ABCB1 p.Phe942Arg
Predicted by SNAP2: | A: D (66%), C: D (53%), D: D (85%), E: D (85%), G: D (75%), H: D (71%), I: D (71%), K: D (85%), L: D (59%), M: N (57%), N: D (66%), P: D (85%), Q: D (71%), R: D (85%), S: D (66%), T: D (75%), V: D (71%), W: D (75%), Y: N (82%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Catalytic transitions in the human MDR1 P-glycopro... Biochemistry. 2012 Jun 26;51(25):5125-41. Epub 2012 Jun 12. Wise JG
Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites.
Biochemistry. 2012 Jun 26;51(25):5125-41. Epub 2012 Jun 12., [PMID:22647192]
Abstract [show]
Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space.
Comments [show]
None has been submitted yet.
No. Sentence Comment
333 A novel arginine mutagenesis approach for rescuing Pgp folding mutants was used by Loo and Clarke to argue that the bulky arginine side chain, when present in the drug binding site, mimicked the rescue of folding of certain mutations by transport substrates that has been observed.81 Alteration of known substrate affinities was taken as evidence that the A302R, F336R, L339R, G872R, F942R, Q946R, V982R, S993R, and M986R mutations were at drug binding locations.
X
ABCB1 p.Phe942Arg 22647192:333:384
status: NEW[hide] Mapping the Binding Site of the Inhibitor Tariquid... J Biol Chem. 2015 Dec 4;290(49):29389-401. doi: 10.1074/jbc.M115.695171. Epub 2015 Oct 26. Loo TW, Clarke DM
Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein.
J Biol Chem. 2015 Dec 4;290(49):29389-401. doi: 10.1074/jbc.M115.695171. Epub 2015 Oct 26., [PMID:26507655]
Abstract [show]
ABC (ATP-binding cassette) transporters are clinically important because drug pumps like P-glycoprotein (P-gp, ABCB1) confer multidrug resistance and mutant ABC proteins are responsible for many protein-folding diseases such as cystic fibrosis. Identification of the tariquidar-binding site has been the subject of intensive molecular modeling studies because it is the most potent inhibitor and corrector of P-gp. Tariquidar is a unique P-gp inhibitor because it locks the pump in a conformation that blocks drug efflux but activates ATPase activity. In silico docking studies have identified several potential tariquidar-binding sites. Here, we show through cross-linking studies that tariquidar most likely binds to sites within the transmembrane (TM) segments located in one wing or at the interface between the two wings (12 TM segments form 2 divergent wings). We then introduced arginine residues at all positions in the 12 TM segments (223 mutants) of P-gp. The rationale was that a charged residue in the drug-binding pocket would disrupt hydrophobic interaction with tariquidar and inhibit its ability to rescue processing mutants or stimulate ATPase activity. Arginines introduced at 30 positions significantly inhibited tariquidar rescue of a processing mutant and activation of ATPase activity. The results suggest that tariquidar binds to a site within the drug-binding pocket at the interface between the TM segments of both structural wings. Tariquidar differed from other drug substrates, however, as it stabilized the first TM domain. Stabilization of the first TM domain appears to be a key mechanism for high efficiency rescue of ABC processing mutants that cause disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
188 These were in TM7 (Q725R, F728R, and F732R) (Fig. 6A), TM10 (V865R, I868R, and G872R) (Fig. 6D), TM11 (F942R, T945R, Q946R, M949R, Y950R, and Y953R) (Fig. 6E), and TM12 (L975R, F978R, and V982R) (Fig. 6F).
X
ABCB1 p.Phe942Arg 26507655:188:103
status: NEW193 It was found that 16 of the 28 mutants resembled the G251V/I868R mutant as expression in the presence of 5 òe;M cyclosporine A yielded mature P-gp as the major product in TM1 (H61R, G64R, L65R, M68R, and M69R), TM5 (F303R, I306R, and S309R), TM7 (Q725R and F728R), TM10 (I868R and G872R), TM11 (F942R, T945R, and Q946R), and TM12 (V982R) (Fig. 7).
X
ABCB1 p.Phe942Arg 26507655:193:299
status: NEW212 Seventeen of the 30 G251V/arginine mutants (M68R, M69R, and F72R in TM1; I306R, Y307R, S309R, and Y310R in TM5; F336R in TM6; F728R and F732R in TM7; I868R and G872R in TM10; F942R, T945R, M949R, and S952R in TM11; and V982R in TM12) that could not be rescued with tariquidar showed little or no stimulation of ATPase activity with tariquidar (Fig. 8A).
X
ABCB1 p.Phe942Arg 26507655:212:175
status: NEW283 We identified 13 additional arginine mutations (H61R, G64R, L65R, and M68R in TM1; A129R in TM2; I306R and S309R in TM5; F343R in TM6; F942R, T945R, Q946R, and Y950R in TM11; and L975R in TM12) (Fig. 11A) that were not predicted to lie within 4.5-&#c5; of the predicted site 3 tariquidar-binding site (9).
X
ABCB1 p.Phe942Arg 26507655:283:135
status: NEW313 Therefore, arginines predicted to lie outside of the tariquidar-binding site in TM1 and TM11 in the docking studies (H61R, G64R, L65R, and M68 in TM1; F942R, T945R, Q946R, and Y950R in TM11) might alter interactions between TM1 and TM11.
X
ABCB1 p.Phe942Arg 26507655:313:151
status: NEW