ABCA4 p.Arg2030Gln
ClinVar: |
c.6089G>A
,
p.Arg2030Gln
D
, Pathogenic
c.6088C>T , p.Arg2030* D , Pathogenic |
Predicted by SNAP2: | A: D (95%), C: D (66%), D: D (71%), E: D (66%), F: D (66%), G: D (66%), H: D (59%), I: D (66%), K: N (66%), L: D (66%), M: D (66%), N: N (53%), P: D (66%), Q: D (95%), S: D (53%), T: N (53%), V: D (66%), W: D (80%), Y: D (63%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: N, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Macular function in macular degenerations: repeata... Invest Ophthalmol Vis Sci. 2012 Feb 21;53(2):841-52. Print 2012 Feb. Cideciyan AV, Swider M, Aleman TS, Feuer WJ, Schwartz SB, Russell RC, Steinberg JD, Stone EM, Jacobson SG
Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure for ABCA4-associated retinopathy trials.
Invest Ophthalmol Vis Sci. 2012 Feb 21;53(2):841-52. Print 2012 Feb., [PMID:22247458]
Abstract [show]
PURPOSE: To measure macular visual function in patients with unstable fixation, to define the photoreceptor source of this function, and to estimate its test-retest repeatability as a prerequisite to clinical trials. METHODS: Patients (n = 38) with ABCA4-associated retinal degeneration (RD) or with retinitis pigmentosa (RP) were studied with retina-tracking microperimetry along the foveo-papillary profile between the fovea and the optic nerve head, and point-by-point test-retest repeatability was estimated. A subset with foveal fixation was also studied with dark-adapted projection perimetry using monochromatic blue and red stimuli along the horizontal meridian. RESULTS: Macular function in ABCA4-RD patients transitioned from lower sensitivity at the parafovea to higher sensitivity in the perifovea. RP patients had the inverse pattern. Red-on-red microperimetric sensitivities successfully avoided ceiling effects and were highly correlated with absolute sensitivities. Point-by-point test-retest limits (95% confidence intervals) were +/-4.2 dB; repeatability was not related to mean sensitivity, eccentricity from the fovea, age, fixation location, or instability. Repeatability was also not related to the local slope of sensitivity and was unchanged in the parapapillary retina. CONCLUSIONS: Microperimetry allows reliable testing of macular function in RD patients without foveal fixation in longitudinal studies evaluating natural disease progression or efficacy of therapeutic trials. A single estimate of test-retest repeatability can be used to determine significant changes in visual function at individual retinal loci within diseased regions that are homogeneous and those that are heterogeneous and also in transition zones at high risk for disease progression.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 Clinical and Molecular Characteristics of the ABCA4 Patients Patient Age (y)/Sex ABCA4 Mutation Clinical Diagnosis Visual Acuity* Kinetic Visual Field Extent (V-4e)†Allele 1 Allele 2 Foveal Fixation P1‡ 12/M N965S W821R STGD 20/20 97 P2‡ 17/F V989A IVS28ϩ5 GϾT STGD 20/100 90 P3 18/M G1961E R1129L§ STGD 20/100 105 P4 21/F R212C P68R STGD 20/125 101 P5 24/M P1511 del1ccgC R1705Q STGD 20/25 114 P6 31/M G863A R1108C STGD 20/25 105 P7 32/F IVS40ϩ5 GϾA V935A STGD 20/32 103 P8 34/M G1961E - CRD 20/32 98 P9 37/F R681X P309R STGD 20/20 109 P10 39/M G1961E C54Y§ STGD 20/40 101 P11‡ 42/F G1961E V256V STGD 20/32 105 P12‡ 46/F G1961E V256V STGD 20/32 106 P13 52/F G1961E P1380L STGD 20/40 105 P14 58/M D600E R18W§ STGD 20/40 84 Extrafoveal Fixation P15 11/M V256V T1526M CRD 20/200 102 P16 15/M C54Y IVS35ϩ2 TϾC STGD 20/200 96 P17‡ 16/F V989A IVS28ϩ5 GϾT STGD 20/100 100 P18‡ 16/M N965S W821R STGD 20/125 100 P19 19/F A1038V/L541P N965S STGD 20/400 90 P20 21/M G863A IVS35ϩ2 TϾC STGD 20/200 99 P21 22/F G1961E R152X STGD 20/50 104 P22 27/M G863A P1660S§ STGD 20/100 98 P23 27/F G1961E A1038V/L541P STGD 20/100 109 P24 29/M G1961E T1019M STGD 20/100 104 P25 33/M P1486L deletion of exon 7 STGD 20/400 98 P26 36/F G863A C1490Y STGD 20/100 93 P27 41/M A1038V/L541P - STGD 20/125 108 P28 49/F T1526M R2030Q STGD 20/125 98 P29 55/F W855X - STGD 20/160 87 P30 56/F G1961E IVS37ϩ1 GϾA§ STGD 20/125 89 P31 60/F G1961E M669 del2ccAT STGD 20/125 104 STGD, Stargardt disease; CRD, cone-rod dystrophy.
