ABCB1 p.Phe978Ala
Predicted by SNAP2: | A: D (66%), C: N (57%), D: D (91%), E: D (85%), G: D (80%), H: D (80%), I: N (78%), K: D (85%), L: N (66%), M: N (53%), N: D (75%), P: D (91%), Q: D (71%), R: D (85%), S: N (53%), T: D (71%), V: N (61%), W: D (85%), Y: D (66%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Biochemical, cellular, and pharmacological aspects... Annu Rev Pharmacol Toxicol. 1999;39:361-98. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM
Biochemical, cellular, and pharmacological aspects of the multidrug transporter.
Annu Rev Pharmacol Toxicol. 1999;39:361-98., [PMID:10331089]
Abstract [show]
Considerable evidence has accumulated indicating that the multidrug transporter or P-glycoprotein plays a role in the development of simultaneous resistance to multiple cytotoxic drugs in cancer cells. In recent years, various approaches such as mutational analyses and biochemical and pharmacological characterization have yielded significant information about the relationship of structure and function of P-glycoprotein. However, there is still considerable controversy about the mechanism of action of this efflux pump and its function in normal cells. This review summarizes current research on the structure-function analysis of P-glycoprotein, its mechanism of action, and facts and speculations about its normal physiological role.
Comments [show]
None has been submitted yet.
No. Sentence Comment
47 Table 1 List of mutations in human, mouse, and hamster P-glycoproteins that affect substrate specificitya aa mutation Region Sourceb Reference H61R, F, K, M, W, Y TM 1 Human MDR1 149, 150 ABC20c G64R TM 1 Human MDR1 150 L65R TM 1 Human MDR1 150 aa78-97 EC 1 Human MDR1 151 Q128Hd TM 2 Mouse mdr3 152 R138H IC 1 Mouse mdr3 152 Q139H, R IC 1 Mouse mdr3 152 Q141V IC 1 Human MDR1 15319, Q145H IC 1 Mouse mdr3 152 E155G, K IC 1 Mouse mdr3 152 F159I IC 1 Mouse mdr3 152 D174G IC 1 Mouse mdr3 152 S176G, P IC 1 Mouse mdr3 152 K177I IC 1 Mouse mdr3 152 N179S IC 1 Mouse mdr3 152 N183S/G185V IC 1 Human MDR1 154 G183D IC 1 Mouse mdr3 152 G185V IC 1 Human MDR1 155-157 G187V IC 1 Human MDR1 153 A192T TM 3 Mouse mdr3 152 F204S EC 2 Mouse mdr3 152 W208G EC 2 Mouse mdr3 152 K209E EC 2 Mouse mdr3 152 L210I TM 4 Mouse mdr3 152 T211P TM 4 Mouse mdr3 152 I214T TM 4 Mouse mdr3 152 P223A TM 4 Human MDR1 158 G288V IC 2 Human MDR1 153 I299M, T319S, L322I, TM 5, EC3, Human MDR1 159 G324K, S351N IC 3 F335A TM 6 Human MDR1 19 F335 TM 6 Human MDR1 160 V338A TM 6 Human MDR1 161 G338A, A339P TM 6 Hamster PGY1 162, 163 A339P TM 6 Hamster PGY1 163 G341V TM 6 Human MDR1 161 K536R, Q N-NBD Human MDR1 164 ERGA → DKGT N-NBD Mouse mdr3 165 aa 522-525 T578C N-NBD Mouse mdr3 165 (Continued) G830V IC 4 Human MDR1 P866A TM 10 Human MDR1 158 F934A TM 11 Mouse mdr3 166 G935A TM 11 Mouse mdr3 166 I936A TM 11 Mouse mdr3 166 F938A TM 11 Mouse mdr3 166 S939A TM 11 Mouse mdr3 166 S939F TM 11 Mouse mdr3 167, 168 S941F TM 11 Mouse mdr1 167, 168 T941A TM 11 Mouse mdr3 166 Q942A TM 11 Mouse mdr3 166 A943G TM 11 Mouse mdr3 166 Y946A TM 11 Mouse mdr3 166 S948A TM 11 Mouse mdr3 166 Y949A TM 11 Mouse mdr3 166 C952A TM 11 Mouse mdr3 166 F953A TM 11 Mouse mdr3 166 F983A TM 12 Human MDR1 169 L975A, V981A, F983A TM 12 Human MDR1 169 M986A, V988A, Q990A, TM 12 Human MDR1 169 V991A V981A, F983A TM 12 Human MDR1 169 L975A, F983A TM 12 Human MDR1 169 L975A, V981A TM 12 Human MDR1 169 F978A TM 12 Human MDR1 19 a aa,amino acid; EC, extracellular loop; IC, intracellular loop; TM,transmembrane domain; NBD, nucleotide binding/utilization domain.
