transplantation from their heterozygous parents. The transplants improved their clinical symptoms significantly, and the patients have since shown age-appropriate growth. Electron microscopic findings of the explanted liver of the younger sister revealed dense and amorphous bile, which is characteristic of PFIC-2. In the cases presented here, living-related liver transplantation from a heterozygous donor was associated with better quality of life and improvement of growth, and thus appears to be a feasible option for PFIC-2 patients. Mutation analysis is a useful tool to help decide the course of treatment of PFIC.
Comments [show]
None has been submitted yet.
No. Sentence Comment
104 The common mutations include E297G, R575X, R1057X, G982R, C336S, R1153C, D482G, K461E, R1153C, R1268Q, R1090X, G238V, S114R, S593R, del 695 and del 3213 (22).
X
ABCB11 p.Arg1153Cys 21219577:104:65
status: NEWX
ABCB11 p.Arg1153Cys 21219577:104:87
status: NEW[hide] A gene encoding a liver-specific ABC transporter i... Nat Genet. 1998 Nov;20(3):233-8. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlowska J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ
A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis.
Nat Genet. 1998 Nov;20(3):233-8., [PMID:9806540]
Abstract [show]
The progressive familial intrahepatic cholestases (PFIC) are a group of inherited disorders with severe cholestatic liver disease from early infancy. A subgroup characterized by normal serum cholesterol and gamma-glutamyltranspeptidase (gammaGT) levels is genetically heterogeneous with loci on chromosomes 2q (PFIC2) and 18q. The phenotype of the PFIC2-linked group is consistent with defective bile acid transport at the hepatocyte canalicular membrane. The PFIC2 gene has now been identified by mutations in a positional candidate, BSEP, which encodes a liver-specific ATP-binding cassette (ABC) transporter, sister of p-glycoprotein (SPGP). The product of the orthologous rat gene has been shown to be an effective bile acid transporter in vitro. These data provide evidence that SPGP is the human bile salt export pump (BSEP).
Comments [show]
None has been submitted yet.
No. Sentence Comment
122 The mutation 3457 C→T (R1153C) is present in a further two Saudi Arabian families and replaces a conserved arginine with a cysteine in the second nucleotide binding fold. One family of Kuwaiti origin carries 3803 G→A (R1268Q), which predicts replacement of arginine with glutamine in the second nucleotide binding fold. One or more of these mutations have been found in 25 PFIC families.
X
ABCB11 p.Arg1153Cys 9806540:122:30
status: NEW142 The ABC transporter family of proteins is the largest so far iden- Table 1• BSEP mutations found in PFIC patients Nucleotide mutation Amino acid number/ Protein consequence Families mutation 1723 C→T R575X Termination codon in first B2 heterozygous nucleotide binding fold Q homozygous 3169 C→T R1057X Termination codon in second B5 heterozygous nucleotide binding fold 908 del G 303 17 novel amino acids then truncation Family 57 heterozygous 3767-3768 ins C 1256 39 novel amino acids then truncation Family 99 homozygous 890 A→G E297G Glutamate to glycine in the intracellular loop S1, S3, S4B, S5, S6, S7, 38 homozygous between transmembrane spans 4 and 5 S4A, B5, B6, B7, 53, L heterozygous 1381 A→G K461E Lysine to glutamate in first Walker A motif Family 55 homozygous 1445 A→G D482G Aspartate to glycine in first P and 52 homozygous nucleotide binding fold 2944 G→A G982R Glycine to arginine in transmembrane span 11 Family 18 homozygous 3457 C→T R1153C Arginine to cysteine in second C and D homozygous nucleotide binding fold 3803 G→A R1268Q Arginine to glutamine in second J homozygous nucleotide binding fold In each case the nucleotide position in the human coding sequence is given along with details of the predicted protein consequence.
X
ABCB11 p.Arg1153Cys 9806540:142:1010
status: NEW163 Two consanguineous families of Saudi Arabian Bedouin origin which are not known to be related, but share the same family name, carry 3457 C→T (R1153C).
X
ABCB11 p.Arg1153Cys 9806540:163:150
status: NEW236 The endonucleases used were: HphI (E297G), BpmI (K461E), FokI (D482G), AlwNI (G982R), BsrBI (R1153C) and AvaII (R1268Q).
X
ABCB11 p.Arg1153Cys 9806540:236:93
status: NEW[hide] Xenobiotic, bile acid, and cholesterol transporter... Pharmacol Rev. 2010 Mar;62(1):1-96. Epub 2010 Jan 26. Klaassen CD, Aleksunes LM
Xenobiotic, bile acid, and cholesterol transporters: function and regulation.
Pharmacol Rev. 2010 Mar;62(1):1-96. Epub 2010 Jan 26., [PMID:20103563]
Abstract [show]
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Comments [show]
None has been submitted yet.