X
ABCA4 p.Arg2030Gln 22247458:42:1410
status: NEWX
ABCA4 p.Arg2030Gln 22247458:42:1420
status: NEW[hide] Phenotypic and genetic spectrum of Danish patients... Ophthalmic Genet. 2012 Dec;33(4):225-31. doi: 10.3109/13816810.2011.643441. Epub 2012 Jan 9. Duno M, Schwartz M, Larsen PL, Rosenberg T
Phenotypic and genetic spectrum of Danish patients with ABCA4-related retinopathy.
Ophthalmic Genet. 2012 Dec;33(4):225-31. doi: 10.3109/13816810.2011.643441. Epub 2012 Jan 9., [PMID:22229821]
Abstract [show]
Background: Pathogenic variations in the ABCA4 gene were originally recognized as genetic background for the autosomal recessive disorders Stargardt disease and fundus flavimaculatus, but have expanded to embrace a diversity of retinal diseases, giving rise to the new diagnostic term, ABCA4-related retinopathy. Diagnostic genotyping of ABCA4 is complicated by the large size of the gene and the existence of approximately 600 known pathogenic variations, along with numerous rare polymorphisms. A commercial diagnostic array-based assay has been developed targeting known mutations, however a conclusive genetic diagnosis must rely on a comprehensive genetic screening as the mutation spectrum of ABCA4-related retinopathies continues to expand. Material and methods: Among 161 patients with a Stargardt-related phenotype previously assessed with the commercial ABCA4 mutation microarray, we analyzed the ABCA4 gene with High-resolution melting (HRM) in patients in whom the array analysis identified either a heterozygous mutation (n = 50) or no mutation (n = 30). Results: The HRM method detected each of the already known mutations and polymorphisms. We identified the second ABCA4 mutation in 31 of 50 heterozygous patients (62%). Several novel mutations were identified of which four were identified multiple times. The recurrent novel mutations were subsequently assessed among the 30 patients with possible ABCA4-related diseases, previously found to be negative for known ABCA4 mutations by array analysis. In total, 30 different mutations were identified of which 21 have not been described before. Conclusion: Scandinavian patients with ABCA4-related retinopathy appear to have a distinct mutation spectrum, which can be identified in patients of diverse clinical phenotypes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 Table 1 Mutations identified by HRM in the initial 50 heterozygous patients Patient Mutation 1 (Asper) Mutation 2 (HRM) RefDNA Protein Exon/intron DNA Protein Exon/intron D043 c.2588G>C p.G863A 17 c.184 C>T p.P62S 3 New D069 c.3113C>T p.A1038V 21 c.1529 T>G p.L510R 11 New D050 c.2588G>C p.G863A 17 c.1529 T>G p.L510R 11 New D112 c.2894A>G p.N965S 19 c.1529 T>G p.L510R 11 New D099 c.6089G>A p.R2030Q 44 c.1529 T>G p.L510R 11 New D165 c.1822T>C p.F608L 13 c.2243 G>A p.C748Y 15 New D166 c.2588G>C p.G863A 17 c.2300 T>A p.V767D 15 Known D117 c.3191-2A>G na IVS21 c.2408delG na 16 New D135 c.2894A>G p.N965S 19 c.2408delG na 16 New D147 c.2894A>G p.N965S 19 c.2408delG na 16 New D173 c.4469G>A p.C1490Y 30 c.2915C>A p.T972N 19 Known D013* c.1622C>T p.L541P 12 c.1313C>T p.A1038V 21 Known D181 c.6089G>A p.R2030Q 44 c.3380 G>A p.G1127E 23 New D018 c.6449G>A p.C2150Y 47 c.3736 C>G p.L1246V 25 New D191 c.2588G>C p.G863A 17 c.4069 G>A p.A1357T 27 New D167 c.5461-10T>C na IVS38 c.4102 C>T p.R1368C 27 New D022 c.4462T>C p.C1488R 30 c.4102 C>T p.R1368C 27 New D108 c.1648G>A p.G550R 12 c.4102 C>T p.R1368C 27 New D414 c.2588G>C p.G863A 17 c.4653 G>A p.W1551X 32 New D027 c.2588G>C p.G863A 17 c.4668-2A>G na IVS32 New D136 c.
X
ABCA4 p.Arg2030Gln 22229821:56:402
status: NEWX
ABCA4 p.Arg2030Gln 22229821:56:811
status: NEW58 [1622C>T+3113C>T] p.[L541P+A1038V] 12 c.5584 + 1G>A na IVS39 New D188 c.5461-10T>C na IVS38 c.5693G>A p.R1898H 40 Known D433 c.5882G>A p.G1961E 42 c.6005 + 1G>A na IVS43 Known D134 c.4667 + 2G>T na IVS32 c.6098 T>G p.L2033R 44 New D186 c.3322C>T p.R1108C 22 c.6386 +009;1G>A na IVS46 New D182 c.6089G>A p.R2030Q 44 c.6386 + 1G>A na IVS46 New D189 c.2894A>G p.N965S 19 c.6478 A>G p.K2160E 47 New *p.L541P and p.A1038V might be located on the same allele.
