ABCC7 p.Asp572Asn

[switch to full view]
Comments [show]
Publications
PMID: 16442101 [PubMed] Frelet A et al: "Insight in eukaryotic ABC transporter function by mutation analysis."
No. Sentence Comment
149 D572N resulted in a marked decrease in sensitivity to channel activation while D1370N resulted in an increase in sensitivity [60,96].
X
ABCC7 p.Asp572Asn 16442101:149:0
status: NEW
Login to comment

PMID: 10880569 [PubMed] Ikuma M et al: "Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis."
No. Sentence Comment
128 We did not study the analogous mutation in NBD1, D572N, because it shows defective biosynthesis and is not processed to the cell surface.
X
ABCC7 p.Asp572Asn 10880569:128:49
status: NEW
Login to comment

PMID: 11341822 [PubMed] Zou X et al: "ATP hydrolysis-coupled gating of CFTR chloride channels: structure and function."
No. Sentence Comment
187 In a preliminary report, Vergani et al. (47) showed that the opening rate of the D572N mutant is reduced.
X
ABCC7 p.Asp572Asn 11341822:187:81
status: NEW
Login to comment

PMID: 12508051 [PubMed] Vergani P et al: "On the mechanism of MgATP-dependent gating of CFTR Cl- channels."
No. Sentence Comment
32 However, in CFTR the Walker A NBD2 mutation K1250A abolished ATP hydrolysis, whereas the NBD1 mutation K464A simply reduced overall hydrolytic activity (Ramjeesingh et al., 1999); and biochemical studies of Walker B aspartate mutations in CFTR (D572N in NBD1, D1370N in NBD2) have not yet been performed.
X
ABCC7 p.Asp572Asn 12508051:32:245
status: NEW
Login to comment

154 The mean closing rate from bursts was not substantially altered by these NBD1 mutations (compare Fig. 5 E and Table I): for D572N, rOC(5 mM MgATP ϩ PKA) ϭ 1.4 Ϯ 0.2 s-1 (n ϭ 9), and rOC(5 mM MgATP) ϭ 3.1 Ϯ 0.6 s-1 (n ϭ 3); for S573E, rOC(5 mM MgATP ϩ PKA) ϭ 2.2 Ϯ 0.3 s-1 (n ϭ 7).
X
ABCC7 p.Asp572Asn 12508051:154:124
status: NEW
Login to comment

156 Thus, for D572N CFTR, rCO(5 mM MgATP ϩ PKA) ϭ 0.34 Ϯ 0.1 s-1 (n ϭ 9), and rCO(5 mM MgATP) ϭ 0.35 Ϯ 0.1 s-1 (n ϭ 3), although these values ("total" estimates, see materials and methods) likely overestimate true opening rate, as the somewhat lower maximal Po (0.18 vs. 0.29 for WT) of this mutant precluded Figure 4.
X
ABCC7 p.Asp572Asn 12508051:156:10
status: NEW
Login to comment

183 Patches contained one WT (A), K464A (B), or S573E (D) channel, or more than one D572N (C) channel.
X
ABCC7 p.Asp572Asn 12508051:183:80
status: NEW
Login to comment

184 (E) Summary of mean (ϮSEM) ␶b values at 5 mM MgATP and 300 nM PKA (n ϭ 30, 21, 9, and 7 for WT, K464A, D572N, and S573E, respectively).
X
ABCC7 p.Asp572Asn 12508051:184:122
status: NEW
Login to comment

PMID: 17213331 [PubMed] Gentzsch M et al: "Misassembled mutant DeltaF508 CFTR in the distal secretory pathway alters cellular lipid trafficking."
No. Sentence Comment
18 By contrast, cholesterol distribution is not changed by either D572N CFTR, which does not mature even at low temperature, or G551D, which is processed normally but is inactive.
X
ABCC7 p.Asp572Asn 17213331:18:63
status: NEW
Login to comment

48 Cholesterol redistribution correlates with CFTR misprocessing not dysfunction To test the idea that the perturbation of cholesterol homeostasis was due to the presence of a misassembled mutant protein in the distal secretory pathway we examined CFTR variants (Fig. 3A) that are dysfunctional but processed normally (G55ID), misprocessed but not rescued from ER quality control at low temperature (D572N) or, like ⌬F508, misprocessed but rescued at low temperatures (1410X).
X
ABCC7 p.Asp572Asn 17213331:48:397
status: NEW
Login to comment

51 Neither the severe disease-causing mutation G551D, which prevents CFTR channel activation although it is processed normally (Cutting et al., 1990; Gregory et al., 1991), nor the D572N mutation, which is retained at the ER at high or low temperature, changed cholesterol distribution from normal.
X
ABCC7 p.Asp572Asn 17213331:51:178
status: NEW
Login to comment

76 Western blots showing maturation of CFTR and CFTR variants ⌬F508, 1410X, D572N and G551D grown at 37°C and 27°C.
X
ABCC7 p.Asp572Asn 17213331:76:80
status: NEW
Login to comment

78 D572N CFTR is retained at the ER at high or low temperature and the severe-disease-causing mutation G551D, which prevents CFTR channel activation, is processed normally at 37°C and 27°C.
X
ABCC7 p.Asp572Asn 17213331:78:0
status: NEW
Login to comment

86 Microscopy showing filipin staining of CFTR and CFTR variants ⌬F508, 1410X, D572N and G551D grown at 27°C.
X
ABCC7 p.Asp572Asn 17213331:86:83
status: NEW
Login to comment

162 Stable BHK-21 cell lines expressing G551D and D572N variants of CFTR or the C-terminal truncation 1410X CFTR were established as described previously (Chang et al., 1993; Gentzsch and Riordan, 2001; Loo et al., 1998).
X
ABCC7 p.Asp572Asn 17213331:162:46
status: NEW
Login to comment

PMID: 19837660 [PubMed] Chen JH et al: "Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel."
No. Sentence Comment
6 Because these data suggest that pHi modulates the interaction of MgATP with the nucleotide-binding domains (NBDs) of CFTR, we examined the pHi dependence of site-directed mutations in the two ATP-binding sites of CFTR that are located at the NBD1:NBD2 dimer interface (site 1: K464A-, D572N-, and G1349D-CFTR; site 2: G551D-, K1250M-, and D1370N-CFTR).
X
ABCC7 p.Asp572Asn 19837660:6:285
status: NEW
Login to comment

47 To study the CFTR variants K464A, D572N, and D1370N, we employed the vaccinia virus/bacteriophage T7 hybrid expression system to transiently express CFTR variants in HeLa cells as described previously (17, 18).
X
ABCC7 p.Asp572Asn 19837660:47:34
status: NEW
Login to comment

204 Previous studies have demonstrated that the mutations D572N- and D1370N-CFTR abolish Mg2ϩ binding to the NBDs (21, 22).
X
ABCC7 p.Asp572Asn 19837660:204:54
status: NEW
Login to comment

205 Figs. 6C and 8 and supplemental Fig. 3, B and C, demonstrate that the gating behavior of D572N- and D1370N-CFTR Cl-channels at different pHi diverges from that of wild-type CFTR in several important respects.
X
ABCC7 p.Asp572Asn 19837660:205:89
status: NEW
Login to comment

206 First, at pHi 7.3, the Po of D572N-CFTR was the same as wild-type CFTR, whereas that of D1370N-CFTR was reduced (Fig. 6C).
X
ABCC7 p.Asp572Asn 19837660:206:29
status: NEW
Login to comment

207 Second, at pHi 6.3, the Po of D572N-CFTR was potentiated markedly because IBI was decreased 0.7-fold and MBD was increased 1.4-fold (Figs. 6C and 8 and supplemental Fig. 3B).
X
ABCC7 p.Asp572Asn 19837660:207:30
status: NEW
Login to comment

