ABCC7 p.Gly314Gln
[switch to full view]Comments [show]
None has been submitted yet.
No.
Sentence
Comment
425
Iodide permeation ing must be interpreted with caution for a number of reasons. First, it has been demonstrated (101) that the In any survey of the permeation of monatomic and polyatomic anions through CFTR, iodide stands out asCFTR mutations (e.g., G314Q or G314E) result in CFTR channels that exhibit markedly reduced anion binding, exhibiting some unique, or perhaps exaggerated, properties.
X
ABCC7 p.Gly314Gln 9922376:425:250
status: NEW597 Transmembrane segment 2 and TM6 sequences formed anion-selective channels in bilayers,the site of two patient mutations, and found that SCN block of CFTR was abolished in G314E and G314Q CFTR, whereas peptides based on TM1, TM3, TM4, and TM5 did not.
X
ABCC7 p.Gly314Gln 9922376:597:181
status: NEW
PMID: 9512029
[PubMed]
Mansoura MK et al: "Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore."
No.
Sentence
Comment
62
Expression levels Wild-type and 11 mutant CFTR constructs were used in this study: G91A, G91E, G91R, G314A, G314D, G314E, G314Q, K335R, K335A, K335D, and K335E.
X
ABCC7 p.Gly314Gln 9512029:62:122
status: NEW116 It was of particular interest that the introduction of a glutamine (G314Q) also produced increased conductance ratios for the highly permeant anions and I, whereas the aspartic-acid-substituted construct (G314D) was not different from wtCFTR.
X
ABCC7 p.Gly314Gln 9512029:116:68
status: NEW136 In the case of the G314E and G314Q mutants, however, the SCN effect appeared to be moderately voltage dependent (Fig. 2 TABLE 2 Summary of permeability and conductance ratios from anion substitution experiments n SCN NO3 Br HCOO I A.
X
ABCC7 p.Gly314Gln 9512029:136:29
status: NEW137 Permeability Ratios Wild type 4-9 3.42 Ϯ 0.28 1.42 Ϯ 0.04 1.22 Ϯ 0.02 0.39 Ϯ 0.01 0.44 Ϯ 0.03 G91A 3-6 3.24 Ϯ 0.26 1.53 Ϯ 0.04 1.27 Ϯ 0.02 0.37 Ϯ 0.04 0.40 Ϯ 0.04 G91E 3-7 3.50 Ϯ 0.54 1.59 Ϯ 0.04 1.27 Ϯ 0.01 0.35 Ϯ 0.01 0.51 Ϯ 0.04 G91R 3-4 5.26 ؎ 0.46* 1.60 Ϯ 0.03 1.40 ؎ 0.01* 0.32 Ϯ 0.04 0.64 ؎ 0.04* G314A 3-4 2.87 Ϯ 0.17 1.45 Ϯ 0.03 1.19 Ϯ 0.02 0.31 Ϯ 0.03 0.33 Ϯ 0.03 G314D 4 3.42 Ϯ 0.34 1.44 Ϯ 0.05 1.25 Ϯ 0.04 0.33 Ϯ 0.03 0.51 Ϯ 0.05 G314E 3-4 3.72 Ϯ 0.56 1.65 ؎ 0.09* 1.35 ؎ 0.03* 0.49 Ϯ 0.04 0.53 Ϯ 0.04 G314Q 3-4 3.89 Ϯ 0.37 1.62 Ϯ 0.11 1.27 Ϯ 0.04 0.36 Ϯ 0.03 0.62 Ϯ 0.05 K335R 3-5 3.44 Ϯ 0.29 1.35 Ϯ 0.04 1.22 Ϯ 0.03 0.40 Ϯ 0.05 0.41 Ϯ 0.07 K335A 5-6 5.34 ؎ 0.58* 1.48 Ϯ 0.06 1.28 Ϯ 0.04 0.37 Ϯ 0.03 0.60 Ϯ 0.06 K335D 4-6 3.02 Ϯ 0.19 1.50 Ϯ 0.03 1.10 ؎ 0.02* 0.54 ؎ 0.04* 0.65 ؎ 0.06* K335E 5-8 3.64 Ϯ 0.21 1.48 Ϯ 0.06 1.29 Ϯ 0.03 0.46 Ϯ 0.04 1.10 ؎ 0.04* B. Conductance Ratios Wild type 4-9 0.14 Ϯ 0.02 0.75 Ϯ 0.02 0.64 Ϯ 0.02 0.52 Ϯ 0.03 0.18 Ϯ 0.03 