X
ABCB1 p.Phe978Ala 10331089:47:1959
status: NEW[hide] Chemoprotection of hematopoietic cells by a mutant... Hum Gene Ther. 2000 Mar 1;11(4):555-65. Hafkemeyer P, Licht T, Pastan I, Gottesman MM
Chemoprotection of hematopoietic cells by a mutant P-glycoprotein resistant to a potent chemosensitizer of multidrug-resistant cancers.
Hum Gene Ther. 2000 Mar 1;11(4):555-65., 2000-03-01 [PMID:10724034]
Abstract [show]
Cancers are frequently chemoresistant because of overexpression of P-glycoprotein. Two different approaches to improve cancer treatment are currently being investigated in clinical trials: inhibition of P-glycoprotein function by reversing agents, and alleviation of leukocytopenia by MDR1 gene transfer to normal bone marrow of patients. We report here that retroviral vectors encoding a mutant P-glycoprotein (MDR1-F983A) protect hematopoietic cells from anticancer drugs even in the presence of trans-(E)-flupentixol, an inhibitor of P-glycoprotein. Transfer of either mutant or wild-type MDR1 to K562 erythroleukemia cells or primary murine bone marrow resulted in reduced accumulation of daunomycin and vinblastine because of increased drug efflux.trans-(E)-Flupentixol at concentrations up to 10 microM failed to reverse drug efflux mediated by the product of the mutant MDR1 while wild-type P-glycoprotein was inhibited. In the presence of 2 microM trans-(E)-flupentixol chemoresistance to daunomycin was circumvented only in K562 cells transduced with wild-type, but not with mutant, MDR1. Moreover, drug resistance of KB-8-5 epidermoid cancer cells, which express the wild-type MDR1 gene at levels comparable to clinical specimens from multidrug-resistant cancers, was fully overcome in the presence of trans-(E)-flupentixol. Vectors expressing mutant P-glycoprotein may help improve chemotherapy by allowing safe dose intensification under conditions in which multidrug-resistant cancers are rendered drug sensitive by reversing agents.
Comments [show]
None has been submitted yet.
No. Sentence Comment
186 Other mutations in close proximity, e.g., F978A and F978S, affect primarily the drug resistance profile of P-gp (Loo and Clarke, 1993).
X
ABCB1 p.Phe978Ala 10724034:186:42
status: NEW[hide] Rapid purification of human P-glycoprotein mutants... J Biol Chem. 1995 Sep 15;270(37):21449-52. Loo TW, Clarke DM
Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug-stimulated ATPase activities.
J Biol Chem. 1995 Sep 15;270(37):21449-52., 1995-09-15 [PMID:7665554]
Abstract [show]
P-glycoprotein containing 10 tandem histidine residues at the COOH end of the molecule was transiently expressed in HEK 293 cells and purified by nickel-chelate chromatography. The purified protein had an apparent mass of 170 kDa, and its verapamil-stimulated ATPase activity in the presence of phospholipid was 1.2 mumol/min/mg of P-glycoprotein. We then characterized P-glycoprotein mutants that exhibited altered drug-resistant phenotypes and analyzed the contribution of the two nucleotide binding folds to drug-stimulated ATPase activity. Mutation of residues in either nucleotide binding fold abolished drug-stimulated ATPase activity. The pattern of drug-stimulated ATPase activities of mutants, which conferred increased relative resistance to colchicine (G141V, G185V, G830V) or decreased relative resistance to all drugs (F978A), correlated with their drug-resistant phenotypes. By contrast, the ATPase activity of mutant F335A was significantly higher than that of wild-type enzyme when assayed in the presence of verapamil (3.4-fold), colchicine (9.1-fold), or vinblastine (3.7-fold), even though it conferred little resistance to vinblastine in transfected cells. These results suggest that both nucleotide-binding domains must be intact to couple drug binding to ATPase activity and that the drug-stimulated ATPase activity profile of a mutant does not always correlate with its drug-resistant phenotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
