ABCC7 p.Ser753Ala
ClinVar: |
c.2259C>G
,
p.Ser753Arg
?
, not provided
c.2259C>T , p.Ser753= ? , not provided |
CF databases: |
c.2259C>G
,
p.Ser753Arg
(CFTR1)
?
, This mutation was identified on one Brazilian CBAVD chromosome.
|
Predicted by SNAP2: | A: N (82%), C: N (82%), D: N (82%), E: N (78%), F: N (61%), G: N (82%), H: N (82%), I: N (78%), K: N (72%), L: N (78%), M: N (72%), N: N (93%), P: N (78%), Q: N (82%), R: N (72%), T: N (93%), V: N (87%), W: D (71%), Y: N (66%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, F: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, T: N, V: N, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Structure and function of the CFTR chloride channe... Physiol Rev. 1999 Jan;79(1 Suppl):S23-45. Sheppard DN, Welsh MJ
Structure and function of the CFTR chloride channel.
Physiol Rev. 1999 Jan;79(1 Suppl):S23-45., [PMID:9922375]
Abstract [show]
Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79, Suppl.: S23-S45, 1999. - The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl- channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the genetic disease cystic fibrosis. The CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. Here we review the structure and function of this unique channel, with a focus on how the various domains contribute to channel function. The MSDs form the channel pore, phosphorylation of the R domain determines channel activity, and ATP hydrolysis by the NBDs controls channel gating. Current knowledge of CFTR structure and function may help us understand better its mechanism of action, its role in electrolyte transport, its dysfunction in cystic fibrosis, and its relationship to other ABC transporters.
Comments [show]
None has been submitted yet.
No. Sentence Comment
497 The mutation 10SA-S753A eliminates much Additional evidence for phosphorylation-dependent control of CFTR channel activity comes from observa-of the residual PKA-dependent phosphorylation of the 10SA mutant and decreases the Po of the 10SA mutant by tions that there appear to be both high and low phosphorylation states correlating with a high and low Po (43, 64).40% (115).
X
ABCC7 p.Ser753Ala 9922375:497:18
status: NEW[hide] Role of tyrosine phosphorylation in the muscarinic... J Biol Chem. 2013 Jul 26;288(30):21815-23. doi: 10.1074/jbc.M113.479360. Epub 2013 Jun 11. Billet A, Luo Y, Balghi H, Hanrahan JW
Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR).
J Biol Chem. 2013 Jul 26;288(30):21815-23. doi: 10.1074/jbc.M113.479360. Epub 2013 Jun 11., [PMID:23760269]
Abstract [show]
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl(-)) channel, which plays an important role in physiological anion and fluid secretion, and is defective in several diseases. Although its activation by PKA and PKC has been studied extensively, its regulation by receptors is less well understood. To study signaling involved in CFTR activation, we measured whole-cell Cl(-) currents in BHK cells cotransfected with GPCRs and CFTR. In cells expressing the M3 muscarinic acetylcholine receptor, the agonist carbachol (Cch) caused strong activation of CFTR through two pathways; the canonical PKA-dependent mechanism and a second mechanism that involves tyrosine phosphorylation. The role of PKA was suggested by partial inhibition of cholinergic stimulation by the specific PKA inhibitor Rp-cAMPS. The role of tyrosine kinases was suggested by Cch stimulation of 15SA-CFTR and 9CA-CFTR, mutants that lack 15 PKA or 9 PKC consensus sequences and are unresponsive to PKA or PKC stimulation, respectively. Moreover the residual Cch response was sensitive to inhibitors of the Pyk2 and Src tyrosine kinase family. Our results suggest that tyrosine phosphorylation acts on CFTR directly and through inhibition of the phosphatase PP2A. Results suggest that PKA and tyrosine kinases contribute to CFTR regulation by GPCRs that are expressed at the apical membrane of intestinal and airway epithelia.
Comments [show]
None has been submitted yet.
No. Sentence Comment
102 Carbachol Stimulates CFTR through PKA and Non-PKA Signaling Pathways-To explore PKA-independent regulation of CFTR without using inhibitors that might have confounding effects on other pathways, we studied the activation of 15SA-CFTR (S422A/S660A/S670A/S686A/T690A/S700A/S712A/ S737A/S753A/S768A/T787A/T788A/S790A/S795A/S813A).
X
ABCC7 p.Ser753Ala 23760269:102:284
status: NEW