G91A 3-6 0.14 Ϯ 0.01 0.77 Ϯ 0.02 0.61 Ϯ 0.02 0.47 Ϯ 0.02 0.19 Ϯ 0.02 G91E 3-7 0.15 Ϯ 0.03 0.73 Ϯ 0.02 0.60 Ϯ 0.01 0.50 Ϯ 0.04 0.30 Ϯ 0.02 G91R 3-4 0.14 Ϯ 0.00 0.84 Ϯ 0.01 0.63 Ϯ 0.01 0.32 ؎ 0.01* 0.14 Ϯ 0.01 G314A 3-4 0.30 Ϯ 0.09 0.89 ؎ 0.01* 0.66 Ϯ 0.01 0.48 Ϯ 0.09 0.24 Ϯ 0.01 G314D 4 0.28 Ϯ 0.05 0.82 Ϯ 0.01 0.70 Ϯ 0.02 0.49 Ϯ 0.06 0.27 Ϯ 0.03 G314E 3-4 0.62 ؎ 0.07* 1.18 ؎ 0.04* 0.84 ؎ 0.05* 0.42 Ϯ 0.05 0.29 Ϯ 0.09 G314Q 3-4 0.63 ؎ 0.02* 1.01 ؎ 0.04* 0.82 ؎ 0.03* 0.50 Ϯ 0.02 0.42 ؎ 0.02* K335R 3-5 0.14 Ϯ 0.01 0.76 Ϯ 0.03 0.61 Ϯ 0.02 0.59 Ϯ 0.06 0.16 Ϯ 0.03 K335A 6 0.20 Ϯ 0.03 0.77 Ϯ 0.02 0.61 Ϯ 0.02 0.45 Ϯ 0.03 0.21 Ϯ 0.02 K335D 4-6 0.65 ؎ 0.04* 1.25 ؎ 0.02* 0.89 ؎ 0.02* 0.61 Ϯ 0.06 0.58 ؎ 0.06* K335E 5-8 0.50 ؎ 0.06* 1.19 ؎ 0.03* 0.89 ؎ 0.02* 0.53 Ϯ 0.03 0.48 ؎ 0.03* (A) The apparent permeability ratios (PS/PCl) for each substitute anion were calculated from the shift in reversal potential using the Goldman-Hodgkin-Katz relation (noted in Materials and Methods).
X
ABCC7 p.Gly314Gln 9512029:137:29
status: NEWX
ABCC7 p.Gly314Gln 9512029:137:724
status: NEWX
ABCC7 p.Gly314Gln 9512029:137:1955
status: NEW147 The data in Table 3 show that for wtCFTR and G314Q and G314E, two of the most severely affected constructs, PSCN/PCl calculated from the shift in Vr was independent of the fractional abundance of [SCN]o.
X
ABCC7 p.Gly314Gln 9512029:147:45
status: NEW169 TABLE 4 Quantitative analyses of the macroscopic I-V shape changes Mutant ⌬ Net charge n RR g(ϩ30)/g(-30) RR/RRWT Wild type 5 1.220 Ϯ 0.06 1.00 G91A 0 4 1.293 Ϯ 0.06 1.06 G91E -1 5 1.512 ؎ 0.10* 1.24 G91R 1 4 8.041 ؎ 0.87* 6.59 G314A 0 4 1.201 Ϯ 0.09 0.98 G314D -1 4 1.362 Ϯ 0.08 1.12 G314E -1 7 1.405 Ϯ 0.08 1.15 G314Q 0 5 1.376 Ϯ 0.10 1.13 K335R 0 4 1.209 Ϯ 0.06 0.99 K335A -1 4 1.295 Ϯ 0.07 1.06 K335D -2 5 0.762 ؎ 0.02* 0.62 K335E -2 4 0.919 ؎ 0.02* 0.75 The slope conductance was measured at ϩ30 mV and -30 mV with respect to the reversal potential.
X
ABCC7 p.Gly314Gln 9512029:169:369
status: NEWX
ABCC7 p.Gly314Gln 9512029:169:392
status: NEW171 TABLE 3 The permeability ratio (PSCN/PCl) is independent of the mole fraction of [SCN]0 for wtCFTR and the G314 variants [SCN]/{[SCN]ϩ[Cl]} n PSCN/PCl 0.02 0.05 0.10 0.20 0.50 0.90 Wild type 12 3.82 Ϯ 0.50 4.43 Ϯ 0.57 4.58 Ϯ 0.48 4.69 Ϯ 0.43 4.66 Ϯ 0.38 4.44 Ϯ 0.35 G314A 9 4.32 Ϯ 0.73 3.78 Ϯ 0.53 3.81 Ϯ 0.47 3.79 Ϯ 0.34 3.82 Ϯ 0.29 3.72 Ϯ 0.25 G314D 3 2.99 Ϯ 0.26 2.56 Ϯ 1.05 2.82 Ϯ 1.07 2.68 Ϯ 0.97 2.87 Ϯ 0.65 2.89 Ϯ 0.43 G314E 6 4.48 Ϯ 1.05 4.01 Ϯ 0.69 4.17 Ϯ 0.62 4.15 Ϯ 0.59 3.96 Ϯ 0.41 3.82 Ϯ 0.40 G314Q 3 5.39 Ϯ 0.57 4.49 Ϯ 0.58 4.69 Ϯ 1.26 4.05 Ϯ 1.26 3.86 Ϯ 1.47 3.68 Ϯ 1.51 The permeability ratios were calculated from the shift in reversal potential using the Goldman-Hodgkin-Katz equation.