65 By contrast, mutant F978A conferred decreased resistance to all drugs.
X
ABCB1 p.Phe978Ala 7665554:65:20
status: NEW81 Wild-type (E) and mutants G141V (å), G185V (Ⅺ), G830V (q), F335A (f), and F978A (Ç) P-glycoproteins-(His)10 were purified using Ni-NTA spin columns and reconstituted with sheep brain phosphatidylethanolamine.
X
ABCB1 p.Phe978Ala 7665554:81:86
status: NEW83 Mutant F978A, which confers little resistance to vinblastine, colchicine, doxorubicin, or actinomycin D in transfected cells, also showed little drug-stimulated ATPase activity, except at very high concentrations of verapamil (1.04 mol/min/mg of P-glycoprotein at 800 M verapamil).
X
ABCB1 p.Phe978Ala 7665554:83:7
status: NEW111 For mutants G141V, G185V, G830V, and F978A, the pattern of drug-stimulated ATPase correlated with their relative drug-resistant profiles in transfected cells.
X
ABCB1 p.Phe978Ala 7665554:111:37
status: NEW114 Mutant F978A conferred little resistance to all drug substrates in transfected cells, and the purified protein also showed ex- FIG. 3.
X
ABCB1 p.Phe978Ala 7665554:114:7
status: NEW[hide] Functional consequences of phenylalanine mutations... J Biol Chem. 1993 Sep 25;268(27):19965-72. Loo TW, Clarke DM
Functional consequences of phenylalanine mutations in the predicted transmembrane domain of P-glycoprotein.
J Biol Chem. 1993 Sep 25;268(27):19965-72., 1993-09-25 [PMID:8104183]
Abstract [show]
Site-directed mutagenesis was used to investigate whether phenylalanine residues in predicted transmembrane sequences play essential roles in the function of human P-glycoprotein. Mutant cDNAs, in which codons for each of the 31 phenylalanine residues were changed to alanine, were expressed in mouse NIH 3T3 cells and analyzed with respect to their ability to confer resistance to various drugs. Mutation of either Phe-335 to Ala in transmembrane segment 6, or Phe-978 to Ala in transmembrane segment 12, drastically altered the drug resistance profile conferred by the mutant P-glycoprotein in transfected cells. Mutant Phe-335-->Ala conferred little resistance to vinblastine or actinomycin D but retained the ability to confer resistance to colchicine and adriamycin. The mutant also showed increased binding of azidopine, which could be inhibited by lower levels of vinblastine, relative to the wild-type enzyme. By contrast, mutant Phe-978-->Ala conferred little or no resistance to colchicine or adriamycin, while its ability to confer resistance to vinblastine or actinomycin D was retained. These results suggest that Phe-335 and Phe-978 play important roles in the recognition and transport of specific substrates by P-glycoprotein. Mutation of Phe-777 to Ala affected the biosynthesis of the transporter. Mutation of the other 28 phenylalanine residues yielded protein products with structural and functional characteristics that were indistinguishable from the wild-type enzyme.
Comments [show]
None has been submitted yet.
No. Sentence Comment
119 Functional Consequencesof Other Changes to Phe-335 and Phe-978"Mutation of either Phe-335 or Phe-978 to alanine had aprofound effecton the ability of P-glycoprotein to confer resistance to various cytotoxic compounds.
X
ABCB1 p.Phe978Ala 8104183:119:93
status: NEW183 0,wild-type;0,mutant Phe-335+Ala;W, mutant Phe-978 to Ala.
