ABCB1 p.Gly341Val
Predicted by SNAP2: | A: N (53%), C: D (75%), D: D (85%), E: D (91%), F: D (80%), H: D (85%), I: D (85%), K: D (91%), L: D (85%), M: D (85%), N: D (80%), P: D (91%), Q: D (85%), R: D (91%), S: N (53%), T: D (80%), V: D (80%), W: D (91%), Y: D (91%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Biochemical, cellular, and pharmacological aspects... Annu Rev Pharmacol Toxicol. 1999;39:361-98. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM
Biochemical, cellular, and pharmacological aspects of the multidrug transporter.
Annu Rev Pharmacol Toxicol. 1999;39:361-98., [PMID:10331089]
Abstract [show]
Considerable evidence has accumulated indicating that the multidrug transporter or P-glycoprotein plays a role in the development of simultaneous resistance to multiple cytotoxic drugs in cancer cells. In recent years, various approaches such as mutational analyses and biochemical and pharmacological characterization have yielded significant information about the relationship of structure and function of P-glycoprotein. However, there is still considerable controversy about the mechanism of action of this efflux pump and its function in normal cells. This review summarizes current research on the structure-function analysis of P-glycoprotein, its mechanism of action, and facts and speculations about its normal physiological role.
Comments [show]
None has been submitted yet.
No. Sentence Comment
47 Table 1 List of mutations in human, mouse, and hamster P-glycoproteins that affect substrate specificitya aa mutation Region Sourceb Reference H61R, F, K, M, W, Y TM 1 Human MDR1 149, 150 ABC20c G64R TM 1 Human MDR1 150 L65R TM 1 Human MDR1 150 aa78-97 EC 1 Human MDR1 151 Q128Hd TM 2 Mouse mdr3 152 R138H IC 1 Mouse mdr3 152 Q139H, R IC 1 Mouse mdr3 152 Q141V IC 1 Human MDR1 15319, Q145H IC 1 Mouse mdr3 152 E155G, K IC 1 Mouse mdr3 152 F159I IC 1 Mouse mdr3 152 D174G IC 1 Mouse mdr3 152 S176G, P IC 1 Mouse mdr3 152 K177I IC 1 Mouse mdr3 152 N179S IC 1 Mouse mdr3 152 N183S/G185V IC 1 Human MDR1 154 G183D IC 1 Mouse mdr3 152 G185V IC 1 Human MDR1 155-157 G187V IC 1 Human MDR1 153 A192T TM 3 Mouse mdr3 152 F204S EC 2 Mouse mdr3 152 W208G EC 2 Mouse mdr3 152 K209E EC 2 Mouse mdr3 152 L210I TM 4 Mouse mdr3 152 T211P TM 4 Mouse mdr3 152 I214T TM 4 Mouse mdr3 152 P223A TM 4 Human MDR1 158 G288V IC 2 Human MDR1 153 I299M, T319S, L322I, TM 5, EC3, Human MDR1 159 G324K, S351N IC 3 F335A TM 6 Human MDR1 19 F335 TM 6 Human MDR1 160 V338A TM 6 Human MDR1 161 G338A, A339P TM 6 Hamster PGY1 162, 163 A339P TM 6 Hamster PGY1 163 G341V TM 6 Human MDR1 161 K536R, Q N-NBD Human MDR1 164 ERGA → DKGT N-NBD Mouse mdr3 165 aa 522-525 T578C N-NBD Mouse mdr3 165 (Continued) G830V IC 4 Human MDR1 P866A TM 10 Human MDR1 158 F934A TM 11 Mouse mdr3 166 G935A TM 11 Mouse mdr3 166 I936A TM 11 Mouse mdr3 166 F938A TM 11 Mouse mdr3 166 S939A TM 11 Mouse mdr3 166 S939F TM 11 Mouse mdr3 167, 168 S941F TM 11 Mouse mdr1 167, 168 T941A TM 11 Mouse mdr3 166 Q942A TM 11 Mouse mdr3 166 A943G TM 11 Mouse mdr3 166 Y946A TM 11 Mouse mdr3 166 S948A TM 11 Mouse mdr3 166 Y949A TM 11 Mouse mdr3 166 C952A TM 11 Mouse mdr3 166 F953A TM 11 Mouse mdr3 166 F983A TM 12 Human MDR1 169 L975A, V981A, F983A TM 12 Human MDR1 169 M986A, V988A, Q990A, TM 12 Human MDR1 169 V991A V981A, F983A TM 12 Human MDR1 169 L975A, F983A TM 12 Human MDR1 169 L975A, V981A TM 12 Human MDR1 169 F978A TM 12 Human MDR1 19 a aa,amino acid; EC, extracellular loop; IC, intracellular loop; TM,transmembrane domain; NBD, nucleotide binding/utilization domain.