X
ABCC7 p.Gly314Gln 9512029:171:656
status: NEW173 TABLE 5 Concentration-dependent activation of wtCFTR, G91, G314, and K335 variants by IBMX in the presence of 10 M forskolin Mutant n K1/2(IBMX) (mM) Wild type 15 0.35 Ϯ 0.04 G91A 5 0.42 Ϯ 0.06 G91E 8 0.51 ؎ 0.06* G91R 5 0.49 Ϯ 0.09 G314A 10 1.21 ؎ 0.11* G314D 3 1.35 ؎ 0.16* G314E 8 6.39 ؎ 1.35* G314Q 4 14.26 ؎ 6.64* K335R 4 0.46 Ϯ 0.04 K335A 2 0.35 Ϯ 0.15 K335D 7 0.87 ؎ 0.13* K335E 3 0.95 ؎ 0.07* The steady-state slope conductance was measured at -60 mV as increasing concentrations of IBMX (0.02-5.0 mM) were added to the perfusate in the continued presence of 10 mM forskolin.
X
ABCC7 p.Gly314Gln 9512029:173:346
status: NEW175 Note that this fitting procedure allows us to estimate K1/2 values for even the most insensitive constructs, G314E and G314Q, despite the fact that these values were greater than the highest concentration of IBMX used in this study.
X
ABCC7 p.Gly314Gln 9512029:175:119
status: NEW178 The K1/2 seen with either G314E or G314Q was comparable to that seen with nucleotide-binding mutations such as G551D that are associated with severe CF (Wilkinson et al., 1996).
X
ABCC7 p.Gly314Gln 9512029:178:35
status: NEW195 The pattern of the effect of anion substitution was identical for Br, NO3, and SCN, and the conductance ratio for all three ions was increased in G314E and G314Q CFTR channels.
X
ABCC7 p.Gly314Gln 9512029:195:156
status: NEW198 The results presented here are consistent with the notion that the binding of anions within the CFTR pore is a sensitive indicator of changes in pore structure whereas permeability ratios appear to be rather insensitive to similar TABLE 6 Qualitative summary of the functional consequences of mutations at G91, G314, and K335 Property G91 (TM1) K335 (TM6) G314 (TM5) G91A G91E G91R K335R K335A K335D K335E G314A G314D G314E G314Q I-V shape - - ϩϩϩ - - ϩϩ ϩ - - - - Psub/PCl - - - - - - ϩϩ - - - - gsub/gCl - - - - - ϩϩϩ ϩϩϩ ϩϩ - ϩϩϩ ϩϩϩ SCN- binding - - - - - ϩϩϩ ϩϩϩ ϩϩ - ϩϩϩϩ ϩϩϩϩ Activation - - - - - ϩϩ ϩϩ ϩϩϩ ϩϩϩ ϩϩϩϩ ϩϩϩϩ Results are expressed as follows: -, function of the CFTR construct with the indicated substitution was indistinguishable from wild type; ϩ to ϩϩϩϩ, semiquantitative indication of the magnitude of the change in the function compared with wild type.
X
ABCC7 p.Gly314Gln 9512029:198:424
status: NEW233 The increased conductance ratios seen in G314E, G314Q, and to a lesser extent, G314A channels are compatible with the hypothesis that substitution for G314 distorted an anion binding site such that the affinities for Br, NO3, and SCN were all reduced relative to Cl.
X
ABCC7 p.Gly314Gln 9512029:233:48
status: NEW237 Furthermore, the dramatic reduction in SCN binding seen in G314Q CFTR demonstrates that the presence of arginines, such as R347, is not sufficient to induce tight anion binding in the pore.
X
ABCC7 p.Gly314Gln 9512029:237:59
status: NEW117 It was of particular interest that the introduction of a glutamine (G314Q) also produced increased conductance ratios for the highly permeant anions and I, whereas the aspartic-acid-substituted construct (G314D) was not different from wtCFTR.