No. Sentence Comment
6508 Nucleotide Change Amino Acid Change In Vitro Function Protein Expression/ Localization ABCB11 BSEP N.D. G238V N.D. Intracellular A890G E297G 2 Intracellular N.D. C336S ↔ Normal G1296C R432T 2 Reduced T1331C V444A ↔ Normal/Reduced A1445G D482G 2 Normal/Reduced G2026T D676Y 2 Reduced G2563A G855R 2 Reduced G2944A G982R 2 Intracellular C3457T R1153C 2 Intracellular G3803A R1268Q 2 Intracellular searchers were able to identify functional roles for Mrp2 using rats lacking this transporter (Eisai hyperbilirubinemic rats on a Sprague-Dawley background and transport-deficient (TR-) on a Wistar background) (Paulusma et al., 1996; Ito et al., 1997).
X
ABCB11 p.Arg1153Cys 20103563:6508:356
status: NEW[hide] Novel resequencing chip customized to diagnose mut... Gastroenterology. 2007 Jan;132(1):119-26. Epub 2006 Oct 21. Liu C, Aronow BJ, Jegga AG, Wang N, Miethke A, Mourya R, Bezerra JA
Novel resequencing chip customized to diagnose mutations in patients with inherited syndromes of intrahepatic cholestasis.
Gastroenterology. 2007 Jan;132(1):119-26. Epub 2006 Oct 21., [PMID:17241866]
Abstract [show]
BACKGROUND & AIMS: Inherited syndromes of intrahepatic cholestasis commonly result from mutations in the genes SERPINA1 (alpha(1)-antitrypsin deficiency), JAG1 (Alagille syndrome), ATP8B1 (progressive familial intrahepatic cholestasis type 1 [PFIC1]), ABCB11 (PFIC2), and ABCB4 (PFIC3). However, the large gene sizes and lack of mutational hotspots make it difficult to survey for disease-causing mutations in clinical practice. Here, we aimed to develop a technological tool that reads out the nucleotide sequence of these genes rapidly and accurately. METHODS: 25-mer nucleotide probes were designed to identify each base for all exons, 10 bases of intronic sequence bordering exons, 280-500 bases upstream from the first exon for each gene, and 350 bases of the second intron of the JAG1 gene and tiled using the Affymetrix resequencing platform. We then developed high-fidelity polymerase chain reactions to produce amplicons using 1 mL of blood from each subject; amplicons were hybridized to the chip, and nucleotide calls were validated by standard capillary sequencing methods. RESULTS: Hybridization of amplicons with the chip produced a high nucleotide sequence readout for all 5 genes in a single assay, with an automated call rate of 93.5% (range, 90.3%-95.7%). The accuracy of nucleotide calls was 99.99% when compared with capillary sequencing. Testing the chip on subjects with cholestatic syndromes identified disease-causing mutations in SERPINA1, JAG1, ATP8B1, ABCB11, or ABCB4. CONCLUSIONS: The resequencing chip efficiently reads SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 with a high call rate and accuracy in one assay and identifies disease-causing mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
70 Diagnosisa Mutation 1 ␣1AT deficiency SERPINA1 T638C (Val213Ala, homozygous) and G1024A (Glu342Lys, homozygous)45,46 2 ␣1AT deficiency SERPINA1 T638C (Val213Ala, homozygous) and G1024A (Glu342Lys, homozygous)45,46 3 ␣1AT deficiency SERPINA1 T638C (Val213Ala, homozygous) and G1024A (Glu342Lys, homozygous)45,46 4 Alagille syndrome JAG1 C2230T (Arg744stop, heterozygous)47 5 Alagille syndrome JAG1 IVS19 ϩ1 G to A, heterozygous48 6 Alagille syndrome JAG1 C2650T (Glu884Stop, heterozygous)b 7 Alagille syndrome JAG1 C2650T (Glu884Stop, heterozygous)b 8 PFIC1 ATP8B1 C2788T (Arg930stop, heterozygous)28 9 PFIC1 ATP8B1 T1982C (Ile661Thr, heterozygous)15 10 PFIC1 ATP8B1 569-base pair deletion (including first 17 base pairs in exon 23, homozygous)b 11 PFIC2 ABCB11 C3457T (Arg1153Cys, heterozygous)17 12 PFIC2 ABCB11 C2782T (Arg928Stop, heterozygous)b 13 PFIC3 ABCB4 A874T (Lys292Stop, homozygous) and A1954G (Arg652Gly, homozygous)49 14 Biliary atresia ATP8B1 IVS 26 ϩ8 G to T, heterozygousb 15 Biliary atresia No nonsynonymous polymorphism 16 Biliary atresia No nonsynonymous polymorphism 17 Biliary atresia JAG1 C2612G (Pro871Arg, heterozygous)50 18 Biliary atresia SERPINA1 G302A (Arg101His, heterozygous)51 NOTE.