X
ABCB1 p.Phe978Ala 8104183:183:43
status: NEW[hide] Mutagenesis of transmembrane domain 11 of P-glycop... Biochemistry. 1996 Mar 19;35(11):3625-35. Hanna M, Brault M, Kwan T, Kast C, Gros P
Mutagenesis of transmembrane domain 11 of P-glycoprotein by alanine scanning.
Biochemistry. 1996 Mar 19;35(11):3625-35., 1996-03-19 [PMID:8639515]
Abstract [show]
The biochemical and genetic analyses of P-glycoprotein (P-gp) have indicated that the membrane-associated regions of P-gp play an important role in drug recognition and drug transport. Predicted transmembrane domain 11 (TM11) maps near a major drug binding site revealed by photoaffinity labeling, and mutations in this domain alter the substrate specificity of P-gp. To investigate further the role of TM11 in P-gp function in general, and substrate specificity in particular, each of the 21 residues of TM11 of the P-gp isoform encoded by the mouse mdr3 gene was independently mutated to alanine, or to glycine in the case of endogenous alanines. After transfection and overexpression in Chinese hamster ovary cells, pools of stable transfectants were analyzed for qualitative or quantitative deviations from the profile of resistance to vinblastine, adriamycin, colchicine, and actinomycin D displayed by the wild-type protein. While mutations at eight of the positions had no effect on P-gp function, 13 mutants showed a 2-10-fold reduction of activity against one of the four drugs tested. Although the phenotype of individual mutants was varied, replacements at most mutation-sensitive positions seemed to affect the drug resistance profiles rather than the overall activity of the mutant P-gp. When TM11 was projected in a alpha-helical configuration, the distribution of deleterious and neutral mutations was not random but segregated with a more hydrophobic (mutation-insensitive) face and a more hydrophilic (mutation-sensitive) face of a putative amphipathic helix. The alternate clustering pattern of deleterious vs neutral mutations in TM11 together with the altered drug resistance profile of deleterious mutants suggest that the more hydrophilic face of the TM11 helix may play an important structural or functional role in drug recognition and transport by P-gp. Finally, the conservation of the two residues most sensitive to mutations (Y949 and Y953) in TM11, and in the homologous TM5, of all mammalian P-gps and also in other ABC transporters, suggests that these residues and domains may play an important role in structural as well as mechanistic aspects common to this family of proteins.
Comments [show]
None has been submitted yet.
No. Sentence Comment
32 Finally, elegant studies of Loo and Clarke, in which proline and phenylalanine residues located within TM domains (Loo & Clarke, 1993a,b) as well as glycines in cytoplasmic loops of human MDR1 were systematically replaced by alanines (Loo & Clarke, 1994a), identified several residues within TM 4 (P223A), TM 6 (F335A), TM 10 (P866A), and TM 12 (F978A) and in the intervening cytoplasmic loops where mutations differentially affect the capacity of P-gp to confer resistance to vinblastine (VBL), adriamycin (ADR), colchicine (COL), and actinomycin D (ACT).
X
ABCB1 p.Phe978Ala 8639515:32:346
status: NEW[hide] Contribution to substrate specificity and transpor... Biochemistry. 1998 Nov 17;37(46):16400-9. Hafkemeyer P, Dey S, Ambudkar SV, Hrycyna CA, Pastan I, Gottesman MM
Contribution to substrate specificity and transport of nonconserved residues in transmembrane domain 12 of human P-glycoprotein.
