ABCC7 p.Arg792Gly
ClinVar: |
c.2374C>G
,
p.Arg792Gly
D
, Likely pathogenic
c.2374C>T , p.Arg792* ? , not provided |
CF databases: |
c.2374C>T
,
p.Arg792*
D
, CF-causing
c.2374C>G , p.Arg792Gly (CFTR1) D , R792P was detected by SSCP and heteroduplex analysis followed by direct sequencing. |
Predicted by SNAP2: | A: D (85%), C: D (85%), D: D (95%), E: D (91%), F: D (85%), G: D (75%), H: D (85%), I: D (80%), K: D (71%), L: D (80%), M: D (85%), N: D (91%), P: D (95%), Q: D (80%), S: D (85%), T: D (85%), V: D (80%), W: D (91%), Y: D (80%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: N, F: D, G: D, H: N, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, S: N, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Insight in eukaryotic ABC transporter function by ... FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19. Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]
Abstract [show]
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
296 G622D and R792G have reduced intrinsic chloride channel activities whereas H620Q and A800G resulted in increased intrinsic chloride transport properties [160].
X
ABCC7 p.Arg792Gly 16442101:296:10
status: NEW[hide] A functional R domain from cystic fibrosis transme... Proc Natl Acad Sci U S A. 2000 May 9;97(10):5657-62. Ostedgaard LS, Baldursson O, Vermeer DW, Welsh MJ, Robertson AD
A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution.
Proc Natl Acad Sci U S A. 2000 May 9;97(10):5657-62., 2000-05-09 [PMID:10792060]
Abstract [show]
Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708-831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity.
Comments [show]
None has been submitted yet.
No. Sentence Comment
198 From this region, the mutations R792G, A800G, E822K, and E826K increase or decrease current, but have not been reported to alter channel properties (38, 39).
X
ABCC7 p.Arg792Gly 10792060:198:32
status: NEW[hide] Two novel missense mutations (R766M and R792G) in ... Hum Hered. 2000 Sep-Oct;50(5):318-9. Ravnik-Glavac M, Dean M, Glavac D
Two novel missense mutations (R766M and R792G) in exon 13 of the CFTR gene in a patient with congenital bilateral absence of the vas deferens.
Hum Hered. 2000 Sep-Oct;50(5):318-9., [PMID:10878476]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
3 Another mutation is a substitution of glycine at 792 (R792G) for arginine due to a nucleotide change of C to G at 2506 (fig. 1).
X
ABCC7 p.Arg792Gly 10878476:3:54
status: NEW21 No normal single-stranded DNAs (alleles) have been detected in sample 3 carrying mutations R766M and R792G.
X
ABCC7 p.Arg792Gly 10878476:21:101
status: NEW24 It is very likely that the newly detected genotype R766M/R792G in a CBAVD patient is connected with a disease phenotype.
X
ABCC7 p.Arg792Gly 10878476:24:57
status: NEW25 The R776M and R792G lie in the regulatory domain of CFTR.
X
ABCC7 p.Arg792Gly 10878476:25:14
status: NEW27 For R792G mutant chloride channel, significantly lower intrinsic chloride channel activities were detected compared to wild-type CFTR [3].
X
ABCC7 p.Arg792Gly 10878476:27:4
status: NEW29 Frequency Both R766M and R792G have each been detected once in 84 CBAVD chromosomes and have not been found in 230 normal chromosomes tested in this study.
X
ABCC7 p.Arg792Gly 10878476:29:25
status: NEW30 Other Comments Single-strand conformational polymorphism (SSCP) analysis showed that R766M and R792G are present on different CFTR alleles of a CBAVD patient.
X
ABCC7 p.Arg792Gly 10878476:30:95
status: NEW[hide] The phenotypic consequences of CFTR mutations. Ann Hum Genet. 2003 Sep;67(Pt 5):471-85. Rowntree RK, Harris A
The phenotypic consequences of CFTR mutations.