209 Third, in striking contrast to wild-type CFTR, at pHi 8.3 D572N-CFTR channel gating was enhanced because MBD was increased 0.6-fold and IBI decreased 0.3-fold, whereas that of D1370N-CFTR was unaltered (Figs. 2 and 8 and supplemental Fig. 3, B and C).
X
ABCC7 p.Asp572Asn 19837660:209:58
status: NEW
Login to comment

210 As a result, at pHi 8.3, the Po of wild-type CFTR decreased, that of D1370N-CFTR was unchanged, whereas that of D572N-CFTR increased (Fig. 6C).
X
ABCC7 p.Asp572Asn 19837660:210:112
status: NEW
Login to comment

212 First, the potentiation of D572N-CFTR channel activity at pHi 8.3 suggests that the binding of Mg2ϩ ions at site 1 is essential for the inhibition of CFTR channel gating at alkaline pHi.
X
ABCC7 p.Asp572Asn 19837660:212:27
status: NEW
Login to comment

218 B and C, effects of pHi on the Po of wild-type (WT), D572N-, and D1370N-CFTR in the presence of ATP (3 mM in B or 1 mM in C).
X
ABCC7 p.Asp572Asn 19837660:218:53
status: NEW
Login to comment

219 In B, wild-type CFTR data were acquired in the presence (circles) and absence (columns) of Mg2ϩ (3 mM), whereas in C, wild-type, D572N-, and D1370N-CFTR data were acquired in the continuous presence of Mg2ϩ (3 mM).
X
ABCC7 p.Asp572Asn 19837660:219:135
status: NEW
Login to comment

284 Burst analysis of D572N- and K1250M-CFTR.
X
ABCC7 p.Asp572Asn 19837660:284:18
status: NEW
Login to comment

285 A and B, MBD and IBI of D572N- and K1250M-CFTR at different pHi values; wild-type CFTR data are shown for comparison.
X
ABCC7 p.Asp572Asn 19837660:285:24
status: NEW
Login to comment

286 Data are means Ϯ S.E. (D572N- and K1250M-CFTR, n ϭ 3; wild-type-CFTR, n Ն 6).
X
ABCC7 p.Asp572Asn 19837660:286:29
status: NEW
Login to comment

292 However, it is interesting to note that for both ⌬R-S660A-CFTR and the ATP-binding site 1 mutant D572N-CFTR, the relationship between pHi and IBI is bell-shaped, not linear, between pHi 6.3 and 8.3 (Figs. 5D and 8B).
X
ABCC7 p.Asp572Asn 19837660:292:104
status: NEW
Login to comment

311 Third, Hϩ ions potentiate the gating behavior of CFTR constructs bearing site-directed mutations in ATP-binding site 1 (K464A- and D572N-CFTR).
X
ABCC7 p.Asp572Asn 19837660:311:137
status: NEW
Login to comment

346 Our data also reveal that D572N-CFTR has a very unusual response to pHi: exaggerated potentiation of channel gating at acidic pHi and potentiation, not inhibition, at alkaline pHi.
X
ABCC7 p.Asp572Asn 19837660:346:26
status: NEW
Login to comment

349 In support of this idea, the effects of acidic and alkaline pHi on D572N-CFTR are reminiscent of the enhanced activity of P574H-CFTR, a CF mutant affecting a residue in the Walker B-D-loop region of NBD1 (52).
X
ABCC7 p.Asp572Asn 19837660:349:67
status: NEW
Login to comment

PMID: 21625534 [PubMed] Johnson JS et al: "AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis."
No. Sentence Comment
7 By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity.
X
ABCC7 p.Asp572Asn 21625534:7:38
status: NEW
Login to comment

125 Western blot of proteins expressed in BHK-21 cell lines depicting level of glycosylation of CFTR, and mutants DF508 (misfolded), G551D (properly folded), D572N (misfolded), 14106(intermediate folding defect).
X
ABCC7 p.Asp572Asn 21625534:125:154
status: NEW
Login to comment

136 D572N (aspartic acid to asparagine) CFTR is misfolded, rapidly cleared from the cell, and cannot be rescued even at low temperature, whereas the truncated 1410X-CFTR mutant shows a partial defect in trafficking [35].
X
ABCC7 p.Asp572Asn 21625534:136:0
status: NEW
Login to comment

137 Based on measured levels of transduction, AAV is able to exploit expression of D572N-CFTR to levels similar to that achieved in DF508-CFTR-expressing cells.
X
ABCC7 p.Asp572Asn 21625534:137:79
status: NEW
Login to comment

PMID: 21628448 [PubMed] Watson MJ et al: "Defective adenosine-stimulated cAMP production in cystic fibrosis airway epithelia: a novel role for CFTR in cell signaling."
No. Sentence Comment
118 To better understand how CFTR influences A2BR-stimulated cAMP production, we compared the effects of functional wild-type CFTR on cAMP production vs. no CFTR, CFTR mutants that never leave the endoplasmic reticulum (D572N; ref. 32), or CFTR mutants that are misprocessed and dysfunctional (⌬F508; ref. 33).
X
ABCC7 p.Asp572Asn 21628448:118:48
status: NEW
X
ABCC7 p.Asp572Asn 21628448:118:216
status: NEW
Login to comment

119 ADO-stimulated cAMP production was reduced with D572N CFTR to similar level as to CFTR-null cells (Fig. 6).
X
ABCC7 p.Asp572Asn 21628448:119:48
status: NEW
Login to comment

167 cAMP production was measured by ELISA in BHK cells and those stably transfected with either CFTR (BHKCFTR ) or mutant CFTRs (D572N and ⌬F508).
X
ABCC7 p.Asp572Asn 21628448:167:125
status: NEW
Login to comment

193 Expression of D572N CFTR, which does not escape the endoplasmic reticulum (32), did not potentiate ADO-stimulated cAMP production, suggesting that CFTR must be in the plasma membrane to regulate A2BR function (Fig. 6).
X
ABCC7 p.Asp572Asn 21628448:193:14
status: NEW
Login to comment

117 To better understand how CFTR influences A2BR-stimulated cAMP production, we compared the effects of functional wild-type CFTR on cAMP production vs. no CFTR, CFTR mutants that never leave the endoplasmic reticulum (D572N; ref. 32), or CFTR mutants that are misprocessed and dysfunctional (⌬F508; ref. 33).
X
ABCC7 p.Asp572Asn 21628448:117:216
status: NEW
Login to comment

166 cAMP production was measured by ELISA in BHK cells and those stably transfected with either CFTR (BHKCFTR ) or mutant CFTRs (D572N and ⌬F508).
X
ABCC7 p.Asp572Asn 21628448:166:125
status: NEW
Login to comment

192 Expression of D572N CFTR, which does not escape the endoplasmic reticulum (32), did not potentiate ADO-stimulated cAMP production, suggesting that CFTR must be in the plasma membrane to regulate A2BR function (Fig. 6).
X
ABCC7 p.Asp572Asn 21628448:192:14
status: NEW
Login to comment