Biochemistry. 1998 Nov 17;37(46):16400-9., 1998-11-17 [PMID:9819232]
Abstract [show]
P-glycoprotein (Pgp), the product of the MDR1 gene, confers multidrug resistance on cancer cells by ATP-dependent extrusion of anticancer drugs. Biochemical and genetic studies with Pgp have identified the putative transmembrane (TM) region 12 (residues 974-994) as a major region involved in drug interactions with amino acid residues conserved among Pgp family members shown to be essential for transport. To determine whether nonconserved residues might be involved in substrate specificity, seven amino acid residues were identified within TM 12 that were not strictly conserved among the MDR1 and MDR2 family of proteins from different mammalian species. We replaced all seven of these amino acid residues with alanine, one at a time and in combinations, and used a vaccinia virus based transient expression system to analyze function. None of the single replacements caused any alteration in transport function. However, when residues L975, V981, and F983 were replaced collectively, drug transport, drug-stimulated ATP hydrolysis, and photoaffinity labeling with the drug analogue, [125I]iodoarylazidoprazosin (IAAP), were abrogated, with little effect on [alpha-32P]-8-azido-ATP labeling and basal ATPase activity. Pairwise alanine substitutuions showed variable effects on function. Substitutions including L975A in combination with any one of the other two replacements had the least effect on Pgp function. The V981A and F983A double mutant showed the most effect on transport of fluorescent substrates. In contrast, alanine substitutions of all four nonconserved residues M986, V988, Q990, and V991 at the putative carboxy-terminal half of TM 12 showed no effect on drug transport except for a partial reduction in bodipy-verapamil extrusion. These results suggest that nonconserved residues in the putative amino-proximal half of TM 12 of Pgp play a more direct role in determining specificity of drug transport function than those in the putative carboxy-terminal half of TM 12.
Comments [show]
None has been submitted yet.
No. Sentence Comment
19 Replacement of the conserved residues (for example, F978A) within the TM regions has profound effects on the substrate specificity and transport function of Pgp (11).
X
ABCB1 p.Phe978Ala 9819232:19:52
status: NEW[hide] New light on multidrug binding by an ATP-binding-c... Trends Pharmacol Sci. 2006 Apr;27(4):195-203. Epub 2006 Mar 20. Shilling RA, Venter H, Velamakanni S, Bapna A, Woebking B, Shahi S, van Veen HW
New light on multidrug binding by an ATP-binding-cassette transporter.
Trends Pharmacol Sci. 2006 Apr;27(4):195-203. Epub 2006 Mar 20., [PMID:16545467]
Abstract [show]
ATP-binding-cassette (ABC) multidrug transporters confer multidrug resistance to pathogenic microorganisms and human tumour cells by mediating the extrusion of structurally unrelated chemotherapeutic drugs from the cell. The molecular basis by which ABC multidrug transporters bind and transport drugs is far from clear. Genetic analyses during the past 14 years reveal that the replacement of many individual amino acids in mammalian multidrug resistance P-glycoproteins can affect cellular resistance to drugs, but these studies have failed to identify specific regions in the primary amino acid sequence that are part of a defined drug-binding pocket. The recent publication of an X-ray crystallographic structure of the bacterial P-glycoprotein homologue MsbA and an MsbA-based homology model of human P-glycoprotein creates an opportunity to compare the original mutagenesis data with the three-dimensional structures of transporters. Our comparisons reveal that mutations that alter specificity are present in three-dimensional 'hotspot' regions in the membrane domains of P-glycoprotein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
58 Although mutation of only one of these residues (L975A, V981A and F983A) has no effect on the phenotype of the protein [20], double mutations either completely inhibit (V981A/F983A and L975A/V981A) or cause 50% inhibition (L975A/F983A) of Table 1.