Ann Hum Genet. 2003 Sep;67(Pt 5):471-85., [PMID:12940920]
Abstract [show]
Cystic fibrosis is a common autosomal recessive disorder that primarily affects the epithelial cells in the intestine, respiratory system, pancreas, gall bladder and sweat glands. Over one thousand mutations have currently been identified in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that are associated with CF disease. There have been many studies on the correlation of the CFTR genotype and CF disease phenotype; however, this relationship is still not well understood. A connection between CFTR genotype and disease manifested in the pancreas has been well described, but pulmonary disease appears to be highly variable even between individuals with the same genotype. This review describes the current classification of CFTR mutation classes and resulting CF disease phenotypes. Complex disease alleles and modifier genes are discussed along with alternative disorders, such as disseminated bronchiectasis and pancreatitis, which are also thought to result from CFTR mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
78 Three mutant CFTR proteins, G622D, R792G and E822K, that were transiently expressed in COS cells showed lower chloride channel activities when compared to wild-type CFTR, whereas mutants H620Q and A800G showed increased activities.
X
ABCC7 p.Arg792Gly 12940920:78:35
status: NEW[hide] Do common in silico tools predict the clinical con... Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan XW, Corey M, Tsui LC, Zielenski J, Durie P
Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?
Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6., [PMID:20059485]
Abstract [show]
Computational methods are used to predict the molecular consequences of amino-acid substitutions on the basis of evolutionary conservation or protein structure, but their utility in clinical diagnosis or prediction of disease outcome has not been well validated. We evaluated three popular computer programs, namely, PANTHER, SIFT and PolyPhen, by comparing the predicted clinical outcomes for a group of known CFTR missense mutations against the diagnosis of cystic fibrosis (CF) and clinical manifestations in cohorts of subjects with CF-disease and CFTR-related disorders carrying these mutations. Owing to poor specificity, none of tools reliably distinguished between individual mutations that confer CF disease from mutations found in subjects with a CFTR-related disorder or no disease. Prediction scores for CFTR mutations derived from PANTHER showed a significant overall statistical correlation with the spectrum of disease severity associated with mutations in the CFTR gene. In contrast, PolyPhen- and SIFT-derived scores only showed significant differences between CF-causing and non-CF variants. Current computational methods are not recommended for establishing or excluding a CF diagnosis, notably as a newborn screening strategy or in patients with equivocal test results.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Mutations in the CFTR gene grouped by clinical category Cystic fibrosis CFTR-related disease No disease T338I D614G L320V V920L L90S M470V H199R S1251N I203M G550R P111A I148T Q1291H R560K L1388Q L183I R170H I1027T S549R D443Y P499A L1414S T908N R668C S549N A455E E1401K Q151K G27E I1234L Y563N R347P C866R S1118C P1290S R75Q A559T V520F P841R M469V E1401G P67L G85E S50Y E1409K R933G G458V G178R Y1032C R248T I980K G85V V392G L973P L137H T351S R334W I444S V938G R792G R560T R555G L1339F D1305E P574H V1240G T1053I D58G G551D L1335P I918M F994C S945L L558S F1337V R810G D1152H G1247R P574S R766M D579G W1098R H949R F200I R352Q L1077P K1351E M244K L206W M1101K D1154G L375F N1303K R1066C E528D D110Y R347H R1070Q A800G P1021S S549K A1364V V392A damaging` (is supposed to affect protein function or structure) and 'probably damaging` (high confidence of affecting protein function or structure).
X
ABCC7 p.Arg792Gly 20059485:64:463
status: NEW[hide] Mutations that permit residual CFTR function delay... Respir Res. 2010 Oct 8;11:140. Green DM, McDougal KE, Blackman SM, Sosnay PR, Henderson LB, Naughton KM, Collaco JM, Cutting GR
Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients.
