ABCC7 p.Lys464Ala

ClinVar: c.1392G>T , p.Lys464Asn ? , not provided
Predicted by SNAP2: A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), L: D (95%), M: D (95%), N: D (91%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%),
Predicted by PROVEAN: A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Csanady L, Gadsby DC
CFTR channel gating: incremental progress in irreversible steps.
J Gen Physiol. 1999 Jul;114(1):49-53., [PMID:10398691]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Weinreich F, Riordan JR, Nagel G
Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites.
J Gen Physiol. 1999 Jul;114(1):55-70., [PMID:10398692]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Ikuma M, Welsh MJ
Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis.
Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8675-80., 2000-07-18 [PMID:10880569]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Aleksandrov L, Mengos A, Chang X, Aleksandrov A, Riordan JR
Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2001 Apr 20;276(16):12918-23. Epub 2001 Jan 29., 2001-04-20 [PMID:11279083]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zou X, Hwang TC
ATP hydrolysis-coupled gating of CFTR chloride channels: structure and function.
Biochemistry. 2001 May 15;40(19):5579-86., 2001-05-15 [PMID:11341822]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Berger AL, Ikuma M, Hunt JF, Thomas PJ, Welsh MJ
Mutations that change the position of the putative gamma-phosphate linker in the nucleotide binding domains of CFTR alter channel gating.
J Biol Chem. 2002 Jan 18;277(3):2125-31., 2002-01-18 [PMID:11788611]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Aleksandrov L, Aleksandrov AA, Chang XB, Riordan JR
The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover.
J Biol Chem. 2002 May 3;277(18):15419-25. Epub 2002 Feb 22., 2002-05-03 [PMID:11861646]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Powe AC Jr, Al-Nakkash L, Li M, Hwang TC
Mutation of Walker-A lysine 464 in cystic fibrosis transmembrane conductance regulator reveals functional interaction between its nucleotide-binding domains.
J Physiol. 2002 Mar 1;539(Pt 2):333-46., 2002-03-01 [PMID:11882668]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Dousmanis AG, Nairn AC, Gadsby DC
Distinct Mg(2+)-dependent steps rate limit opening and closing of a single CFTR Cl(-) channel.
J Gen Physiol. 2002 Jun;119(6):545-59., [PMID:12034762]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Vergani P, Nairn AC, Gadsby DC
On the mechanism of MgATP-dependent gating of CFTR Cl- channels.
J Gen Physiol. 2003 Jan;121(1):17-36., [PMID:12508051]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Annereau JP, Ko YH, Pedersen PL
Cystic fibrosis transmembrane conductance regulator: the NBF1+R (nucleotide-binding fold 1 and regulatory domain) segment acting alone catalyses a Co2+/Mn2+/Mg2+-ATPase activity markedly inhibited by both Cd2+ and the transition-state analogue orthovanadate.
Biochem J. 2003 Apr 15;371(Pt 2):451-62., 2003-04-15 [PMID:12523935]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Kogan I, Ramjeesingh M, Li C, Kidd JF, Wang Y, Leslie EM, Cole SP, Bear CE
CFTR directly mediates nucleotide-regulated glutathione flux.
EMBO J. 2003 May 1;22(9):1981-9., 2003-05-01 [PMID:12727866]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Basso C, Vergani P, Nairn AC, Gadsby DC
Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
J Gen Physiol. 2003 Sep;122(3):333-48., [PMID:12939393]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S
Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
EMBO J. 2004 Jan 28;23(2):282-93. Epub 2003 Dec 18., 2004-01-28 [PMID:14685259]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Callebaut I, Eudes R, Mornon JP, Lehn P
Nucleotide-binding domains of human cystic fibrosis transmembrane conductance regulator: detailed sequence analysis and three-dimensional modeling of the heterodimer.
Cell Mol Life Sci. 2004 Jan;61(2):230-42., [PMID:14745501]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Kidd JF, Ramjeesingh M, Stratford F, Huan LJ, Bear CE
A heteromeric complex of the two nucleotide binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) mediates ATPase activity.