X
ABCB11 p.Arg1153Cys 17241866:70:793
status: NEW[hide] Apical/basolateral surface expression of drug tran... Pharm Res. 2005 Oct;22(10):1559-77. Epub 2005 Sep 22. Ito K, Suzuki H, Horie T, Sugiyama Y
Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport.
Pharm Res. 2005 Oct;22(10):1559-77. Epub 2005 Sep 22., [PMID:16180115]
Abstract [show]
It is well known that transporter proteins play a key role in governing drug absorption, distribution, and elimination in the body, and, accordingly, they are now considered as causes of drug-drug interactions and interindividual differences in pharmacokinetic profiles. Polarized tissues directly involved in drug disposition (intestine, kidney, and liver) and restricted distribution to naive sanctuaries (blood-tissue barriers) asymmetrically express a variety of drug transporters on the apical and basolateral sides, resulting in vectorial drug transport. For example, the organic anion transporting polypeptide (OATP) family on the sinusoidal (basolateral) membrane and multidrug resistance-associated protein 2 (MRP2/ABCC2) on the apical bile canalicular membrane of hepatocytes take up and excrete organic anionic compounds from blood to bile. Such vectorial transcellular transport is fundamentally attributable to the asymmetrical distribution of transporter molecules in polarized cells. Besides the apical/basolateral sorting direction, distribution of the transporter protein between the membrane surface (active site) and the intracellular fraction (inactive site) is of practical importance for the quantitative evaluation of drug transport processes. The most characterized drug transporter associated with this issue is MRP2 on the hepatocyte canalicular (apical) membrane, and it is linked to a genetic disease. Dubin-Johnson syndrome is sometimes caused by impaired canalicular surface expression of MRP2 by a single amino acid substitution. Moreover, single nucleotide polymorphisms in OATP-C/SLC21A6 (SLCO1B1) also affect membrane surface expression, and actually lead to the altered pharmacokinetic profile of pravastatin in healthy subjects. In this review article, the asymmetrical transporter distribution and altered surface expression in polarized tissues are discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
240 Seven amino acid substitutions in BSEP, linked to PFICII (G238V, E297G, C336S, D482G, G982R, R1153C, R1268Q), have been reported and have been examined using rat Bsep expressed in MDCK (128).
X
ABCB11 p.Arg1153Cys 16180115:240:93
status: NEW241 Five of these mutations resulted in disappearance from the apical surface in MDCK cells (G238V, E297G, G982R, R1153C, R1268R) (128).
X
ABCB11 p.Arg1153Cys 16180115:241:110
status: NEW[hide] Enterohepatic bile salt transporters in normal phy... Gastroenterology. 2004 Jan;126(1):322-42. Kullak-Ublick GA, Stieger B, Meier PJ
Enterohepatic bile salt transporters in normal physiology and liver disease.
Gastroenterology. 2004 Jan;126(1):322-42., [PMID:14699511]
Abstract [show]
The vectorial transport of bile salts from blood into bile is essential for the generation of bile flow, solubilization of cholesterol in bile, and emulsification of lipids in the intestine. Major transport proteins involved in the enterohepatic circulation of bile salts include the hepatocellular bile salt export pump (BSEP, ABCB11), the apical sodium-dependent bile salt transporter (ASBT, SLC10A2) in cholangiocytes and enterocytes, the sodium-dependent hepatocyte bile salt uptake system NTCP (SLC10A1), the organic anion transporting polypeptides OATP-C (SLC21A6), OATP8 (SLC21A8) and OATP-A (SLC21A3), and the multidrug resistance protein MRP3 (ABCC3). Synthesis and transport of bile salts are intricately linked processes that undergo extensive feedback and feed-forward regulation by transcriptional and posttranscriptional mechanisms. A key regulator of hepatocellular bile salt homeostasis is the bile acid receptor/farnesoid X receptor FXR, which activates transcription of the BSEP and OATP8 genes and of the small heterodimer partner 1 (SHP). SHP is a transcriptional repressor that mediates bile acid-induced repression of the bile salt uptake systems rat Ntcp and human OATP-C. A nuclear receptor that activates rodent Oatp2 (Slc21a5) and human MRP2 (ABCC2) is the pregnane X receptor/steroid X receptor PXR/SXR. Intracellular trafficking and membrane insertion of bile salt transporters is regulated by lipid, protein, and extracellular signal-related kinases in response to physiologic stimuli such as cyclic adenosine monophosphate or taurocholate. Finally, dysfunction of individual bile salt transporters such as BSEP, on account of genetic mutations, steric inhibition, suppression of gene expression, or disturbed signaling, is an important cause of cholestatic liver disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
117 It is caused by mutations of the BSEP (ABCB11) gene, which is located on chromosome 2q 24.173 Children with PFIC2 do not express BSEP.174 When PFIC2-related BSEP mutations are introduced artificially into rat Bsep and expressed in Madin-Darby canine kidney and Sf9 insect cells, the G238V, E297G, G982R, R1153C, and R1268Q mutations prevent the protein from trafficking to the apical membrane, whereas the G238V mutant seems to be rapidly degraded by proteasomes.175 Whereas mutation C336S affects neither Bsep transport activity nor trafficking, mutations E297G, G982R, R1153C, and R1268Q abolish taurocholate transport activity.