PMID: 16049310 [PubMed] Schrijver I et al: "Genotyping microarray for the detection of more than 200 CFTR mutations in ethnically diverse populations."
No. Sentence Comment
51 Complete List of Mutations Detectable with the CF APEX Assay CFTR location Amino acid change Nucleotide change 1 E 1 Frameshift 175delC 2 E 2,3 Frameshift del E2, E3 3 E 2 W19C 189 GϾT 4 E 2 Q39X 247 CϾT 5 IVS 2 Possible splicing defect 296 ϩ 12 TϾC 6 E 3 Frameshift 359insT 7 E 3 Frameshift 394delTT 8 E 3 W57X (TAG) 302GϾA 9 E 3 W57X (TGA) 303GϾA 10 E 3 E60X 310GϾT 11 E 3 P67L 332CϾT 12 E 3 R74Q 353GϾA 13 E 3 R75X 355CϾT 14 E 3 G85E 386GϾA 15 E 3 G91R 403GϾA 16 IVS 3 Splicing defect 405 ϩ 1GϾA 17 IVS 3 Possible splicing defect 405 ϩ 3AϾC 18 IVS 3 Splicing defect 406 - 1GϾA 19 E 4 E92X 406GϾT 20 E 4 E92K 406GϾA 21 E 4 Q98R 425AϾG 22 E 4 Q98P 425AϾC 23 E 4 Frameshift 444delA 24 E 4 Frameshift 457TATϾG 25 E 4 R117C 481CϾT 26 E 4 R117H 482GϾA 27 E 4 R117P 482GϾC 28 E 4 R117L 482GϾT 29 E 4 Y122X 498TϾA 30 E 4 Frameshift 574delA 31 E 4 I148T 575TϾC 32 E 4 Splicing defect 621GϾA 33 IVS 4 Splicing defect 621 ϩ 1GϾT 34 IVS 4 Splicing defect 621 ϩ 3AϾG 35 E 5 Frameshift 624delT 36 E 5 Frameshift 663delT 37 E 5 G178R 664GϾA 38 E 5 Q179K 667CϾA 39 IVS 5 Splicing defect 711 ϩ 1GϾT 40 IVS 5 Splicing defect 711 ϩ 1GϾA 41 IVS 5 Splicing defect 712 - 1GϾT 42 E 6a H199Y 727CϾT 43 E 6a P205S 745CϾT 44 E 6a L206W 749TϾG 45 E 6a Q220X 790CϾT 46 E 6b Frameshift 935delA 47 E 6b Frameshift 936delTA 48 E 6b N287Y 991AϾT 49 IVS 6b Splicing defect 1002 - 3TϾG 50 E 7 ⌬F311 3-bp del between nucleotides 1059 and 1069 51 E 7 Frameshift 1078delT 52 E 7 Frameshift 1119delA 53 E 7 G330X 1120GϾT 54 E 7 R334W 1132CϾT 55 E 7 I336K 1139TϾA 56 E 7 T338I 1145CϾT 57 E 7 Frameshift 1154insTC 58 E 7 Frameshift 1161delC 59 E 7 L346P 1169TϾC 60 E 7 R347H 1172GϾA 61 E 7 R347P 1172GϾC 62 E 7 R347L 1172GϾT 63 E 7 R352Q 1187GϾA 64 E 7 Q359K/T360K 1207CϾA and 1211CϾA 65 E 7 S364P 1222TϾC 66 E 8 Frameshift 1259insA 67 E 8 W401X (TAG) 1334GϾA 68 E 8 W401X (TGA) 1335GϾA 69 IVS 8 Splicing changes 1342 - 6 poly(T) variants 5T/7T/9T 70 IVS 8 Splicing defect 1342 - 2AϾC Table 1. Continued CFTR location Amino acid change Nucleotide change 71 E 9 A455E 1496CϾA 72 E 9 Frameshift 1504delG 73 E 10 G480C 1570GϾT 74 E 10 Q493X 1609CϾT 75 E 10 Frameshift 1609delCA 76 E 10 ⌬I507 3-bp del between nucleotides 1648 and 1653 77 E 10 ⌬F508 3-bp del between nucleotides 1652 and 1655 78 E 10 Frameshift 1677delTA 79 E 10 V520F 1690GϾT 80 E 10 C524X 1704CϾA 81 IVS 10 Possible splicing defect 1717 - 8GϾA 82 IVS 10 Splicing defect 1717 - 1GϾA 83 E 11 G542X 1756GϾT 84 E 11 G551D 1784GϾA 85 E 11 Frameshift 1784delG 86 E 11 S549R (AϾC) 1777AϾC 87 E 11 S549I 1778GϾT 88 E 11 S549N 1778GϾA 89 E 11 S549R (TϾG) 1779TϾG 90 E 11 Q552X 1786CϾT 91 E 11 R553X 1789CϾT 92 E 11 R553G 1789CϾG 93 E 11 R553Q 1790GϾA 94 E 11 L558S 1805TϾC 95 E 11 A559T 1807GϾA 96 E 11 R560T 1811GϾC 97 E 11 R560K 1811GϾA 98 IVS 11 Splicing defect 1811 ϩ 1.6 kb AϾG 99 IVS 11 Splicing defect 1812 - 1GϾA 100 E 12 Y563D 1819TϾG 101 E 12 Y563N 1819TϾA 102 E 12 Frameshift 1833delT 103 E 12 D572N 1846GϾA 104 E 12 P574H 1853CϾA 105 E 12 T582R 1877CϾG 106 E 12 E585X 1885GϾT 107 IVS 12 Splicing defect 1898 ϩ 5GϾT 108 IVS 12 Splicing defect 1898 ϩ 1GϾA 109 IVS 12 Splicing defect 1898 ϩ 1GϾC 110 IVS 12 Splicing defect 1898 ϩ 1GϾT 111 E 13 Frameshift 1924del7 112 E 13 del of 28 amino acids 1949del84 113 E 13 I618T 1985TϾC 114 E 13 Frameshift 2183AAϾG 115 E 13 Frameshift 2043delG 116 E 13 Frameshift 2055del9ϾA 117 E 13 D648V 2075TϾA 118 E 13 Frameshift 2105-2117 del13insAGAA 119 E 13 Frameshift 2108delA 120 E 13 R668C 2134CϾT 121 E 13 Frameshift 2143delT 122 E 13 Frameshift 2176insC 123 E 13 Frameshift 2184delA 124 E 13 Frameshift 2184insA 125 E 13 Q685X 2185CϾT 126 E 13 R709X 2257CϾT 127 E 13 K710X 2260AϾT 128 E 13 Frameshift 2307insA 129 E 13 V754M 2392GϾA 130 E 13 R764X 2422CϾT 131 E 14a W846X 2670GϾA 132 E 14a Frameshift 2734delGinsAT 133 E 14b Frameshift 2766del8 134 IVS 14b Splicing defect 2789 ϩ 5GϾA 135 IVS 14b Splicing defect 2790 - 2AϾG 136 E 15 Q890X 2800CϾT 137 E 15 Frameshift 2869insG 138 E 15 S945L 2966CϾT 139 E 15 Frameshift 2991del32 140 E 16 Splicing defect 3120GϾA interrogation: ACCAACATGTTTTCTTTGATCTTAC 3121-2A3G,T S; 5Ј-ACCAACATGTTTTCTTTGATCTTAC A GTTGTTATTAATTGTGATTGGAGCTATAG-3Ј; CAACAA- TAATTAACACTAACCTCGA 3121-2A3G,T AS.
X
ABCC7 p.Asp572Asn 16049310:51:3480
status: NEW
Login to comment