J Biol Chem. 2004 Oct 1;279(40):41664-9. Epub 2004 Jul 28., 2004-10-01 [PMID:15284228]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Berger AL, Ikuma M, Welsh MJ
Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain.
Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):455-60. Epub 2004 Dec 27., 2005-01-11 [PMID:15623556]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Bompadre SG, Cho JH, Wang X, Zou X, Sohma Y, Li M, Hwang TC
CFTR gating II: Effects of nucleotide binding on the stability of open states.
J Gen Physiol. 2005 Apr;125(4):377-94. Epub 2005 Mar 14., [PMID:15767296]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zhou Z, Wang X, Li M, Sohma Y, Zou X, Hwang TC
High affinity ATP/ADP analogues as new tools for studying CFTR gating.
J Physiol. 2005 Dec 1;569(Pt 2):447-57. Epub 2005 Oct 13., 2005-12-01 [PMID:16223764]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zhang ZR, Song B, McCarty NA
State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2005 Dec 23;280(51):41997-2003. Epub 2005 Oct 14., 2005-12-23 [PMID:16227620]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Vergani P, Basso C, Mense M, Nairn AC, Gadsby DC
Control of the CFTR channel's gates.
Biochem Soc Trans. 2005 Nov;33(Pt 5):1003-7., [PMID:16246032]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gross CH, Abdul-Manan N, Fulghum J, Lippke J, Liu X, Prabhakar P, Brennan D, Willis MS, Faerman C, Connelly P, Raybuck S, Moore J
Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis.
J Biol Chem. 2006 Feb 17;281(7):4058-68. Epub 2005 Dec 16., 2006-02-17 [PMID:16361259]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gadsby DC, Vergani P, Csanady L
The ABC protein turned chloride channel whose failure causes cystic fibrosis.
Nature. 2006 Mar 23;440(7083):477-83., 2006-03-23 [PMID:16554808]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Bompadre SG, Hwang TC
Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.
Sheng Li Xue Bao. 2007 Aug 25;59(4):431-42., 2007-08-25 [PMID:17700963]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Chen TY, Hwang TC
CLC-0 and CFTR: chloride channels evolved from transporters.
Physiol Rev. 2008 Apr;88(2):351-87., [PMID:18391167]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Muallem D, Vergani P
Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator.
Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):247-55., 2009-01-27 [PMID:18957373]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Tsai MF, Shimizu H, Sohma Y, Li M, Hwang TC
State-dependent modulation of CFTR gating by pyrophosphate.
J Gen Physiol. 2009 Apr;133(4):405-19., [PMID:19332621]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Chen JH, Cai Z, Sheppard DN
Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
J Biol Chem. 2009 Dec 18;284(51):35495-506. Epub ., 2009-12-18 [PMID:19837660]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Csanady L, Vergani P, Gadsby DC
Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1241-6. Epub 2009 Dec 4., 2010-01-19 [PMID:19966305]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Thibodeau PH, Richardson JM 3rd, Wang W, Millen L, Watson J, Mendoza JL, Du K, Fischman S, Senderowitz H, Lukacs GL, Kirk K, Thomas PJ
The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis.
J Biol Chem. 2010 Nov 12;285(46):35825-35. Epub 2010 Jul 28., 2010-11-12 [PMID:20667826]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Khushoo A, Yang Z, Johnson AE, Skach WR
Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1.
Mol Cell. 2011 Mar 18;41(6):682-92., 2011-03-18 [PMID:21419343]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Szollosi A, Muallem DR, Csanady L, Vergani P
Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating.
J Gen Physiol. 2011 Jun;137(6):549-62. doi: 10.1085/jgp.201110608. Epub 2011 May 16., [PMID:21576373]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Sheppard DN, Welsh MJ
Structure and function of the CFTR chloride channel.
Physiol Rev. 1999 Jan;79(1 Suppl):S23-45., [PMID:9922375]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gadsby DC, Nairn AC
Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis.
Physiol Rev. 1999 Jan;79(1 Suppl):S77-S107., [PMID:9922377]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Ramjeesingh M, Li C, Garami E, Huan LJ, Galley K, Wang Y, Bear CE
Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator).