X
ABCB11 p.Arg1153Cys 14699511:117:304
status: NEWX
ABCB11 p.Arg1153Cys 14699511:117:571
status: NEW[hide] Severe bile salt export pump deficiency: 82 differ... Gastroenterology. 2008 Apr;134(4):1203-14. doi: 10.1053/j.gastro.2008.01.038. Epub 2008 Jan 18. Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerova D, Rayner A, Dutton L, Meier Y, Antoniou A, Stieger B, Arnell H, Ozcay F, Al-Hussaini HF, Bassas AF, Verkade HJ, Fischler B, Nemeth A, Kotalova R, Shneider BL, Cielecka-Kuszyk J, McClean P, Whitington PF, Sokal E, Jirsa M, Wali SH, Jankowska I, Pawlowska J, Mieli-Vergani G, Knisely AS, Bull LN, Thompson RJ
Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families.
Gastroenterology. 2008 Apr;134(4):1203-14. doi: 10.1053/j.gastro.2008.01.038. Epub 2008 Jan 18., [PMID:18395098]
Abstract [show]
BACKGROUND & AIMS: Patients with severe bile salt export pump (BSEP) deficiency present as infants with progressive cholestatic liver disease. We characterized mutations of ABCB11 (encoding BSEP) in such patients and correlated genotypes with residual protein detection and risk of malignancy. METHODS: Patients with intrahepatic cholestasis suggestive of BSEP deficiency were investigated by single-strand conformation polymorphism analysis and sequencing of ABCB11. Genotypes sorted by likely phenotypic severity were correlated with data on BSEP immunohistochemistry and clinical outcome. RESULTS: Eighty-two different mutations (52 novel) were identified in 109 families (9 nonsense mutations, 10 small insertions and deletions, 15 splice-site changes, 3 whole-gene deletions, 45 missense changes). In 7 families, only a single heterozygous mutation was identified despite complete sequence analysis. Thirty-two percent of mutations occurred in >1 family, with E297G and/or D482G present in 58% of European families (52/89). On immunohistochemical analysis (88 patients), 93% had abnormal or absent BSEP staining. Expression varied most for E297G and D482G, with some BSEP detected in 45% of patients (19/42) with these mutations. Hepatocellular carcinoma or cholangiocarcinoma developed in 15% of patients (19/128). Two protein-truncating mutations conferred particular risk; 38% (8/21) of such patients developed malignancy versus 10% (11/107) with potentially less severe genotypes (relative risk, 3.7 [confidence limits, 1.7-8.1; P = .003]). CONCLUSIONS: With this study, >100 ABCB11 mutations are now identified. Immunohistochemically detectable BSEP is typically absent, or much reduced, in severe disease. BSEP deficiency confers risk of hepatobiliary malignancy. Close surveillance of BSEP-deficient patients retaining their native liver, particularly those carrying 2 null mutations, is essential.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 The common mutations E297G, D482G, R575X, R1153C, and R1153H abolish HphI, FokI, FokI, BsrBI, and BsrBI sites, respectively, while G982R creates an AlwNI site.