150 Primers Generated to Create Synthetic Templates That Serve As Positive Mutation Controls Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј 175delC synt F T(15)ATTTTTTTCAGGTGAGAAGGTGGCCA 175delC synt R T(15)ATTTGGAGACAACGCTGGCCTTTTCC W19C synt F T(15)TACCAGACCAATTTTGAGGAAAGGAT W19C synt R T(15)ACAGCTAAAATAAAGAGAGGAGGAAC Q39X synt F T(15)TAAATCCCTTCTGTTGATTCTGCTGA Q39X synt R T(15)AGTATATGTCTGACAATTCCAGGCGC 296 ϩ 12TϾC synt F T(15)CACATTGTTTAGTTGAAGAGAGAAAT 296 ϩ 12TϾC synt R T(15)GCATGAACATACCTTTCCAATTTTTC 359insT synt F T(15)TTTTTTTCTGGAGATTTATGTTCTAT 359insT synt R T(15)AAAAAAACATCGCCGAAGGGCATTAA E60X synt F T(15)TAGCTGGCTTCAAAGAAAAATCCTAA E60X synt R T(15)ATCTATCCCATTCTCTGCAAAAGAAT P67L synt F T(15)TTAAACTCATTAATGCCCTTCGGCGA P67L synt R T(15)AGATTTTTCTTTGAAGCCAGCTCTCT R74Q synt F T(15)AGCGATGTTTTTTCTGGAGATTTATG R74Q synt R T(15)TGAAGGGCATTAATGAGTTTAGGATT R75X synt F T(15)TGATGTTTTTTCTGGAGATTTATGTT R75X synt R T(15)ACCGAAGGGCATTAATGAGTTTAGGA W57X(TAG) synt F T(15)AGGATAGAGAGCTGGCTTCAAAGAAA W57X(TAG) synt R T(15)TATTCTCTGCAAAAGAATAAAAAGTG W57X(TGA) synt F T(15)AGATAGAGAGCTGGCTTCAAAGAAAA W57X(TGA) synt R T(15)TCATTCTCTGCAAAAGAATAAAAAGT G91R synt F T(15)AGGGTAAGGATCTCATTTGTACATTC G91R synt R T(15)TTAAATATAAAAAGATTCCATAGAAC 405 ϩ 1GϾA synt F T(15)ATAAGGATCTCATTTGTACATTCATT 405 ϩ 1GϾA synt R T(15)TCCCTAAATATAAAAAGATTCCATAG 405 ϩ 3AϾC synt F T(15)CAGGATCTCATTTGTACATTCATTAT 405 ϩ 3AϾC synt R T(15)GACCCCTAAATATAAAAAGATTCCAT 406 - 1GϾA synt F T(15)AGAAGTCACCAAAGCAGTACAGCCTC 406 - 1GϾA synt R T(15)TTACAAAAGGGGAAAAACAGAGAAAT E92X synt F T(15)TAAGTCACCAAAGCAGTACAGCCTCT E92X synt R T(15)ACTACAAAAGGGGAAAAACAGAGAAA E92K synt F T(15)AAAGTCACCAAAGCAGTACAGCCTCT E92K synt R T(15)TCTACAAAAGGGGAAAAACAGAGAAA 444delA synt F T(15)GATCATAGCTTCCTATGACCCGGATA 444delA synt R T(15)ATCTTCCCAGTAAGAGAGGCTGTACT 574delA synt F T(15)CTTGGAATGCAGATGAGAATAGCTAT 574delA synt R T(15)AGTGATGAAGGCCAAAAATGGCTGGG 621GϾA synt F T(15)AGTAATACTTCCTTGCACAGGCCCCA 621GϾA synt R T(15)TTTCTTATAAATCAAACTAAACATAG Q98P synt F T(15)CGCCTCTCTTACTGGGAAGAATCATA Q98P synt R T(15)GGTACTGCTTTGGTGACTTCCTACAA 457TATϾG synt F T(15)GGACCCGGATAACAAGGAGGAACGCT 457TATϾG synt R T(15)CGGAAGCTATGATTCTTCCCAGTAAG I148T synt F T(15)CTGGAATGCAGATGAGAATAGCTATG I148T synt R T(15)GTGTGATGAAGGCCAAAAATGGCTGG 624delT synt F T(15)CTTAAAGCTGTCAAGCCGTGTTCTAG 624delT synt R T(15)TAAGTCTAAAAGAAAAATGGAAAGTT 663delT synt F T(15)ATGGACAACTTGTTAGTCTCCTTTCC 663delT synt R T(15)CATACTTATTTTATCTAGAACACGGC G178R synt F T(15)AGACAACTTGTTAGTCTCCTTTCCAA G178R synt R T(15)TAATACTTATTTTATCTAGAACACGG Q179K synt F T(15)AAACTTGTTAGTCTCCTTTCCAACAA Q179K synt R T(15)TTCCAATACTTATTTTATCTAGAACA 711 ϩ 5GϾA synt F T(15)ATACCTATTGATTTAATCTTTTAGGC 711 ϩ 5GϾA synt R T(15)TTATACTTCATCAAATTTGTTCAGGT 712 - 1GϾT synt F T(15)TGGACTTGCATTGGCACATTTCGTGT 712 - 1GϾT synt R T(15)TATGGAAAATAAAAGCACAGCAAAAAC H199Y synt F T(15)TATTTCGTGTGGATCGCTCCTTTGCA H199Y synt R T(15)TATGCCAATGCTAGTCCCTGGAAAATA P205S synt F T(15)TCTTTGCAAGTGGCACTCCTCATGGG P205S synt R T(15)TAAGCGATCCACACGAAATGTGCCAAT L206W synt F T(15)GGCAAGTGGCACTCCTCATGGGGCTA L206W synt R T(15)TCAAGGAGCGATCCACACGAAATGTGC Q220X synt F T(15)TAGGCGTCTGCTTTCTGTGGACTTGG Q220X synt R T(15)TATAACAACTCCCAGATTAGCCCCATG 936delTA synt F T(15)AATCCAATCTGTTAAGGCATACTGCT 936delTA synt R T(15)TGATTTTCAATCATTTCTGAGGTAATC 935delA synt F T(15)GAAATATCCAATCTGTTAAGGCATAC 935delA synt R T(15)TATTTCAATCATTTCTGAGGTAATCAC N287Y synt F T(15)TACTTAAGACAGTAAGTTGTTCCAAT N287Y synt R T(15)TATTCAATCATTTTTTCCATTGCTTCT 1002 - 3TϾG synt F T(15)GAGAACAGAACTGAAACTGACTCGGA 1002 - 3TϾG synt R T(15)TCTAAAAAACAATAACAATAAAATTCA 1154insTC syntwt F T(15)ATCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntwt R T(15)TTGAGATGGTGGTGAATATTTTCCGGA 1154insTC syntmt F T(15)TCTCTCATTCTGCATTGTTCTGCGCAT 1154insTC syntmt R T(15)TAGAGATGGTGGTGAATATTTTCCGGA DF311 mt syntV1 F T(15)CCTTCTTCTCAGGGTTCTTTGTGGTG dF311 mt syntV1 R T(15)GAGAAGAAGGCTGAGCTATTGAAGTATC G330X synt F T(15)TGAATCATCCTCCGGAAAATATTCAC G330X synt R T(15)ATTTGATTAGTGCATAGGGAAGCACA S364P synt F T(15)CCTCTTGGAGCAATAAACAAAATACA S364P synt R T(15)GGTCATACCATGTTTGTACAGCCCAG Q359K/T360K mt synt F T(15)AAAAAATGGTATGACTCTCTTGGAGC Q359K/T360K mt synt R T(15)TTTTTTACAGCCCAGGGAAATTGCCG 1078delT synt F T(15)CTTGTGGTGTTTTTATCTGTGCTTCC 1078delT synt R T(15)CAAGAACCCTGAGAAGAAGAAGGCTG 1119delA synt F T(15)CAAGGAATCATCCTCCGGAAAATATT 1119delA synt R T(15)CTTGATTAGTGCATAGGGAAGCACAG 1161delC synt F T(15)GATTGTTCTGCGCATGGCGGTCACTC 1161delC synt R T(15)TCAGAATGAGATGGTGGTGAATATTT