X
ABCC7 p.Gly314Gln 9512029:117:68
status: NEW138 Permeability Ratios Wild type 4-9 3.42 afe; 0.28 1.42 afe; 0.04 1.22 afe; 0.02 0.39 afe; 0.01 0.44 afe; 0.03 G91A 3-6 3.24 afe; 0.26 1.53 afe; 0.04 1.27 afe; 0.02 0.37 afe; 0.04 0.40 afe; 0.04 G91E 3-7 3.50 afe; 0.54 1.59 afe; 0.04 1.27 afe; 0.01 0.35 afe; 0.01 0.51 afe; 0.04 G91R 3-4 5.26 d1e; 0.46* 1.60 afe; 0.03 1.40 d1e; 0.01* 0.32 afe; 0.04 0.64 d1e; 0.04* G314A 3-4 2.87 afe; 0.17 1.45 afe; 0.03 1.19 afe; 0.02 0.31 afe; 0.03 0.33 afe; 0.03 G314D 4 3.42 afe; 0.34 1.44 afe; 0.05 1.25 afe; 0.04 0.33 afe; 0.03 0.51 afe; 0.05 G314E 3-4 3.72 afe; 0.56 1.65 d1e; 0.09* 1.35 d1e; 0.03* 0.49 afe; 0.04 0.53 afe; 0.04 G314Q 3-4 3.89 afe; 0.37 1.62 afe; 0.11 1.27 afe; 0.04 0.36 afe; 0.03 0.62 afe; 0.05 K335R 3-5 3.44 afe; 0.29 1.35 afe; 0.04 1.22 afe; 0.03 0.40 afe; 0.05 0.41 afe; 0.07 K335A 5-6 5.34 d1e; 0.58* 1.48 afe; 0.06 1.28 afe; 0.04 0.37 afe; 0.03 0.60 afe; 0.06 K335D 4-6 3.02 afe; 0.19 1.50 afe; 0.03 1.10 d1e; 0.02* 0.54 d1e; 0.04* 0.65 d1e; 0.06* K335E 5-8 3.64 afe; 0.21 1.48 afe; 0.06 1.29 afe; 0.03 0.46 afe; 0.04 1.10 d1e; 0.04* B. Conductance Ratios Wild type 4-9 0.14 afe; 0.02 0.75 afe; 0.02 0.64 afe; 0.02 0.52 afe; 0.03 0.18 afe; 0.03 G91A 3-6 0.14 afe; 0.01 0.77 afe; 0.02 0.61 afe; 0.02 0.47 afe; 0.02 0.19 afe; 0.02 G91E 3-7 0.15 afe; 0.03 0.73 afe; 0.02 0.60 afe; 0.01 0.50 afe; 0.04 0.30 afe; 0.02 G91R 3-4 0.14 afe; 0.00 0.84 afe; 0.01 0.63 afe; 0.01 0.32 d1e; 0.01* 0.14 afe; 0.01 G314A 3-4 0.30 afe; 0.09 0.89 d1e; 0.01* 0.66 afe; 0.01 0.48 afe; 0.09 0.24 afe; 0.01 G314D 4 0.28 afe; 0.05 0.82 afe; 0.01 0.70 afe; 0.02 0.49 afe; 0.06 0.27 afe; 0.03 G314E 3-4 0.62 d1e; 0.07* 1.18 d1e; 0.04* 0.84 d1e; 0.05* 0.42 afe; 0.05 0.29 afe; 0.09 G314Q 3-4 0.63 d1e; 0.02* 1.01 d1e; 0.04* 0.82 d1e; 0.03* 0.50 afe; 0.02 0.42 d1e; 0.02* K335R 3-5 0.14 afe; 0.01 0.76 afe; 0.03 0.61 afe; 0.02 0.59 afe; 0.06 0.16 afe; 0.03 K335A 6 0.20 afe; 0.03 0.77 afe; 0.02 0.61 afe; 0.02 0.45 afe; 0.03 0.21 afe; 0.02 K335D 4-6 0.65 d1e; 0.04* 1.25 d1e; 0.02* 0.89 d1e; 0.02* 0.61 afe; 0.06 0.58 d1e; 0.06* K335E 5-8 0.50 d1e; 0.06* 1.19 d1e; 0.03* 0.89 d1e; 0.02* 0.53 afe; 0.03 0.48 d1e; 0.03* (A) The apparent permeability ratios (PS/PCl) for each substitute anion were calculated from the shift in reversal potential using the Goldman-Hodgkin-Katz relation (noted in Materials and Methods).
X
ABCC7 p.Gly314Gln 9512029:138:724
status: NEWX
ABCC7 p.Gly314Gln 9512029:138:1955
status: NEW148 The data in Table 3 show that for wtCFTR and G314Q and G314E, two of the most severely affected constructs, PSCN/PCl calculated from the shift in Vr was independent of the fractional abundance of [SCN]o.
X
ABCC7 p.Gly314Gln 9512029:148:45
status: NEW