X
ABCB11 p.Arg1153Cys 18395098:77:42
status: NEW150 Missense Mutations in ABCB11 Nucleotide change Predicted effect Exon CpG site Location Change in: Size Charge Hyd/Pol Shape c.149Tb0e;C p.Leu50Ser 4 No NH2 term Y Y Y c.470Ab0e;G p.Tyr157Cys 6 No TM2 Y Y Y c.725Cb0e;T p.Thr242Ile 8 No TM4 Y Y c.890Ab0e;G p.Glu297Gly 9 No IC2 Y Y Y c.908Gb0e;A p.Arg303Lys 9 No IC2 c.937Cb0e;A p.Arg313Ser 10 Yes IC2 Y Y Y Y c.980Gb0e;A p.Gly327Glu 10 No TM5 Y Y Y c.1168Gb0e;C p.Ala390Pro 11 No TM/NBF Y c.1229Gb0e;A p.Gly410Asp 12 No TM/NBF Y Y c.1238Tb0e;G p.Leu413Trp 12 No TM/NBF c.1388Cb0e;T p.Thr463Ile 13 No Adj Walker A Y Y Y c.1396Cb0e;A p.Gln466Lys 13 No Adj Walker A Y c.1409Gb0e;A p.Arg470Gln 13 Yes Adj Walker A Y c.1415Ab0e;G p.Tyr472Cys 13 No Adj Walker A Y Y Y c.1442Tb0e;A p.Val481Glu 14 No NBF1 Y Y Y c.1445Ab0e;G p.Asp482Gly 14 No NBF1 Y Y c.1460Gb0e;C p.Arg487Pro 14 Yes NBF1 Y Y Y Y c.1468Ab0e;G p.Asn490Asp 14 No NBF1 Y c.1535Tb0e;C p.Ile512Thr 14 No NBF1 Y Y Y c.1544Ab0e;C p.Asn515Thr 14 No NBF1 Y Y c.1550Gb0e;A p.Arg517His 14 Yes NBF1 Y Y c.1621Ab0e;C p.Ile541Leu 14 No NBF1 c.1622Tb0e;C p.Ile541Thr 14 No NBF1 Y Y Y c.1643Tb0e;A p.Phe548Tyr 15 No Adj ABC c.1685Gb0e;A p.Gly562Asp 15 No ABC Y Y c.1708Gb0e;A p.Ala570Thr 15 Yes ABC/Walker B Y c.1763Cb0e;T p.Ala588Val 15 No Adj Walker B Y c.2272Gb0e;C p.Gly758Arg 19 No NBF/TM Y Y Y c.2296Gb0e;A p.Gly766Arg 19 Yes TM7 Y Y Y c.2494Cb0e;T p.Arg832Cys 21 Yes IC3 Y Y Y Y c.2576Cb0e;G p.Thr859Arg 21 No IC3 Y Y Y Y c.2842Cb0e;T p.Arg948Cys 23 Yes IC4 Y Y Y Y c.2935Ab0e;G p.Asn979Asp 23 No TM11 Y c.2944Gb0e;A p.Gly982Arg 23 Yes TM11 Y Y Y c.3086Cb0e;A p.Thr1029Lys 24 No TM12 Y Y Y Y c.3329Cb0e;A p.Ala1110Glu 25 Yes Adj Walker A Y Y Y c.3382Cb0e;T p.Arg1128Cys 25 Yes Adj Walker A Y Y Y Y c.3457Cb0e;T p.Arg1153Cys 26 Yes NBF2 Y Y Y Y c.3458Gb0e;A p.Arg1153His 26 Yes NBF2 Y Y c.3460Tb0e;C p.Ser1154Pro 26 No NBF2 Y c.3628Ab0e;C p.Thr1210Pro 27 No Adj ABC Y c.3691Cb0e;T p.Arg1231Trp 27 Yes ABC/Walker B Y Y c.3692Gb0e;A p.Arg1231Gln 27 Yes ABC/Walker B Y c.3724Cb0e;A p.Leu1242Ile 27 No Walker B c.3892Gb0e;A p.Gly1298Arg 28 No NBF2 Y Y Y NOTE.
X
ABCB11 p.Arg1153Cys 18395098:150:1826
status: NEW207 Ten mutations occurred in multiple families: R470Q, R832C,33 R948C, A1110E, and R1231Q53 have now been reported in 2 families; R1090X2 in 3 families; G982R,1,2 R1153C,1,47 and R1153H in 4 families; and R575X in 6 families.1,2,32,45 Six common missense and nonsense changes occurred at non-CpG sites: R520X and A588V33 in 2 European families and E1302X and I541L33,54 in 3 European families each.
X
ABCB11 p.Arg1153Cys 18395098:207:160
status: NEW[hide] The bile salt export pump (BSEP) in health and dis... Clin Res Hepatol Gastroenterol. 2012 Dec;36(6):536-53. doi: 10.1016/j.clinre.2012.06.006. Epub 2012 Jul 12. Kubitz R, Droge C, Stindt J, Weissenberger K, Haussinger D
The bile salt export pump (BSEP) in health and disease.
Clin Res Hepatol Gastroenterol. 2012 Dec;36(6):536-53. doi: 10.1016/j.clinre.2012.06.006. Epub 2012 Jul 12., [PMID:22795478]
Abstract [show]
The bile salt export pump (BSEP) is the major transporter for the secretion of bile acids from hepatocytes into bile in humans. Mutations of BSEP are associated with cholestatic liver diseases of varying severity including progressive familial intrahepatic cholestasis type 2 (PFIC-2), benign recurrent intrahepatic cholestasis type 2 (BRIC-2) and genetic polymorphisms are linked to intrahepatic cholestasis of pregnancy (ICP) and drug-induced liver injury (DILI). Detailed analysis of these diseases has considerably increased our knowledge about physiology and pathophysiology of bile secretion in humans. This review focuses on expression, localization, and function, short- and long-term regulation of BSEP as well as diseases association and treatment options for BSEP-associated diseases.