T338I synt F T(15)TCACCATCTCATTCTGCATTGTTCTG T338I synt R T(15)ATGAATATTTTCCGGAGGATGATTCC R352Q synt F T(15)AGCAATTTCCCTGGGCTGTACAAACA R352Q synt R T(15)TGAGTGACCGCCATGCGCAGAACAAT L346P synt F T(15)CGCGCATGGCGGTCACTCGGCAATTT L346P synt R T(15)GGAACAATGCAGAATGAGATGGTGGT 1259insA synt F T(15)AAAAAGCAAGAATATAAGACATTGGA 1259insA synt R T(15)TTTTTGTAAGAAATCCTATTTATAAA W401X(TAG)mtsynt F T(15)AGGAGGAGGTCAGAATTTTTAAAAAA W401X(TAG)mtsynt R T(15)TAGAAGGCTGTTACATTCTCCATCAC W401X(TGA) synt F T(15)AGAGGAGGTCAGAATTTTTAAAAAAT W401X(TGA) synt R T(15)TCAGAAGGCTGTTACATTCTCCATCA 1342 - 2AϾC synt F T(15)CGGGATTTGGGGAATTATTTGAGAAA 1342 - 2AϾC synt R T(15)GGTTAAAAAAACACACACACACACAC 1504delG synt F T(15)TGATCCACTGTAGCAGGCAAGGTAGT 1504delG synt R T(15)TCAGCAACCGCCAACAACTGTCCTCT G480C synt F T(15)TGTAAAATTAAGCACAGTGGAAGAAT G480C synt R T(15)ACTCTGAAGGCTCCAGTTCTCCCATA C524X synt F T(15)ACAACTAGAAGAGGTAAGAAACTATG C524X synt R T(15)TCATGCTTTGATGACGCTTCTGTATC V520F synt F T(15)TTCATCAAAGCAAGCCAACTAGAAGA V520F synt R T(15)AGCTTCTGTATCTATATTCATCATAG 1609delCA synt F T(15)TGTTTTCCTGGATTATGCCTGGCACC 1609delCA synt R T(15)CAGAACAGAATGAAATTCTTCCACTG 1717 - 8GϾA synt F T(15)AGTAATAGGACATCTCCAAGTTTGCA 1717 - 8GϾA synt R T(15)TAAAAATAGAAAATTAGAGAGTCACT 1784delG synt F T(15)AGTCAACGAGCAAGAATTTCTTTAGC 1784delG synt R T(15)ACTCCACTCAGTGTGATTCCACCTTC A559T synt F T(15)ACAAGGTGAATAACTAATTATTGGTC A559T synt R T(15)TTAAAGAAATTCTTGCTCGTTGACCT Q552X synt F T(15)TAACGAGCAAGAATTTCTTTAGCAAG Q552X synt R T(15)AACCTCCACTCAGTGTGATTCCACCT S549R(AϾC) synt F T(15)CGTGGAGGTCAACGAGCAAGAATTTC S549R(AϾC) synt R T(15)GCAGTGTGATTCTACCTTCTCCAAGA S549R(TϾG) synt F T(15)GGGAGGTCAACGAGCAAGTATTTC S549R(TϾG) synt R T(15)CCTCAGTGTGATTCCACCTTCTCCAA L558S synt F T(15)CAGCAAGGTGAATAACTAATTATTGG L558S synt R T(15)GAAGAAATTCTCGCTCGTTGACCTCC 1811 ϩ 1.6 kb AϾG synt F T(15)GTAAGTAAGGTTACTATCAATCACAC 1811 ϩ 1.6 kb AϾG synt R T(15)CATCTCAAGTACATAGGATTCTCTGT 1812 - 1GϾA synt F T(15)AAGCAGTATACAAAGATGCTGATTTG 1812 - 1GϾA synt R T(15)TTAAAAAGAAAATGGAAATTAAATTA D572N synt F T(15)AACTCTCCTTTTGGATACCTAGATGT D572N synt R T(15)TTAATAAATACAAATCAGCATCTTTG P574H synt F T(15)ATTTTGGATACCTAGATGTTTTAACA P574H synt R T(15)TGAGAGTCTAATAAATACAAATCAGC 1833delT synt F T(15)ATTGTATTTATTAGACTCTCCTTTTG 1833delT synt R T(15)CAATCAGCATCTTTGTATACTGCTCT Table 4. Continued Primer name Sense strand 5Ј 3 3Ј Name Antisense strand 5Ј 3 3Ј Y563D synt F T(15)GACAAAGATGCTGATTTGTATTTATT Y563D synt R T(15)CTACTGCTCTAAAAAGAAAATGGAAA T582R synt F T(15)GAGAAAAAGAAATATTTGAAAGGTAT T582R synt R T(15)CTTAAAACATCTAGGTATCCAAAAGG E585X synt F T(15)TAAATATTTGAAAGGTATGTTCTTTG E585X synt R T(15)ATTTTTCTGTTAAAACATCTAGGTAT 1898 ϩ 5GϾT synt F T(15)TTTCTTTGAATACCTTACTTATATTG 1898 ϩ 5GϾT synt R T(15)AATACCTTTCAAATATTTCTTTTTCT 1924del7 synt F T(15)CAGGATTTTGGTCACTTCTAAAATGG 1924del7 synt R T(15)CTGTTAGCCATCAGTTTACAGACACA 2055del9ϾA synt F T(15)ACATGGGATGTGATTCTTTCGACCAA 2055del9ϾA synt R T(15)TCTAAAGTCTGGCTGTAGATTTTGGA D648V synt F T(15)TTTCTTTCGACCAATTTAGTGCAGAA D648V synt R T(15)ACACATCCCATGAGTTTTGAGCTAAA K710X synt F T(15)TAATTTTCCATTGTGCAAAAGACTCC K710X synt R T(15)ATCGTATAGAGTTGATTGGATTGAGA I618T synt F T(15)CTTTGCATGAAGGTAGCAGCTATTTT I618T synt R T(15)GTTAATATTTTGTCAGCTTTCTTTAA R764X synt F T(15)TGAAGGAGGCAGTCTGTCCTGAACCT R764X synt R T(15)ATGCCTGAAGCGTGGGGCCAGTGCTG Q685X synt F T(15)TAATCTTTTAAACAGACTGGAGAGTT Q685X synt R T(15)ATTTTTTTGTTTCTGTCCAGGAGACA R709X synt F T(15)TGAAAATTTTCCATTGTGCAAAAGAC R709X synt R T(15)ATATAGAGTTGATTGGATTGAGAATA V754M synt F T(15)ATGATCAGCACTGGCCCCACGCTTCA V754M synt R T(15)TGCTGATGCGAGGCAGTATCGCCTCT 1949del84 synt F T(15)AAAAATCTACAGCCAGACTTTATCTC 1949del84 synt R T(15)TTTTTAGAAGTGACCAAAATCCTAGT 2108delA synt F T(15)GAATTCAATCCTAACTGAGACCTTAC 2108delA synt R T(15)ATTCTTCTTTCTGCACTAAATTGGTC 2176insC synt F T(15)CCAAAAAAACAATCTTTTAAACAGACTGGAGAG 2176insC synt R T(15)GGTTTCTGTCCAGGAGACAGGAGCAT 2184delA synt F T(15)CAAAAAACAATCTTTTAAACAGACTGG 2184delA synt R T(15)GTTTTTTGTTTCTGTCCAGGAGACAG 2105-2117 del13 synt F T(15)AAACTGAGACCTTACACCGTTTCTCA 2105-2117 del13 synt R T(15)TTTCTTTCTGCACTAAATTGGTCGAA 2307insA synt F T(15)AAAGAGGATTCTGATGAGCCTTTAGA 2307insA synt R T(15)TTTCGATGCCATTCATTTGTAAGGGA W846X synt F T(15)AAACACATACCTTCGATATATTACTGTCCAC W846X synt R T(15)TCATGTAGTCACTGCTGGTATGCTCT 2734G/AT synt F T(15)TTAATTTTTCTGGCAGAGGTAAGAAT 2734G/AT synt R T(15)TTAAGCACCAAATTAGCACAAAAATT 2766del8 synt F T(15)GGTGGCTCCTTGGAAAGTGAGTATTC 2766del8 synt R T(15)CACCAAAGAAGCAGCCACCTGGAATGG 2790 - 2AϾG synt F