X
ABCB1 p.Gly341Val 10331089:47:1129
status: NEW[hide] P-glycoprotein--implications of metabolism of neop... Curr Cancer Drug Targets. 2005 Sep;5(6):457-68. Breier A, Barancik M, Sulova Z, Uhrik B
P-glycoprotein--implications of metabolism of neoplastic cells and cancer therapy.
Curr Cancer Drug Targets. 2005 Sep;5(6):457-68., [PMID:16178819]
Abstract [show]
Multidrug resistance (MDR) of neoplastic tissues is a major obstacle in cancer chemotherapy. The predominant cause of MDR is the overexpression and drug transport activity of P-glycoprotein (P-gp, a product of the MDR gene). P-gp is a member of the ATP binding cassette (ABC) transporters family, with broad substrate specificity for several substances including anticancer drugs, linear and cyclic peptides, inhibitors of HIV protease, and several other substances. The development of P-gp-mediated MDR is often associated with several changes in cell structure and metabolism of resistant cells. In the present review are discussed the relations between glucosylceramide synthase activity, Pregnane X receptor and development of P-gp mediated MDR phenotype. Attention is also focused on the changes in protein kinase systems (mitogen-activated protein kinases, protein kinase C, Akt kinase) that are associated with the development of MDR phenotype and to the possible role of these kinase cascades in modulation of P-gp expression and function. The overexpression of P-gp may be associated with changes in metabolism of sugars as well as energy production. Structural and ultrastructural characteristics of multidrug resistant cells expressing P-gp are typical for cells engaged in a metabolically demanding process of protein synthesis and transport. P-gp mediated MDR phenotype is often also associated with alterations in cytoskeletal elements, microtubule and mitochondria distribution, Golgi apparatus, chromatin texture, vacuoles and caveolae formation. The current review also aims at bringing some state-of-the-art information on interactions of P-glycoprotein with various substances. To capture and transport the numerous unrelated substances, P-gp should contain site(s) able to bind compounds with a molecular weight of several hundreds and comprising hydrophobic and/or base regions that are protonated under physiological conditions. Drug binding sites that are able to recognize substances with different chemical structures may have a complex architecture in which different parts are responsible for binding of different drugs. For P-gp substrates and inhibitors, a pharmacophore-based model has been described. The pharmacophores have to contain parts with hydrophobic and aromatic characteristics and functional groups that can act as hydrogen-bond donors and/or acceptors. Several drugs are known to be P-glycoprotein antagonizing agents. They represent a large group of structurally unrelated substances that can act via direct interaction with P-gp and inhibition of its transport activity, or via possible modulation of processes (such as phosphorylation) regulating P-gp transport activity. Effects of MDR reversal agents on the P-gp expression have also been reported. Function and expression of P-gp can be affected indirectly as well, e.g. through cyclooxygenase-2 or carbonic anhydrase-IX expression and effects.
Comments [show]
None has been submitted yet.