Comments [show]
None has been submitted yet.
No. Sentence Comment
185 PFIC BRIC/NFC ICP Other liver diseases Genetic variants without disease association Missense mutations M1V C336S D549V L1055P E135K E137K T87R V43I S701P G19R W342G G556R C1083Y E137K L198P M123T S56L L712L L50S A382G G562D A1110E E186G E297G S194P Q121K A865D M62K R387H A570T S1114R L198P R415Q L198P R128H A865G C68Y A390P L581F G1116E E297G V444A G260D I206V S874P C107R G410D A588V G1116F G374S D482G E297K V284A I939M I112T L413W S593R G1116R A390P N591S V444A G295C R958Q W114R I420T I627T S1120N R432T T655I T510T G295R F959C Y157C D440E E636G R1128C V444A T655I G295S F959V A167T G455E R698C S1144R I498T D676Y R299K T965S A167V K461E S699P R1153C A570T P710P R303K F971L I182K T463I E709K R1153H T586I L827I L339V F971Y M183T Q466K G758R S1154P G648V G855R H423R L1006F M183V R470Q G766R N1173D T655I E1186K V444A N1009H G188W Y472C Y818F T1210P T923P V444D K1145N M217R V481E R832C N1211D A926P V444G I1183T R223C D482G R832H V1212F R948C A459V S226L R487H T859R R1231Q G1004D I468I G238V R487P A865V R1231W R1050C R487L T242I N490D Q869P L1242I G1116R Q546K A257G I498T G877R D1243G R1128H Q558H V284L G499E S901R R1268Q L1197G E592Q E297G I512T R948C A1283V R1231Q V597M R303G N515T N979D G1292V R616G R303K R517H G982R G1298R T619A Q312H F540L G1004D M677L R313S I541L T1029K M677V G327E I541T G1032R R696Q W330R F548Y A1044P R698H Nonsense mutations (premature stop-codons) S25X Y472X Y772X R1090X E96X W493X Q791X V1147X W330X R520X R928X Q1215X Y354X I528X Y1041X R1235X R415X R575X R1057X E1302X R470X Q702X Q1058X Table 1 (Continued) PFIC BRIC/NFC ICP Other liver diseases Genetic variants without disease association Splice site mutations 76 + 3G > T 908 + 1delG 2178 + 1G > T 3057-2A > G Q159Q 77-1G > C 908 + 1G > T 2179-2A > G 3213 + 1delG Q361Q 99-1G > T 908 + 1G > A 2343 + 1G > T 3213 + 4A > G 150 + 3A > C 1435-13 -8del 2343 + 2T > C 3213 + 5G > A 390-1G > A 2012-8T > G 2611-2A > T 611 + 1G > A 2178 + 1G > A R1001R Deletions/insertions/frame shifts Q101Dfs8X L380Wfs18X G648Vfs5X Q1058Hfs38X F959Hfs1X T127Hfs6X A382 A388del K700Sfs12X I1061Vfs34X F959Gfs48X N199Ifs14X P456Pfs24X T919del L1165del L232Cfs9X H484Rfs5X K930Efs92X A1192Efs50X R303Sfs17X I528Sfs21X K930Efs79X T1256Tfs40X V368Rfs27X I610Qfs45X K969 K972del Synonymous variants without disease association R33R F90F L232L I416I G557G I876I A1028A K1145K D36D I134I Y269Y G418G V597V G937G K1070K R52R S136S Q312Q F427F A804A Y981Y T1086T D58D V195V G319G E395E A535A G817G G1004G A1110A The overview shows ࣈ 290 known variants of BSEP on the protein level, except splice site mutations, which are shown on cDNA level.
X
ABCB11 p.Arg1153Cys 22795478:185:650
status: NEW[hide] Biosynthesis and trafficking of the bile salt expo... Mol Aspects Med. 2014 Jun;37:3-14. doi: 10.1016/j.mam.2013.05.001. Epub 2013 May 15. Soroka CJ, Boyer JL
Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations.
Mol Aspects Med. 2014 Jun;37:3-14. doi: 10.1016/j.mam.2013.05.001. Epub 2013 May 15., [PMID:23685087]
Abstract [show]
The bile salt export pump (BSEP, ABCB11) is the primary transporter of bile acids from the hepatocyte to the biliary system. This rate-limiting step in bile formation is essential to the formation of bile salt dependent bile flow, the enterohepatic circulation of bile acids, and the digestion of dietary fats. Mutations in BSEP are associated with cholestatic diseases such as progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), drug-induced cholestasis, and intrahepatic cholestasis of pregnancy. Development of clinical therapies for these conditions necessitates a clear understanding of the cell biology of biosynthesis, trafficking, and transcriptional and translational regulation of BSEP. This chapter will focus on the molecular and cell biological aspects of this critical hepatic membrane transporter.