T(15)GGCACTCCTCTTCAAGACAAAGGGAA 2790 - 2AϾG synt R T(15)CGTAAAGCAAATAGGAAATCGTTAAT 2991del32 synt F T(15)TTCAACACGTCGAAAGCAGGTACTTT 2991del32 synt R T(15)AAACATTTTGTGGTGTAAAATTTTCG Q890X synt F T(15)TAAGACAAAGGGAATAGTACTCATAG Q890X synt R T(15)AAAGAGGAGTGCTGTAAAGCAAATAG 2869insG synt F T(15)GATTATGTGTTTTACATTTACGTGGG 2869insG synt R T(15)CACGAACTGGTGCTGGTGATAATCAC 3120GϾA synt F T(15)AGTATGTAAAAATAAGTACCGTTAAG 3120GϾA synt R T(15)TTGGATGAAGTCAAATATGGTAAGAG 3121 - 2AϾT synt F T(15)TGTTGTTATTAATTGTGATTGGAGCT 3121 - 2AϾT synt R T(15)AGTAAGATCAAAGAAAACATGTTGGT 3132delTG synt F T(15)TTGATTGGAGCCATAGCAGTTGTCGC 3132delTG synt R T(15)AATTAATAACAACTGTAAGATCAAAG 3271delGG synt F T(15)ATATGACAGTGAATGTGCGATACTCA 3271delGG synt R T(15)ATTCAGATTCCAGTTGTTTGAGTTGC 3171delC synt F T(15)ACCTACATCTTTGTTGCAACAGTGCC 3171delC synt R T(15)AGGTTGTAAAACTGCGACAACTGCTA 3171insC synt F T(15)CCCCTACATCTTTGTTGCTACAGTGC 3171insC synt R T(15)GGGGTTGTAAAACTGCGACAACTGCT 3199del6 synt F T(15)GAGTGGCTTTTATTATGTTGAGAGCATAT 3199del6 synt R T(15)CCACTGGCACTGTTGCAACAAAGATG M1101K synt F T(15)AGAGAATAGAAATGATTTTTGTCATC M1101K synt R T(15)TTTTGGAACCAGCGCAGTGTTGACAG G1061R synt F T(15)CGACTATGGACACTTCGTGCCTTCGG G1061R synt R T(15)GTTTTAAGCTTGTAACAAGATGAGTG R1066L synt F T(15)TTGCCTTCGGACGGCAGCCTTACTTT R1066L synt R T(15)AGAAGTGTCCATAGTCCTTTTAAGCT R1070P synt F T(15)CGCAGCCTTACTTTGAAACTCTGTTC R1070P synt R T(15)GGTCCGAAGGCACGAAGTGTCCATAG L1077P synt F T(15)CGTTCCACAAAGCTCTGAATTTACAT L1077P synt R T(15)GGAGTTTCAAAGTAAGGCTGCCGTCC W1089X synt F T(15)AGTTCTTGTACCTGTCAACACTGCGC W1089X synt R T(15)TAGTTGGCAGTATGTAAATTCAGAGC L1093P synt F T(15)CGTCAACACTGCGCTGGTTCCAAATG L1093P synt R T(15)GGGTACAAGAACCAGTTGGCAGTATG W1098R synt F T(15)CGGTTCCAAATGAGAATAGAAATGAT W1098R synt R T(15)GGCGCAGTGTTGACAGGTACAAGAAC Q1100P synt F T(15)CAATGAGAATAGAAATGATTTTTGTC Q1100P synt R T(15)GGGAACCAGCGCAGTGTTGACAGGTA D1152H synt F T(15)CATGTGGATAGCTTGGTAAGTCTTAT D1152H synt R T(15)GTATGCTGGAGTTTACAGCCCACTGC R1158X synt F T(15)TGATCTGTGAGCCGAGTCTTTAAGTT R1158X synt R T(15)ACATCTGAAATAAAAATAACAACATT S1196X synt F T(15)GACACGTGAAGAAAGATGACATCTGG S1196X synt R T(15)CAATTCTCAATAATCATAACTTTCGA 3732delA synt F T(15)GGAGATGACATCTGGCCCTCAGGGGG 3732delA synt R T(15)CTCCTTCACGTGTGAATTCTCAATAA 3791delC synt F T(15)AAGAAGGTGGAAATGCCATATTAGAG 3791delC synt R T(15)TTGTATTTTGCTGTGAGATCTTTGAC 3821delT synt F T(15)ATTCCTTCTCAATAAGTCCTGGCCAG 3821delT synt R T(15)GAATGTTCTCTAATATGGCATTTCCA Q1238X synt F T(15)TAGAGGGTGAGATTTGAACACTGCTT Q1238X synt R T(15)AGCCAGGACTTATTGAGAAGGAAATG S1255X (ex19)synt F T(15)GTCTGGCCCTCAGGGGGCCAAATGAC S1255X (ex19) synt R T(15)CGTCATCTTTCTTCACGTGTGAATTC S1255X;L synt F T(15)AAGCTTTTTTGAGACTACTGAACACT S1255X;L synt R T(15)TATAACAAAGTAATCTTCCCTGATCC 3849 ϩ 4AϾG synt F T(15)GGATTTGAACACTGCTTGCTTTGTTA 3849 ϩ 4AϾG synt R T(15)CCACCCTCTGGCCAGGACTTATTGAG 3850 - 1GϾA synt F T(15)AGTGGGCCTCTTGGGAAGAACTGGAT 3850 - 1GϾA synt R T(15)TTATAAGGTAAAAGTGATGGGATCAC 3905insT synt F T(15)TTTTTTTGAGACTACTGAACACTGAA 3905insT synt R T(15)AAAAAAAGCTGATAACAAAGTACTCT 3876delA synt F T(15)CGGGAAGAGTACTTTGTTATCAGCTT 3876delA synt R T(15)CGATCCAGTTCTTCCCAAGAGGCCCA G1244V synt F T(15)TAAGAACTGGATCAGGGAAGAGTACT G1244V synt R T(15)ACCAAGAGGCCCACCTATAAGGTAAA G1249E synt F T(15)AGAAGAGTACTTTGTTATCAGCTTTT G1249E synt R T(15)TCTGATCCAGTTCTTCCCAAGAGGCC S1251N synt F T(15)ATACTTTGTTATCAGCTTTTTTGAGACTACTG S1251N synt R T(15)TTCTTCCCTGATCCAGTTCTTCCCAA S1252P synt F T(15)CCTTTGTTATCAGCTTTTTTGAGACT S1252P synt R T(15)GACTCTTCCCTGATCCAGTTCTTCCC D1270N synt F T(15)AATGGTGTGTCTTGGGATTCAATAAC D1270N synt R T(15)TGATCTGGATTTCTCCTTCAGTGTTC W1282R synt F T(15)CGGAGGAAAGCCTTTGGAGTGATACC W1282R synt R T(15)GCTGTTGCAAAGTTATTGAATCCCAA R1283K synt F T(15)AGAAAGCCTTTGGAGTGATACCACAG R1283K synt R T(15)TTCCACTGTTGCAAAGTTATTGAATC 4005 ϩ 1GϾA synt F T(15)ATGAGCAAAAGGACTTAGCCAGAAAA 4005 ϩ 1GϾA synt R T(15)TCTGTGGTATCACTCCAAAGGCTTTC 4010del4 synt F T(15)GTATTTTTTCTGGAACATTTAGAAAAAACTTGG 4010del4 synt R T(15)AAAATACTTTCTATAGCAAAAAAGAAAAGAAGAA 4016insT synt F T(15)TTTTTTTCTGGAACATTTAGAAAAAACTTGG 4016insT synt R T(15)AAAAAAATAAATACTTTCTATAGCAAAAAAGAAAAGAAGA CFTRdele21 synt F T(15)TAGGTAAGGCTGCTAACTGAAATGAT CFTRdele21 synt R T(15)CCTATAGCAAAAAAGAAAAGAAGAAGAAAGTATG 4382delA synt F T(15)GAGAGAACAAAGTGCGGCAGTACGAT 4382delA synt R T(15)CTCTATGACCTATGGAAATGGCTGTT Bold, mutation allele of interest; bold and italicized, modified nucleotide.
X
ABCC7 p.Asp572Asn 16049310:150:6768
status: NEW
X
ABCC7 p.Asp572Asn 16049310:150:6813
status: NEW
Login to comment