No. Sentence Comment
183 This is also supported by the results of a site directed mutagenesis study of the transmembrane domain 6 of P-gp [133]: (i) replacement of valine 338 by alanine resulted in a mutant P-gp with enhanced resistance to colchicine and reduced resistance to vinblastine; (ii) replacement of glycine 341 by valine resulted in mutant P-gp with reduced resistance to colchicine or doxorubicin, but remaining resistance to vinblastine or actinomycin D; (iii) replacement of alanine 342 by leucine resulted in mutant P-gp with reduced resistance to all four drugs; (iv) replacement of serine 344 by alanine, threonine, cysteine, or tyrosine resulted in mutant P-gp unable to confer drug resistance.
X
ABCB1 p.Gly341Val 16178819:183:285
status: NEW[hide] Genetic analysis of the multidrug transporter. Annu Rev Genet. 1995;29:607-49. Gottesman MM, Hrycyna CA, Schoenlein PV, Germann UA, Pastan I
Genetic analysis of the multidrug transporter.
Annu Rev Genet. 1995;29:607-49., [PMID:8825488]
Abstract [show]
The analysis of how human cancers evade chemotherapy has revealed a rich variety of cell-based genetic changes resulting in drug resistance. One of the best studied of these genetic alterations is increased expression of an ATP-dependent plasma membrane transport system, known as P-glycoprotein, or the multidrug transporter. This transporter actively effluxes a large number of natural product, hydrophobic, cytotoxic drugs, including many important anticancer agents. This review focuses on the genetic and molecular genetic analysis of the human multidrug transporter, including structure-function analysis, pre- and posttranslational regulation of expression, the role of gene amplification in increased expression, and the properties of transgenic and "knock-out" mice. One important feature of the MDR gene is its potential for the development of new selectable vectors for human gene therapy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
164 Additionally, the mutation of Gly to Val at position 341 resulted in little resistance to colchicine and doxorubicin but retention of resistance to vinblastine and actinomycin D (140).
X
ABCB1 p.Gly341Val 8825488:164:30
status: NEW[hide] Molecular genetic analysis and biochemical charact... Semin Cell Dev Biol. 2001 Jun;12(3):247-56. Hrycyna CA
Molecular genetic analysis and biochemical characterization of mammalian P-glycoproteins involved in multidrug resistance.
Semin Cell Dev Biol. 2001 Jun;12(3):247-56., [PMID:11428917]
Abstract [show]
A variety of human cancers become resistant or are intrinsically resistant to treatment with conventional drug therapies. This phenomenon is due in large part to the overexpression of a 170 kDa plasma membrane ATP-dependent pump known as the multidrug resistance transporter or P-glycoprotein. P-glycoprotein is a member of the large ATP binding cassette (ABC) superfamily of membrane transporters. This review focuses on the use of structure-function analyses to elucidate further the mechanism of action of mammalian P-glycoproteins. Ultimately, a complete understanding of the mechanism is important for the development of novel strategies for the treatment of many human cancers.
Comments [show]
None has been submitted yet.
