ABCC7 p.Thr665Ser

CF databases: c.1993A>T , p.Thr665Ser (CFTR1) ? , A novel mutation was identified by DGGE and direct sequencing. This mutation was identified on a CF chromosome of Tunisian origin. The mutation was found once while screning 57 non[delta]F508 CF chromosomes.
Predicted by SNAP2: A: D (71%), C: D (85%), D: D (85%), E: D (80%), F: D (85%), G: D (80%), H: D (75%), I: D (80%), K: D (80%), L: D (80%), M: D (91%), N: D (71%), P: D (80%), Q: D (71%), R: D (80%), S: N (82%), V: D (75%), W: D (91%), Y: D (80%),
Predicted by PROVEAN: A: N, C: N, D: N, E: N, F: N, G: N, H: D, I: N, K: N, L: N, M: N, N: N, P: D, Q: N, R: N, S: N, V: N, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Bobadilla JL, Macek M Jr, Fine JP, Farrell PM
Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening.
Hum Mutat. 2002 Jun;19(6):575-606., [PMID:12007216]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Aznarez I, Chan EM, Zielenski J, Blencowe BJ, Tsui LC
Characterization of disease-associated mutations affecting an exonic splicing enhancer and two cryptic splice sites in exon 13 of the cystic fibrosis transmembrane conductance regulator gene.
Hum Mol Genet. 2003 Aug 15;12(16):2031-40., 2003-08-15 [PMID:12913074]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Rowntree RK, Harris A
The phenotypic consequences of CFTR mutations.
Ann Hum Genet. 2003 Sep;67(Pt 5):471-85., [PMID:12940920]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B, Cuppens H
Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator.
Hum Mol Genet. 1998 Oct;7(11):1761-9., [PMID:9736778]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loumi O, Ferec C, Mercier B, Creff J, Fercot B, Denine R, Grangaud JP
CFTR mutations in the Algerian population.
J Cyst Fibros. 2008 Jan;7(1):54-9. Epub 2007 Jun 14., [PMID:17572159]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Annereau JP, Wulbrand U, Vankeerberghen A, Cuppens H, Bontems F, Tummler B, Cassiman JJ, Stoven V
A novel model for the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator.
FEBS Lett. 1997 May 5;407(3):303-8., [PMID:9175873]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Chen JM, Scotet V, Ferec C
Definition of a "functional R domain" of the cystic fibrosis transmembrane conductance regulator.
Mol Genet Metab. 2000 Sep-Oct;71(1-2):245-9., [PMID:11001817]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Naguib ML, Schrijver I, Gardner P, Pique LM, Doss SS, Abu Zekry MA, Aziz M, Nasr SZ
Cystic fibrosis detection in high-risk Egyptian children and CFTR mutation analysis.
J Cyst Fibros. 2007 Apr;6(2):111-6. Epub 2006 Jul 11., [PMID:16837250]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Tsui LC, Dorfman R
The cystic fibrosis gene: a molecular genetic perspective.
Cold Spring Harb Perspect Med. 2013 Feb 1;3(2):a009472. doi: 10.1101/cshperspect.a009472., [PMID:23378595]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Ramalho AS, Clarke LA, Sousa M, Felicio V, Barreto C, Lopes C, Amaral MD
Comparative ex vivo, in vitro and in silico analyses of a CFTR splicing mutation: Importance of functional studies to establish disease liability of mutations.
J Cyst Fibros. 2015 Feb 27. pii: S1569-1993(15)00039-9. doi: 10.1016/j.jcf.2015.02.002., [PMID:25735457]

Abstract [show]
Comments [show]
Sentences [show]