Respir Res. 2010 Oct 8;11:140., [PMID:20932301]
Abstract [show]
BACKGROUND: Lung infection by various organisms is a characteristic feature of cystic fibrosis (CF). CFTR genotype effects acquisition of Pseudomonas aeruginosa (Pa), however the effect on acquisition of other infectious organisms that frequently precede Pa is relatively unknown. Understanding the role of CFTR in the acquisition of organisms first detected in patients may help guide symptomatic and molecular-based treatment for CF. METHODS: Lung infection, defined as a single positive respiratory tract culture, was assessed for 13 organisms in 1,381 individuals with CF. Subjects were divided by predicted CFTR function: 'Residual': carrying at least one partial function CFTR mutation (class IV or V) and 'Minimal' those who do not carry a partial function mutation. Kaplan-Meier estimates were created to assess CFTR effect on age of acquisition for each organism. Cox proportional hazard models were performed to control for possible cofactors. A separate Cox regression was used to determine whether defining infection with Pa, mucoid Pa or Aspergillus (Asp) using alternative criteria affected the results. The influence of severity of lung disease at the time of acquisition was evaluated using stratified Cox regression methods by lung disease categories. RESULTS: Subjects with 'Minimal' CFTR function had a higher hazard than patients with 'Residual' function for acquisition of 9 of 13 organisms studied (HR ranging from 1.7 to 3.78 based on the organism studied). Subjects with minimal CFTR function acquired infection at a younger age than those with residual function for 12 of 13 organisms (p-values ranging: < 0.001 to 0.017). Minimal CFTR function also associated with younger age of infection when 3 alternative definitions of infection with Pa, mucoid Pa or Asp were employed. Risk of infection is correlated with CFTR function for 8 of 9 organisms in patients with good lung function (>90%ile) but only 1 of 9 organisms in those with poorer lung function (<50%ile). CONCLUSIONS: Residual CFTR function correlates with later onset of respiratory tract infection by a wide spectrum of organisms frequently cultured from CF patients. The protective effect conferred by residual CFTR function is diminished in CF patients with more advanced lung disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 For Pa, the hazard ratio Table 1 Classification of CFTR alleles Category Mutation Specific mutations Class I Defective Protein Synthesis (nonsense, frameshift, aberrant splicing) 1078delT, 1154 insTC, 1525-2A > G, 1717-1G > A, 1898+1G > A, 2184delA, 2184 insA, 3007delG, 3120+1G > A, 3659delC, 3876delA, 3905insT, 394delTT, 4010del4, 4016insT, 4326delTC, 4374+1G > T, 441delA, 556delA, 621+1G > T, 621-1G > T, 711+1G > T, 875+1G > C, E1104X, E585X, E60X, E822X, G542X, G551D/R553X, Q493X, Q552X, Q814X, R1066C, R1162X, R553X, V520F, W1282X, Y1092X Class II Abnormal Processing and Trafficking A559T, D979A, ΔF508, ΔI507, G480C, G85E, N1303K, S549I, S549N, S549R Class III Defective Channel Regulation/Gating G1244E, G1349D, G551D, G551S, G85E, H199R, I1072T, I48T, L1077P, R560T, S1255P, S549 (R75Q) Class IV Decreased Channel Conductance A800G, D1152H, D1154G, D614G, delM1140, E822K, G314E, G576A, G622D, G85E, H620Q, I1139V, I1234V, L1335P, M1137V, P67L, R117C, R117P, R117H, R334W, R347H, R347P, R347P/ R347H, R792G, S1251N, V232D Class V Reduced Synthesis and/or Trafficking 2789+5G > A, 3120G > A, 3272-26A > G, 3849+10kbC > T, 5T variant, 621+3A > G, 711+3A > G, A445E, A455E, IVS8 poly T, P574H was increased 3 fold for those with 'Minimal` function when compared to those with 'Residual` function.
X
ABCC7 p.Arg792Gly 20932301:74:1026
status: NEW[hide] Characterization of 19 disease-associated missense... Hum Mol Genet. 1998 Oct;7(11):1761-9. Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B, Cuppens H
Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator.
Hum Mol Genet. 1998 Oct;7(11):1761-9., [PMID:9736778]
Abstract [show]
In order to gain a better insight into the structure and function of the regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, 19 RD missense mutations that had been identified in patients were functionally characterized. Nine of these (I601F, L610S, A613T, D614G, I618T, L619S, H620P, G628R and L633P) resulted in aberrant processing. No or a very small number of functional CFTR proteins will therefore appear at the cell membrane in cells expressing these mutants. These mutations were clustered in the N-terminal part of the RD, suggesting that this subdomain has a folding pattern that is very sensitive to amino acid changes. Mutations that caused no aberrant processing were further characterized at the electrophysiological level. First, they were studied at the whole cell level in Xenopus laevis oocytes. Mutants that induced a whole cell current that was significantly different from wild-type CFTR were subsequently analysed at the single channel level in COS1 cells transiently expressing the different mutant and wild-type proteins. Three mutant chloride channels, G622D, R792G and E822K CFTR, were characterized by significantly lower intrinsic chloride channel activities compared with wild-type CFTR. Two mutations, H620Q and A800G, resulted in increased intrinsic chloride transport activities. Finally, T665S and E826K CFTR had single channel properties not significantly different from wild-type CFTR.