No. Sentence Comment
27 List of mutations in human, mouse and hamster P-gp`s that affect substrate specificity f aaa Mutation Regionb Sourcec Reference aa 78-97 EC 1 human MDR1 78 (ABC20)d Q128He TM 2 mouse mdr3 79 R138H IC 1 mouse mdr3 79 Q139H, R IC 1 mouse mdr3 79 G141V IC 1 human MDR1 25,80 Q145H IC 1 mouse mdr3 79 E155G, K IC 1 mouse mdr3 79 F159I IC 1 mouse mdr3 79 D174G IC 1 mouse mdr3 79 S176F, P IC 1 mouse mdr3 79 K177I IC 1 mouse mdr3 79 N179S IC1 mouse mdr3 79 N183S/G185V IC 1 human MDR1 81 G183D IC1 mouse mdr3 79 G185V IC 1 human MDR1 82-84 G187V IC 1 human MDR1 80 A192T TM 3 mouse mdr3 79 F204S EC 2 mouse mdr3 79 W208G EC 2 mouse mdr3 79 K209E EC 2 mouse mdr3 79 L210I TM 4 mouse mdr3 79 T211P TM 4 mouse mdr3 79 I214T TM 4 mouse mdr3 79 P223A TM 4 human MDR1 85 K285T IC 2 human MDR1 1 G288V IC 2 human MDR1 80 I299M, T319S, L322I, TM 5, EC3, IC 3 human MDR1 86 G324K, S351N V334 TM 6 human MDR1 1 F335A TM 6 human MDR1 25 F335 TM 6 human MDR1 87 V338A TM 6 human MDR1 88 G338A, A339P TM 6 hamster PGY 1 89,90 A339P TM 6 hamster PGY 1 90 G341V TM 6 human MDR1 88 K536R,Q N-NBD human MDR1 91 ERGA→DKGT N-NBD mouse mdr3 92 (aa 522-525) T578C N-NBD mouse mdr3 92 G812V IC 4 human MDR1 80 G830V IC 4 human MDR1 25,80 P866A TM 10 human MDR1 85 F934A TM 11 mouse mdr3 93 G935A TM 11 mouse mdr3 93 I936A TM 11 mouse mdr3 93 F938A TM 11 mouse mdr3 93 S939A TM 11 mouse mdr3 93 S939F TM 11 mouse mdr3 94,95 S941F TM 11 mouse mdr1 94,95 T941A TM 11 mouse mdr3 93 Q942A TM 11 mouse mdr3 93 Table 1-continued aaa Mutation Regionb Sourcec Reference A943G TM 11 mouse mdr3 93 Y946A TM 11 mouse mdr3 93 S948A TM 11 mouse mdr3 93 Y949A TM 11 mouse mdr3 93 C952A TM 11 mouse mdr3 93 F953A TM 11 mouse mdr3 93 F983A TM 12 human MDR1 96 L975A, V981A, F983A TM 12 human MDR1 96 M986A, V988A, TM 12 human MDR1 96 Q990A, V991A V981A, F983A TM 12 human MDR1 96 L975A, F983A TM 12 human MDR1 96 L975A, V981A TM 12 human MDR1 96 F978 TM 12 human MDR1 1 F978A TM 12 human MDR1 25 a aa, amino acid.
X
ABCB1 p.Gly341Val 11428917:27:1036
status: NEWX
ABCB1 p.Gly341Val 11428917:27:1042
status: NEW[hide] How does P-glycoprotein recognize its substrates? Semin Cancer Biol. 1997 Jun;8(3):151-9. Ueda K, Taguchi Y, Morishima M
How does P-glycoprotein recognize its substrates?
Semin Cancer Biol. 1997 Jun;8(3):151-9., [PMID:9441945]
Abstract [show]
We review how P-glycoprotein recognizes a wide variety of compounds and how it carries its substrates across membranes. Amino acid substitutions that affect the substrate specificity of P-glycoprotein have been found scattered throughout the molecule. In particular, some amino acid residues in the putative transmembrane domain (TM) 1 together with TM5-6 and TM11-12 may help to govern substrate specificity. The features that substrates for P-glycoprotein share are also discussed. The amphipathy of a substrate may decide whether the substrate can be intercalated into the lipid bilayer of the membrane. In addition, only certain molecular volumes and tertiary structures may make it possible for the substrate to fit into the substrate-binding site(s) of P-glycoprotein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
100 The other group consists of mutations Pro223-to-Ala 46 in TM4; Gly341-to-Val 40 in TM6; Pro866-to-Ala 46 in TM10; Phe978-to-Ala 39 in TM12; Ser939-to-Phe, Tyr949-to-Ala, and Phe953-to-Ala in TM11 of mouse mdr1;42,44 and Ser941-to-Phe 43 in TM11 of mouse mdr3.
X
ABCB1 p.Gly341Val 9441945:100:63
status: NEW