Comments [show]
None has been submitted yet.
No. Sentence Comment
136 When seven PFIC2 missense mutations were expressed in MDCK cells, five of these common mutations (G238V, E297G, G982R, R1153C and R1268Q) were unable to traffic to the apical membrane (Wang et al., 2002).
X
ABCB11 p.Arg1153Cys 23685087:136:119
status: NEW185 In vitro studies using rat Bsep mutants of the human mutations G238V, D482G, G982R, R1153C, and R1268Q all resulted in retention of Bsep in the ER to different extents (Wang et al., 2008).
X
ABCB11 p.Arg1153Cys 23685087:185:84
status: NEW[hide] Genetic variations of bile salt transporters. Drug Discov Today Technol. 2014 Jun;12:e55-67. doi: 10.1016/j.ddtec.2014.03.006. Kubitz R, Droge C, Kluge S, Stindt J, Haussinger D
Genetic variations of bile salt transporters.
Drug Discov Today Technol. 2014 Jun;12:e55-67. doi: 10.1016/j.ddtec.2014.03.006., [PMID:25027376]
Abstract [show]
Bile salt transporters directly or indirectly influence biological processes through physicochemical or signalling properties of bile salts. The coordinated action of uptake and efflux transporters in polarized epithelial cells of the liver, biliary tree, small intestine and kidney determine bile salt concentrations in different compartments of the body. Genetic variations of bile salt transporters lead to clinical relevant phenotypes of varying severity ranging from a predisposition for drug-induced liver injury to rapidly progressing end-stage liver disease. This review focuses on the impact of genetic variations of bile salt transporters including BSEP, NTCP, ASBT and OSTalpha/beta and discusses approaches for transporter analysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
112 The missense mutations p.G238V, p.E297G, p.G982R, p.R1153C and p.R1268Q all led to a reduced expression at the apical membrane, when expressed in MDCK cells [124].
X
ABCB11 p.Arg1153Cys 25027376:112:52
status: NEW[hide] Liver transcript analysis reveals aberrant splicin... Mol Genet Metab. 2014 Nov;113(3):225-9. doi: 10.1016/j.ymgme.2014.07.006. Epub 2014 Jul 15. Davit-Spraul A, Oliveira C, Gonzales E, Gaignard P, Therond P, Jacquemin E
Liver transcript analysis reveals aberrant splicing due to silent and intronic variations in the ABCB11 gene.
Mol Genet Metab. 2014 Nov;113(3):225-9. doi: 10.1016/j.ymgme.2014.07.006. Epub 2014 Jul 15., [PMID:25085279]
Abstract [show]
BACKGROUND: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is an autosomal recessive disease due to mutations in ABCB11. ABCB11 encodes the bile salt export pump (BSEP), the major transporter responsible for biliary bile acid secretion, which expression is restricted to hepatocytes. In some patients, molecular analysis of ABCB11 revealed either exonic or intronic variations - including common polymorphisms - predicted to affect splicing according to in silico analysis or in vitro minigene studies. Transcript analysis in liver tissue is the best way to determine whether the variations predicted to affect splicing are deleterious or not. METHODS AND RESULTS: We performed ABCB11 transcript analysis in liver tissue from five PFIC2 patients who had variations which were predicted to either affect splicing or not. Among eleven variants tested, only the silent c.3003A>G variant and the intronic c.3213+4A>G variant led to abnormal splicing as suggested by in silico analysis. CONCLUSION: ABCB11 liver transcript analysis is a useful tool to confirm or invalidate the predicted splicing effect of a silent or intronic ABCB11 variation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
41 Briefly, patient 1 is compound heterozygous for the missense mutation p.Arg1153Cys and the intronic substitution c.3213+4ANG.
X
ABCB11 p.Arg1153Cys 25085279:41:72
status: NEW71 Maternal allele Paternal allele Patient 1 c.3213+4ANG p.Val444Ala&#b0; p.Arg1153Cys p.Val444Ala&#b0; Patient 2 p.Gly982Arg p.Val444Ala&#b0; p.Phe90Phe&#b0; c.3003ANG (silent p.Arg1001) Patient 3 p.Gly1003Glu p.Val444Ala&#b0; p.Ala1028Ala** p.Tyr1041X p.Val444Ala&#b0; Patient 4 p.Tyr354X p.Gly319Gly* p.Met677Val&#b0; p.Ala1028Ala** c.389+8GNA p.Gly982Arg Patient 5 p.Arg1128Cys* p.Val444Ala&#b0; p.Met677Val&#b0; p.Thr1086Thr p.Arg1128Cys p.Val444Ala&#b0; p.Met677Val&#b0; p.Thr1086Thr In bold: disease-causing mutation. In italic: common variation.