X
ABCB1 p.Phe978Ala 16545467:58:674
status: NEWX
ABCB1 p.Phe978Ala 16545467:58:773
status: NEW59 Published mutations in human and murine P-glycoprotein that alter drug transport in cells Location of mutation Mutation Refs Mutation Refs Mutation Refs Transmembrane helices H61A and others [14] I214L [60] L868W [59] G64R [15] P223A [65] I936A [21] L65R [15] S224P [60] F938A [21] Q139[H/P/R] [60] I306R [18] S939[A/C/T/Y/W/D/F] [21,22] G141V [17] F335A [16] T941A [21] G185V [61,62] V338A [66] Q942A [21] I186N [61] G338A [67,68] A943G [21] G187V [17] A339P [67,68] Y946A [21] G187E [60] G341A [66] S948A [21] A192T [60] S344[A/T/C/Y] [66] Y949A [21] F200L [60] N350I [19] C952A [21] F204S [60] P709A [65] F953A [21] R206L [60] G830V [17] L975A [20] W208G [60] I837L [23] F978A [16] K209E [60] N839I [23] V981A [20] L210I [60] I862F [19] F983A [20] T211P [60] L865F [19] F978A [16] V213A [60] P866A [65] N988D [59] Intracellular domain T169I [60] K177I [60] G288V [17] R170L [60] E180G [60] A931T [19] L171P [60] G181R [60] F934A [21] T172P [60] G183D [60] G935A [21] S176P [60] D184N [60] NBD D555N [63] K1076M [69] E1197Q [64] D558N [64] D1093N [64] D1203N [64] D592N [64] E1125Q [64] D1237N [64] E604Q [64] S1173A [70] E1249Q [64] Review TRENDS in Pharmacological Sciences Vol.27 No.
X
ABCB1 p.Phe978Ala 16545467:59:674
status: NEWX
ABCB1 p.Phe978Ala 16545467:59:773
status: NEW[hide] Molecular genetic analysis and biochemical charact... Semin Cell Dev Biol. 2001 Jun;12(3):247-56. Hrycyna CA
Molecular genetic analysis and biochemical characterization of mammalian P-glycoproteins involved in multidrug resistance.
Semin Cell Dev Biol. 2001 Jun;12(3):247-56., [PMID:11428917]
Abstract [show]
A variety of human cancers become resistant or are intrinsically resistant to treatment with conventional drug therapies. This phenomenon is due in large part to the overexpression of a 170 kDa plasma membrane ATP-dependent pump known as the multidrug resistance transporter or P-glycoprotein. P-glycoprotein is a member of the large ATP binding cassette (ABC) superfamily of membrane transporters. This review focuses on the use of structure-function analyses to elucidate further the mechanism of action of mammalian P-glycoproteins. Ultimately, a complete understanding of the mechanism is important for the development of novel strategies for the treatment of many human cancers.
Comments [show]
None has been submitted yet.
No. Sentence Comment
27 List of mutations in human, mouse and hamster P-gp`s that affect substrate specificity f aaa Mutation Regionb Sourcec Reference aa 78-97 EC 1 human MDR1 78 (ABC20)d Q128He TM 2 mouse mdr3 79 R138H IC 1 mouse mdr3 79 Q139H, R IC 1 mouse mdr3 79 G141V IC 1 human MDR1 25,80 Q145H IC 1 mouse mdr3 79 E155G, K IC 1 mouse mdr3 79 F159I IC 1 mouse mdr3 79 D174G IC 1 mouse mdr3 79 S176F, P IC 1 mouse mdr3 79 K177I IC 1 mouse mdr3 79 N179S IC1 mouse mdr3 79 N183S/G185V IC 1 human MDR1 81 G183D IC1 mouse mdr3 79 G185V IC 1 human MDR1 82-84 G187V IC 1 human MDR1 80 A192T TM 3 mouse mdr3 79 F204S EC 2 mouse mdr3 79 W208G EC 2 mouse mdr3 79 K209E EC 2 mouse mdr3 79 L210I TM 4 mouse mdr3 79 T211P TM 4 mouse mdr3 79 I214T TM 4 mouse mdr3 79 P223A TM 4 human MDR1 85 K285T IC 2 human MDR1 1 G288V IC 2 human MDR1 80 I299M, T319S, L322I, TM 5, EC3, IC 3 human MDR1 86 G324K, S351N V334 TM 6 human MDR1 1 F335A TM 6 human MDR1 25 F335 TM 6 human MDR1 87 V338A TM 6 human MDR1 88 G338A, A339P TM 6 hamster PGY 1 89,90 A339P TM 6 hamster PGY 1 90 G341V TM 6 human MDR1 88 