Comments [show]
None has been submitted yet.
No. Sentence Comment
7 Three mutant chloride channels, G622D, R792G and E822K CFTR, were characterized by significantly lower intrinsic chloride channel activities compared with wild-type CFTR.
X
ABCC7 p.Arg792Gly 9736778:7:39
status: NEW42 Of the 21 RD missense mutations, three (K698R, R766M and R792G) were located in PKA recognition consensus sites.
X
ABCC7 p.Arg792Gly 9736778:42:57
status: NEW43 Only R766M and R792G disrupted a PKA recognition site and might therefore interfere with CFTR regulation.
X
ABCC7 p.Arg792Gly 9736778:43:15
status: NEW68 Primers used for mutagenesis Primer Sequence I601F (a1933t) 5'-CTA ACA AAA CTA GGT TTT TGG TCA CTT C-3' L610S (t1961c) 5'-CTA AAA TGG AAC ATT CAA AGA AAG CTG-3' A613T (g1969a) 5'-CAT TTA AAG AAA ACT GAC AAA ATA TTA-3' D614G (a1973g) 5'-CAT TTA AAG AAA GCT GGC AAA ATA TTA A-3' I618T (t1985c) 5'-GAC AAA ATA TTA ACT TTG CAT GAA GG-3' L619S (t1988c) 5'-GAC AAA ATA TTA ATT TCG CAT GAA GGT-3' H620P (a1991c) 5'-CAA AAT ATT AAT TTT GCC TGA AGG TAG C-3' H620Q (t1992g) 5'-AAT ATT AAT TTT GCA GGA AGG TAG CAG-3' G622D (g1997a) 5'-TTG CAT GAA GAT AGC AGC TAT TTT TAT G-3' G628R (g2014c) 5'-GCA GCT ATT TTT ATC GGA CAT TTT C-3' L633P (t2030c) 5'-CAT TTT CAG AAC CCC AAA ATC TAC AGC-3' D648V (a2075t) 5'-CTC ATG GGA TGT GTT TCT TTC GAC C-3' T665S (a2125t) 5'-CAA TCC TAA CTG AGT CCT TAC ACC G-3' F693L (t2209c) 5'-CAG ACT GGA GAG CTT GGG GAA AAA AG-3' R766M (g2429t) 5'-GCA CGA AGG ATG CAG TCT GTC CTG-3' R792G (c2506g) 5'-CAG CAT CCA CAG GAA AAG TGT CAC TG-3' A800G (c2531g) 5'-CTG GCC CCT CAG GGA AAC TTG ACT G-3' I807M (a2553g) 5'-CTG AAC TGG ATA TGT ATT CAA GAA GG-3' E822K (g2596a) 5'-GGC TTG GAA ATA AGT AAA GAA ATT AAC G-3' E826K (g2608a) 5'-GAA GAA ATT AAC AAA GAA GAC TTA AAG-3' Selection primer BstBI 5'-CTC TGG GGT CCG GAA TGA CCG AC-3' Two primers were used for each mutagenesis reaction.
X
ABCC7 p.Arg792Gly 9736778:68:896
status: NEW77 Mutations detected in patients (I601F, L610S, A613T, D614G, I618T, L619S, H620P, H620Q, D622G, G628R, L633P, T665S, F693L, K698R, V754M, R766M, R792G, A800G, I807M, E822K and E826K) are indicated in bold and underlined, the PKA phosphorylation sites by an arrow and the two acidic domains are boxed.
X
ABCC7 p.Arg792Gly 9736778:77:144
status: NEW83 Four mutations (T665S, R792G, E822K and E826K) caused a significant reduction in the cAMP-induced chloride current.