PMID: 15858154 [PubMed] Schrijver I et al: "Diagnostic testing by CFTR gene mutation analysis in a large group of Hispanics: novel mutations and assessment of a population-specific mutation spectrum."
No. Sentence Comment
94 D572N was identified in a Russian patient22 and P574H was identified in two patients with pancreatic sufficiency.23 The serine residue at position 573 is highly conserved across species, as are at least seven residues on either side in mammals, and two in amphibians and fish.24 A second mutation in this subject was not identified.
X
ABCC7 p.Asp572Asn 15858154:94:0
status: NEW
Login to comment

PMID: 8741733 [PubMed] Wilkinson DJ et al: "CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state."
No. Sentence Comment
19 In contrast, mutations in the putative ATP-binding pockets of the two NBFs produced opposite results, a reduction in sensitivity for mutations in NBF1 (K464Q, D572N) and an increase in sensitivity for the analogous mutations in NBF2 (K12500~ D1370N).
X
ABCC7 p.Asp572Asn 8741733:19:159
status: NEW
Login to comment

83 rithmic dose-response plots, but for comparison with rates of activation we sought a more unbiased estimate of Ka that took into account three factors: (1) the activation produced by forskolin alone, (2) the block of CFTR by high concentrations of IBMX, and (3) the fact that for insensitive mutants such as G551D, D572N, and G1349D the dose-response showed no tendency toward saturation at the highest concentrations of IBMX.
X
ABCC7 p.Asp572Asn 8741733:83:315
status: NEW
Login to comment

195 a~ODiap- 9 K464Q a I ' ' ' ' I ' ' ' ' I ' ' 0 10 20 ~ O -0 0, 9 -0~176176176o ....... 9.... -o*- -o*- 9 i~ e'~176176176176 9 D572N o i , , , , i , , , , i , , , , I , , , , i , , , , i , , , , 0 I0 20 30 40 50 minutes K1250A K1250C I i 30 D1370N 6O FIGURE4.
X
ABCC7 p.Asp572Asn 8741733:195:126
status: NEW
Login to comment

201 (C) Substitutions of asparagine for the Walker consensus B aspartic acid in the ATP-binding pocket of NBFI (D572N, 0) or NBF2 (D1370N,0).
X
ABCC7 p.Asp572Asn 8741733:201:108
status: NEW
Login to comment

254 sensus B aspartic acid in NBF1 (D572N) produced a profound reduction in the rate of approach to steady state activation (Fig. 4 C); the value of (kon + kof0 was comparable with that seen with the G551A mutation (cf. Tables I and II).
X
ABCC7 p.Asp572Asn 8741733:254:32
status: NEW
Login to comment

256 In contrast, the analogous substitution in NBF2 (D1370N) produced only a modest decrease in (ko, + kor0, evident in Fig. 4 C. The values of the derived parameters (k'o,, ko~) for this slightly hypersensitive mutant, however, suggest that the decrease in KAwas a reflection of a fourfold decrease in ko~, whereas the apparent kon was not significantly different from that of wild-type CFTR.
X
ABCC7 p.Asp572Asn 8741733:256:32
status: NEW
Login to comment

281 + kott) (10-3 min-l kon kofr latency *k~m CFTR (mM) n (10-3min-]) mM-1) (10-3min 1) (10-3min-l) n (min) (10 3min i) n wt 0.65 • 0.08 26 664 • 51 118 • 9 558 • 45 76-+ 6 20 6.0 • 0.3 88 • 6 16 K464R 2.6 • 0.1": 4 153 + 20**+ 20 • 3*** 101 • 13''` 52 • 7*: 5 1.3 • 0.2*++ 174 • 14"** 7 K464Q 3.3 • 0.5"* 5 331 • 56*** 40 -+ 7* 199 • 34* 132 • 22*'` 5 1.9 • 0.3"I 142 -+ 19''` 5 K464A 4.6 • 0.7** 6 289 • 49* 30 • 5** 151 • 26*** 139 • 24*: 7 1.1 • 0.1"** 133 • 14"** 8 D572N 9.3 + 0.02*: 6 106 • 7*: 7-+0.5*: 37-+3*** 69 • 5+* 4 0.9 • 0.2*** 245 • 32*: 3 K1250R 0.17 • 0.07*: 5 239 •33*** 46 -+ 6"+* 231 • 32*: 8 • 1": 10 10.4 • 0.8"~ 100 • 7** 6 K1250Q 0.12 • 0.04*** 5 150 • 18''` 29 • 4* 146 -+ 18" 4 + 0.4"I 5 22.3 • 2.4*: 30 •5": 5 K1250A 0.07 + 0.02*: 10 218 • 18" 43 • 4*'` 215 • 18": 3 -+0.3*~* 5 15.6-+ 1.0"** 43 -+5** 5 D1370N 0.16 + 0.04*'` 7 449 - 79*: 87 • 15: 435 +76** 14 - 2*: 5 16.3-4-1.2"" 69-+ 6** 5 The symbols (*) and ('`) indicate significant differences from wild-type CFTR and the analogous mutant, respectively (P < 0.05).
X
ABCC7 p.Asp572Asn 8741733:281:635
status: NEW
Login to comment

362 In addition, concentrations of IBMX above 1 mM are required to achieve significant activation of CFTR mutants such as G551D, D572N, and G1349D (cf. Smit et al., 1993).
X
ABCC7 p.Asp572Asn 8741733:362:125
status: NEW
Login to comment

84 rithmic dose-response plots, but for comparison with rates of activation we sought a more unbiased estimate of Ka that took into account three factors: (1) the activation produced by forskolin alone, (2) the block of CFTR by high concentrations of IBMX, and (3) the fact that for insensitive mutants such as G551D, D572N, and G1349D the dose-response showed no tendency toward saturation at the highest concentrations of IBMX.
X
ABCC7 p.Asp572Asn 8741733:84:315
status: NEW
Login to comment

198 a~ODiap- 9 K464Q a I ' ' ' ' I ' ' ' ' I ' ' 0 10 20 ~ O -0 0, 9 -0 ~176176176 o ....... 9.... -o*- -o*- 9 i~ e'~176176176176 9 D572N o i , , , , i , , , , i , , , , I , , , , i , , , , i , , , , 0 I0 20 30 40 50 minutes K1250A K1250C I i 30 D1370N 6O FIGURE4.
X
ABCC7 p.Asp572Asn 8741733:198:128
status: NEW
Login to comment

204 (C) Substitutions of asparagine for the Walker consensus B aspartic acid in the ATP-binding pocket of NBFI (D572N, 0) or NBF2 (D1370N,0).
X
ABCC7 p.Asp572Asn 8741733:204:108
status: NEW
Login to comment