K536R,Q N-NBD human MDR1 91 ERGA→DKGT N-NBD mouse mdr3 92 (aa 522-525) T578C N-NBD mouse mdr3 92 G812V IC 4 human MDR1 80 G830V IC 4 human MDR1 25,80 P866A TM 10 human MDR1 85 F934A TM 11 mouse mdr3 93 G935A TM 11 mouse mdr3 93 I936A TM 11 mouse mdr3 93 F938A TM 11 mouse mdr3 93 S939A TM 11 mouse mdr3 93 S939F TM 11 mouse mdr3 94,95 S941F TM 11 mouse mdr1 94,95 T941A TM 11 mouse mdr3 93 Q942A TM 11 mouse mdr3 93 Table 1-continued aaa Mutation Regionb Sourcec Reference A943G TM 11 mouse mdr3 93 Y946A TM 11 mouse mdr3 93 S948A TM 11 mouse mdr3 93 Y949A TM 11 mouse mdr3 93 C952A TM 11 mouse mdr3 93 F953A TM 11 mouse mdr3 93 F983A TM 12 human MDR1 96 L975A, V981A, F983A TM 12 human MDR1 96 M986A, V988A, TM 12 human MDR1 96 Q990A, V991A V981A, F983A TM 12 human MDR1 96 L975A, F983A TM 12 human MDR1 96 L975A, V981A TM 12 human MDR1 96 F978 TM 12 human MDR1 1 F978A TM 12 human MDR1 25 a aa, amino acid.
X
ABCB1 p.Phe978Ala 11428917:27:1936
status: NEWX
ABCB1 p.Phe978Ala 11428917:27:1943
status: NEW[hide] How does P-glycoprotein recognize its substrates? Semin Cancer Biol. 1997 Jun;8(3):151-9. Ueda K, Taguchi Y, Morishima M
How does P-glycoprotein recognize its substrates?
Semin Cancer Biol. 1997 Jun;8(3):151-9., [PMID:9441945]
Abstract [show]
We review how P-glycoprotein recognizes a wide variety of compounds and how it carries its substrates across membranes. Amino acid substitutions that affect the substrate specificity of P-glycoprotein have been found scattered throughout the molecule. In particular, some amino acid residues in the putative transmembrane domain (TM) 1 together with TM5-6 and TM11-12 may help to govern substrate specificity. The features that substrates for P-glycoprotein share are also discussed. The amphipathy of a substrate may decide whether the substrate can be intercalated into the lipid bilayer of the membrane. In addition, only certain molecular volumes and tertiary structures may make it possible for the substrate to fit into the substrate-binding site(s) of P-glycoprotein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
100 The other group consists of mutations Pro223-to-Ala 46 in TM4; Gly341-to-Val 40 in TM6; Pro866-to-Ala 46 in TM10; Phe978-to-Ala 39 in TM12; Ser939-to-Phe, Tyr949-to-Ala, and Phe953-to-Ala in TM11 of mouse mdr1;42,44 and Ser941-to-Phe 43 in TM11 of mouse mdr3.
X
ABCB1 p.Phe978Ala 9441945:100:114
status: NEW[hide] The catalytic cycle of P-glycoprotein. FEBS Lett. 1995 Dec 27;377(3):285-9. Senior AE, al-Shawi MK, Urbatsch IL
The catalytic cycle of P-glycoprotein.
FEBS Lett. 1995 Dec 27;377(3):285-9., [PMID:8549739]
Abstract [show]
P-glycoprotein is a plasma-membrane glycoprotein which confers multidrug-resistance on cells and displays ATP-driven drug-pumping in vitro. It contains two nucleotide-binding domains, and its structure places it in the 'ABC transporter' family. We review recent evidence that both nucleotide-sites bind and hydrolyse Mg-ATP. The two catalytic sites interact strongly. A minimal scheme for the MgATP hydrolysis reaction is presented. An alternating catalytic sites scheme is proposed, in which drug transport is coupled to relaxation of a high-energy catalytic site conformation generated by the hydrolysis step. Other ABC transporters may show similar catalytic features.
Comments [show]
None has been submitted yet.
No. Sentence Comment
67 These included F335A~ which gave considerable increase in ATPase, and F978A which gave large decrease.
X
ABCB1 p.Phe978Ala 8549739:67:70
status: NEW