Biochemistry. 1999 Feb 2;38(5):1463-8., 1999-02-02 [PMID:9931011]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Urbatsch IL, Beaudet L, Carrier I, Gros P
Mutations in either nucleotide-binding site of P-glycoprotein (Mdr3) prevent vanadate trapping of nucleotide at both sites.
Biochemistry. 1998 Mar 31;37(13):4592-602., 1998-03-31 [PMID:9521779]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, Linsdell P
Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7).
J Biol Chem. 2012 Mar 23;287(13):10156-65. Epub 2012 Feb 1., [PMID:22303012]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, Linsdell P
Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
Biochim Biophys Acta. 2012 Mar;1818(3):851-60. Epub 2012 Jan 2., [PMID:22234285]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Berger HA, Travis SM, Welsh MJ
Fluoride stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity.
Am J Physiol. 1998 Mar;274(3 Pt 1):L305-12., [PMID:9530164]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Sugita M, Yue Y, Foskett JK
CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.
EMBO J. 1998 Feb 16;17(4):898-908., [PMID:9463368]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Foskett JK
ClC and CFTR chloride channel gating.
Annu Rev Physiol. 1998;60:689-717., [PMID:9558482]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Devidas S, Guggino WB
CFTR: domains, structure, and function.
J Bioenerg Biomembr. 1997 Oct;29(5):443-51., [PMID:9511929]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cotten JF, Ostedgaard LS, Carson MR, Welsh MJ
Effect of cystic fibrosis-associated mutations in the fourth intracellular loop of cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 1996 Aug 30;271(35):21279-84., [PMID:8702904]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR
Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation.
J Biol Chem. 1996 Jan 12;271(2):635-8., [PMID:8557666]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wilkinson DJ, Mansoura MK, Watson PY, Smit LS, Collins FS, Dawson DC
CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state.
J Gen Physiol. 1996 Jan;107(1):103-19., [PMID:8741733]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gunderson KL, Kopito RR
Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis.
Cell. 1995 Jul 28;82(2):231-9., [PMID:7543023]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Sheppard DN, Ostedgaard LS, Winter MC, Welsh MJ
Mechanism of dysfunction of two nucleotide binding domain mutations in cystic fibrosis transmembrane conductance regulator that are associated with pancreatic sufficiency.
EMBO J. 1995 Mar 1;14(5):876-83., [PMID:7534226]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Dork T, Fislage R, Neumann T, Wulf B, Tummler B
Exon 9 of the CFTR gene: splice site haplotypes and cystic fibrosis mutations.
Hum Genet. 1994 Jan;93(1):67-73., [PMID:7505767]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Smit LS, Wilkinson DJ, Mansoura MK, Collins FS, Dawson DC
Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator.
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9963-7., [PMID:7694298]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Boucherot A, Schreiber R, Kunzelmann K
Role of CFTR's PDZ1-binding domain, NBF1 and Cl(-) conductance in inhibition of epithelial Na(+) channels in Xenopus oocytes.
Biochim Biophys Acta. 2001 Nov 1;1515(1):64-71., [PMID:11597353]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Randak C, Welsh MJ
An intrinsic adenylate kinase activity regulates gating of the ABC transporter CFTR.
Cell. 2003 Dec 26;115(7):837-50., [PMID:14697202]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Csanady L, Mihalyi C, Szollosi A, Torocsik B, Vergani P
Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.
J Gen Physiol. 2013 Jul;142(1):61-73. doi: 10.1085/jgp.201210954. Epub 2013 Jun 10., [PMID:23752332]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Randak CO, Dong Q, Ver Heul AR, Elcock AH, Welsh MJ
ATP and AMP mutually influence their interaction with the ATP-binding cassette (ABC) adenylate kinase cystic fibrosis transmembrane conductance regulator (CFTR) at separate binding sites.
J Biol Chem. 2013 Sep 20;288(38):27692-701. doi: 10.1074/jbc.M113.479675. Epub 2013 Aug 6., [PMID:23921386]

Abstract [show]
Comments [show]
Sentences [show]