283 + kott) (10-3 min-l kon kofr latency *k~m CFTR (mM) n (10-3 min-]) mM-1) (10-3 min 1) (10-3min-l) n (min) (10 3min i) n wt 0.65 ߦ 0.08 26 664 ߦ 51 118 ߦ 9 558 ߦ 45 76 -+ 6 20 6.0 ߦ 0.3 88 ߦ 6 16 K464R 2.6 ߦ 0.1": 4 153 + 20**+ 20 ߦ 3*** 101 ߦ 13''` 52 ߦ 7*: 5 1.3 ߦ 0.2*++ 174 ߦ 14"** 7 K464Q 3.3 ߦ 0.5"* 5 331 ߦ 56*** 40 -+ 7* 199 ߦ 34* 132 ߦ 22*'` 5 1.9 ߦ 0.3"I 142 -+ 19''` 5 K464A 4.6 ߦ 0.7** 6 289 ߦ 49* 30 ߦ 5** 151 ߦ 26*** 139 ߦ 24*: 7 1.1 ߦ 0.1"** 133 ߦ 14"** 8 D572N 9.3 + 0.02*: 6 106 ߦ 7*: 7 -+0.5*: 37 -+3*** 69 ߦ 5+* 4 0.9 ߦ 0.2*** 245 ߦ 32*: 3 K1250R 0.17 ߦ 0.07*: 5 239 ߦ 33*** 46 -+ 6"+* 231 ߦ 32*: 8 ߦ 1": 10 10.4 ߦ 0.8"~ 100 ߦ 7** 6 K1250Q 0.12 ߦ 0.04*** 5 150 ߦ 18''` 29 ߦ 4* 146 -+ 18" 4 + 0.4"I 5 22.3 ߦ 2.4*: 30 ߦ 5": 5 K1250A 0.07 + 0.02*: 10 218 ߦ 18" 43 ߦ 4*'` 215 ߦ 18": 3 -+0.3*~* 5 15.6 -+ 1.0"** 43 -+5** 5 D1370N 0.16 + 0.04*'` 7 449 - 79*: 87 ߦ 15: 435 + 76** 14 - 2*: 5 16.3 -4-1.2"" 69 -+ 6** 5 The symbols (*) and ('`) indicate significant differences from wild-type CFTR and the analogous mutant, respectively (P < 0.05).
X
ABCC7 p.Asp572Asn 8741733:283:614
status: NEW
Login to comment

364 In addition, concentrations of IBMX above 1 mM are required to achieve significant activation of CFTR mutants such as G551D, D572N, and G1349D (cf. Smit et al., 1993).
X
ABCC7 p.Asp572Asn 8741733:364:125
status: NEW
Login to comment

PMID: 7540563 [PubMed] Manavalan P et al: "Sequence homologies between nucleotide binding regions of CFTR and G-proteins suggest structural and functional similarities."
No. Sentence Comment
171 The NBDI mutations (K464Q, D572N) showed a decrease in sensitivity to IBMX activation while the equivalent NBD2 mutations (KI250Q, DI370N) produced an increase in IBMX sensitivity, These results together with our sequence analysis data suggest that the nature of nuclcotide binding and the subsequent conforma- tior~:,lchanges may differ for the two domains.
X
ABCC7 p.Asp572Asn 7540563:171:27
status: NEW
Login to comment

170 The NBDI mutations (K464Q, D572N) showed a decrease in sensitivity to IBMX activation while the equivalent NBD2 mutations (KI250Q, DI370N) produced an increase in IBMX sensitivity, These results together with our sequence analysis data suggest that the nature of nuclcotide binding and the subsequent conforma- tior~:,lchanges may differ for the two domains.
X
ABCC7 p.Asp572Asn 7540563:170:27
status: NEW
Login to comment

PMID: 24876383 [PubMed] Wei S et al: "Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps."
No. Sentence Comment
233 Yor1p mutations at positions Pro-485 (TM6) and Lys-997 (TM9) that are homologous to the CFTR GOF mutations described above were assayed both as single mutants and as double mutants when combined with one of two NBD mutations that are expected to inhibit Mg-ATP binding to Yor1p: (i) Y1222G, an A-loop mutation homologous to the Y1219G mutation of CFTR, and (ii) D734N, a Walker B mutation that is predicted to reduce Mg-ATP binding because the conserved aspartate helps coordinate the metal cofactor in ABC exporters (13, 46, 47).
X
ABCC7 p.Asp572Asn 24876383:233:55
status: NEW
Login to comment

234 Unfortunately, the corresponding CFTR Walker B mutant (D572N) is a severe endoplasmic reticulum processing mutant that could not be analyzed by patch clamping in HEK cells (48).
X
ABCC7 p.Asp572Asn 24876383:234:55
status: NEW
Login to comment

PMID: 26606940 [PubMed] Wei S et al: "Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels."
No. Sentence Comment
92 We chose this ATP binding mutant of Yor1p for detailed analysis because 1) our earlier results (15) showed that it was possible to rescue its oligomycin growth phenotype by introducing cytosolic GOF mutations that were predicted by our CFTR findings and 2) detailed ATP titrations can be performed for the analogous CFTR A loop mutant (Y1219G) to explore the mechanism underlying such GOF effects (15).
X
ABCC7 p.Asp572Asn 26606940:92:31
status: NEW
Login to comment

93 The CFTR NBD1 Walker B mutant (D572N) is a severe processing mutant that cannot be so analyzed (39).
X
ABCC7 p.Asp572Asn 26606940:93:31
status: NEW
Login to comment

PMID: 11597353 [PubMed] Boucherot A et al: "Role of CFTR's PDZ1-binding domain, NBF1 and Cl(-) conductance in inhibition of epithelial Na(+) channels in Xenopus oocytes."
No. Sentence Comment
38 Using similar PCR techniques, the NBF1 mutants of human CFTR vF508, G551D, S466L, K464A, D572N, KH483/484AA, R487Q, R516A, KR598/600GA, KK611/612AA and K615A were in vitro synthesized (Quickchange, Stratagene).
X
ABCC7 p.Asp572Asn 11597353:38:89
status: NEW
Login to comment

116 The CFTR mutants K646A, R487Q, G551D, D572N and K615A did not generate signi'cant CFTR Cl3 conductances.
X
ABCC7 p.Asp572Asn 11597353:116:38
status: NEW
Login to comment

171 We therefore introduced mutations into NBF1 sites which are essential for binding/hydrolysis of ATP and GTP and which have homology to GTP binding proteins such as Walker A (loop L1) (K464A, S466L), switch I motif (KH483/484AA, R487A), switch II motif (loop L4, G551D) and Walker B (D572N) [23].
X
ABCC7 p.Asp572Asn 11597353:171:283
status: NEW
Login to comment

PMID: 14697202 [PubMed] Randak C et al: "An intrinsic adenylate kinase activity regulates gating of the ABC transporter CFTR."
No. Sentence Comment
272 Results with the Walker B Asp Discussion mutations (D572N in NBD1 and D1370N in NBD2) exactly paralleled the P loop mutations (Figures 7D-7F), further Earlier work indicated that CFTR can function as an ATPase and that hydrolysis contributes to channel gat- suggesting that adenylate kinase activity resides in NBD2.
X
ABCC7 p.Asp572Asn 14697202:272:52
status: NEW
Login to comment

288 Data are from 5 (wild-type, K464A, D572N), 9 (K1250A), 10 (D1370N), and 3 (N1303K) membrane patches. Asterisks indicate p b0d; 0.05 compared to wild-type by ANOVA followed by Dunnett`s multiple comparison test.
X
ABCC7 p.Asp572Asn 14697202:288:35
status: NEW
Login to comment

PMID: 23921386 [PubMed] Randak CO et al: "ATP and AMP mutually influence their interaction with the ATP-binding cassette (ABC) adenylate kinase cystic fibrosis transmembrane conductance regulator (CFTR) at separate binding sites."
No. Sentence Comment
275 Error bars, S.E. Nucleotide Interactions with the ABC Adenylate Kinase CFTR 27698 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 288ߦNUMBER 38ߦSEPTEMBER 20, 2013 at SEMMELWEIS UNIV OF MEDICINE on December , D1370N, abolished Ap5A inhibition of current, whereas the homologous mutations in ATP-binding site 1, K464A and D572N, did not.
X
ABCC7 p.Asp572Asn 23921386:275:324
status: NEW
Login to comment

303 However, the homologous mutations in ATP-binding site 1 (K464A and D572N) did not (19).
X
ABCC7 p.Asp572Asn 23921386:303:67
status: NEW
Login to comment