X
ABCC7 p.Arg792Gly 9736778:83:23
status: NEW87 Maturation pattern of RD mutations and their associated phenotype found in patients with the indicated genotype (when the mutation is associated with CF, only the pancreas status is given) Mutation A-form B-form C-form Clinical data Genotype Phenotype Reference I601F + + - I601F/G542X PS M. Schwarz, personal communication L610S + + - Unknown Unknown A613T + + - Unknown Unknown D614G + + - D614G/unknown PI 14 I618T + + - I618T/dF508 PS G.R. Cutting, personal communication L619S + + - L619S/unknown PI B. Tümmler, personal communication H620P + + - H620P/R1158X PS M. Schwarz, personal communication H620Q + + + H620Q/dF508 PI T. Dörk, personal communication G622D + + + G622D/unknown Oligospermia J. Zielenski, personal communication G628R + + - Unknown Unknown L633P + + - L633P/3659delC M. Schwarz, personal communication D648V + + + D648V/3849+10kb C/T PI C. Ferec, personal communication T665S + + + Unknown Unknown F693L + + + F693L/W1282X Healthy C. Ferec; CF Genetic Analysis Consortium R766M + + + R766M/R792G CBAVD D. Glavac, personal communication R792G + + + R766M/R792G CBAVD D. Glavac, personal communication A800G + + + A800G/unknown CBAVD 34 I807M + + + I807M/unknown CBAVD Our observation E822K + + + E822K/unknown PI 35 E826K + + + E826K/unknown Thoracic sarcoidosis C. Bombieri, personal communication +, the protein matures up to that form; -, the protein does not reach the respective maturation step.
X
ABCC7 p.Arg792Gly 9736778:87:1026
status: NEWX
ABCC7 p.Arg792Gly 9736778:87:1072
status: NEWX
ABCC7 p.Arg792Gly 9736778:87:1090
status: NEW97 G622D, R792G and E822K gave rise to a CFTR chloride channel with a significantly lower Po than wild-type CFTR; H620Q and A800G CFTR resulted in channels with significantly higher Po.
X
ABCC7 p.Arg792Gly 9736778:97:7
status: NEW123 Mutations that did not affect maturation (H620Q, G622D, D648V, T665S, F693L, R766M, R792G, A800G, I807M, E822K and E826K) were subsequently analysedat theelectrophysiologi- cal level.
X
ABCC7 p.Arg792Gly 9736778:123:84
status: NEW124 Three of these (G622D, R792G and E822K) gave rise to chloride channels with significantly lower Po than the wild-type channel.
X
ABCC7 p.Arg792Gly 9736778:124:23
status: NEW125 One of these mutations, R792G, disrupts a consensus recognition site for PKA.
X
ABCC7 p.Arg792Gly 9736778:125:24
status: NEW[hide] Definition of a "functional R domain" of the cysti... Mol Genet Metab. 2000 Sep-Oct;71(1-2):245-9. Chen JM, Scotet V, Ferec C
Definition of a "functional R domain" of the cystic fibrosis transmembrane conductance regulator.
Mol Genet Metab. 2000 Sep-Oct;71(1-2):245-9., [PMID:11001817]
Abstract [show]
The R domain of the cystic fibrosis transmembrane conductance regulator (CFTR) was originally defined as 241 amino acids, encoded by exon 13. Such exon/intron boundaries provide a convenient way to define the R domain, but do not necessarily reflect the corresponding functional domain within CFTR. A two-domain model was later proposed based on a comparison of the R-domain sequences from 10 species. While RD1, the N-terminal third of the R domain is highly conserved, RD2, the large central region of the R domain has less rigid structural requirements. Although this two-domain model was given strong support by recent functional analysis data, the simple observation that two of the four main phosphorylation sites are excluded from RD2 clearly indicates that RD2 still does not satisfy the requirements of a "functional R domain." Nevertheless, knowledge of the CFTR structure and function accumulated over the past decade and reevaluated in the context of a comprehensive sequence comparison of 15 CFTR homologues made it possible to define such a "functional R domain," i.e., amino acids C647 to D836. This definition is validated primarily because it contains all of the important potential consensus phosphorylation sequences. In addition, it includes the highly charged motif from E822 to D836. Finally, it includes all of the deletions/insertions in this region. This definition also aids in understanding the effects of missense mutations occurring within this domain.
Comments [show]
None has been submitted yet.
No. Sentence Comment
63 In contrast, R792G, which disrupts a consensus recognition site for PKA, gave rise to chloride channels with significantly lower Po than the wild-type channel (8).
X
ABCC7 p.Arg792Gly 11001817:63:13
status: NEW