X
ABCB11 p.Arg1153Cys 25085279:71:73
status: NEW[hide] Hypothyroidism Associated with ATP8B1 Deficiency. J Pediatr. 2015 Dec;167(6):1334-1339.e1. doi: 10.1016/j.jpeds.2015.08.037. Epub 2015 Sep 15. Li L, Deheragoda M, Lu Y, Gong J, Wang J
Hypothyroidism Associated with ATP8B1 Deficiency.
J Pediatr. 2015 Dec;167(6):1334-1339.e1. doi: 10.1016/j.jpeds.2015.08.037. Epub 2015 Sep 15., [PMID:26382629]
Abstract [show]
OBJECTIVE: To examine whether hypothyroidism is an extrahepatic feature of ATPase, aminophospholipid transporter, class I, type 8B, member 1 (ATP8B1) deficiency. STUDY DESIGN: Children with normal gamma-glutamyltransferase cholestasis (n = 47; 13 patients with ATP8B1 deficiency, 19 with ATP-binding cassette, subfamily B (MDR/TAP), member 11 (ABCB11) deficiency, and 15 without either ATP8B1 or ABCB11 mutations) were enrolled. Clinical information and thyroid function test results were retrospectively retrieved from clinical records and compared. Hypothyroidism was diagnosed by clinical-biochemistry criteria (thyroid function test results). RESULTS: Three out of 13 patients with ATP8B1 deficiency were diagnosed as hypothyroid and 2 as subclinically hypothyroid. The frequency of hypothyroidism and subclinical hypothyroidism was significantly higher than in patients with ABCB11 deficiency (5/13 vs 0/19, P = .006) and in patients without ATP8B1 or ABCB11 mutations (5/13 vs 0/15, P = .013). Thyroid function test results normalized after hormone replacement in all 5 patients, with no relief of cholestasis. CONCLUSIONS: As hypothyroidism can be another extrahepatic feature of ATP8B1 deficiency, thyroid function should be monitored in these patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
71 ABCB11 mutations and immunostaining in patients with ABCB11 mutations Patient ID Sex Nucleotide change Amino acid change Mutation origin BSEP expression GGT expression 244 Female c.145C>T/- p.Q49X/- Paternal/- Absent Normal 653 Female c.1197+1G>T/c.1197+1G>T -/- Paternal/maternal Not assessed Not assessed 727 Male c.2782C>T/c.3593A>G p.R928X/p.H1198R Maternal/paternal Not assessed Not assessed 889 Female c.3457C>T/c.3623A>G p.R1153C/p.Y1208C Paternal/maternal Absent Normal 919 Female c.1493T>C/c.1493T>C p.I498T/p.I498T Paternal/maternal Not assessed Not assessed 996 Male c.612-2_4 CTA>TT/- -/- Maternal/- Absent Normal 1022 Male c.212T>A/c.677C>T p.L71H/p.S226L Paternal/maternal Absent Normal 1131 Male c.409G>A/c.2216delC p.E137K/p.P740QfsX6 De novo/paternal Absent Normal 1134 Male c.1760C>G/c.3677G>C p.S587X/p.R1226P Maternal/paternal Absent Absent 1139 Female c.2935A>G/c.3746T>G p.N979D/p.L1249X Not assessed Not assessed Not assessed 1140 Male c.542G>T/c.1370_1372dupGTG p.R181I/p.V458dup Maternal/paternal Not assessed Not assessed 1219 Female c.872T>C/c.3691C>T p.V291A/p.R1231W Maternal/paternal Not assessed Not assessed 334* Female c.2944G>A/- p.G982R/- Not assessed Normal Normal 802* Female c.3458G>A/- p.R1153H/- Not assessed Not assessed Not assessed 862* Male c.634G>A/c.849A>C/c.1638G>T p.A212T/p.E283D/p.Q546H Maternal/maternal/de novo Not assessed Not assessed 864* Male c.1727A>G/- p.N576S/- Paternal/- Normal Normal 1165* Male c.1583T>C/c.1583T>C p.I528T/p.I528T Not assessed Not assessed Not assessed 1167* Male c.334A>G/c.3233T>C p.I112V/p.I1078T Not assessed Not assessed Not assessed 1242* Male c.2783G>A/- p.R928Q/- Not assessed Not assessed Not assessed Bold: Novel mutation.
X
ABCB11 p.Arg1153Cys 26382629:71:430
status: NEW