X
ABCA4 p.Arg2030Gln 22229821:58:319
status: NEWX
ABCA4 p.Arg2030Gln 22229821:58:358
status: NEWX
ABCA4 p.Arg2030Gln 22229821:58:728
status: NEW97 Phenotype Patient Mutation 1 Mutation 2 Mutation 3 Stargardt-flavimaculatus D043 p.G863A p.P62S D050 p.G863A p.L510R D112 p.N965S p.L510R D069 p.A1038V p.L510R D099 p.R2030Q p.L510R D178 p.A1038V c.1843_1844delRG D166 p.G863A p.V767D D191 p.G863A p.A1357T D167 c.5461-10T>C p.R1368C D128 p.2408delG* p.T1415P D027 p.G863A c.4668-2A>G* D136 p.[L541P+A1038V] p.L1580S D048 c.3766dupTG* p.R1898H p.F655C D034 p.G863A c.4773 + 5G>A* D015 p. G1127K p.K2160E p.V552I D189 p.N965S p.K2160E D433 p.G1961E c.6005 + 1G>A* Generalized retinal dystrophy D117 c.3191-2A>G* c.2408delG* D135 p.N965S c.2408delG* D147 p.N965S c.2408delG* D173 p.C1490Y p.T972N D018 p.C2150Y p.L1246V D022 p.C1488R p.R1368C D108 p.G550R p.R1368C D414 p.G863A p.W1551X* D444 p.T901A c.4773 + 3A>G* D110 p.[L541P+A1038V] c.5584 + 1G>A* D182 p.R2030Q c.6386 + 1G>A* D186 p.R1108C c.6386 + 1G>AA* D133 p.L510R IVS46 + 1G>A* Cone-rod dystrophy D134 c.4667 + 2G>T* p.L2033R Atypical maculopathy D165 p.F608L p.C748Y D181 p.R2030Q p.G1127E D188 c.5461-10T>C p.R1898H *Predicted to compromise correct reading frame.
X
ABCA4 p.Arg2030Gln 22229821:97:167
status: NEWX
ABCA4 p.Arg2030Gln 22229821:97:863
status: NEWX
ABCA4 p.Arg2030Gln 22229821:97:1095
status: NEW60 [1622C>T+3113C>T] p.[L541P+A1038V] 12 c.5584ߙ+ߙ1G>A na IVS39 New D188 c.5461-10T>C na IVS38 c.5693G>A p.R1898H 40 Known D433 c.5882G>A p.G1961E 42 c.6005ߙ+ߙ1G>A na IVS43 Known D134 c.4667ߙ+ߙ2G>T na IVS32 c.6098 T>G p.L2033R 44 New D186 c.3322C>T p.R1108C 22 c.6386ߙ+ߙ1G>A na IVS46 New D182 c.6089G>A p.R2030Q 44 c.6386ߙ+ߙ1G>A na IVS46 New D189 c.2894A>G p.N965S 19 c.6478 A>G p.K2160E 47 New *p.L541P and p.A1038V might be located on the same allele.
X
ABCA4 p.Arg2030Gln 22229821:60:350
status: NEW100 Phenotype Patient Mutation 1 Mutation 2 Mutation 3 Stargardt-flavimaculatus D043 p.G863A p.P62S D050 p.G863A p.L510R D112 p.N965S p.L510R D069 p.A1038V p.L510R D099 p.R2030Q p.L510R D178 p.A1038V c.1843_1844delRG D166 p.G863A p.V767D D191 p.G863A p.A1357T D167 c.5461-10T>C p.R1368C D128 p.2408delG* p.T1415P D027 p.G863A c.4668-2A>G* D136 p.[L541P+A1038V] p.L1580S D048 c.3766dupTG* p.R1898H p.F655C D034 p.G863A c.4773ߙ+ߙ5G>A* D015 p. G1127K p.K2160E p.V552I D189 p.N965S p.K2160E D433 p.G1961E c.6005ߙ+ߙ1G>A* Generalized retinal dystrophy D117 c.3191-2A>G* c.2408delG* D135 p.N965S c.2408delG* D147 p.N965S c.2408delG* D173 p.C1490Y p.T972N D018 p.C2150Y p.L1246V D022 p.C1488R p.R1368C D108 p.G550R p.R1368C D414 p.G863A p.W1551X* D444 p.T901A c.4773ߙ+ߙ3A>G* D110 p.[L541P+A1038V] c.5584ߙ+ߙ1G>A* D182 p.R2030Q c.6386ߙ+ߙ1G>A* D186 p.R1108C c.6386ߙ+ߙ1G>AA* D133 p.L510R IVS46ߙ+ߙ1G>A* Cone-rod dystrophy D134 c.4667ߙ+ߙ2G>T* p.L2033R Atypical maculopathy D165 p.F608L p.C748Y D181 p.R2030Q p.G1127E D188 c.5461-10T>C p.R1898H *Predicted to compromise correct reading frame.
X
ABCA4 p.Arg2030Gln 22229821:100:167
status: NEWX
ABCA4 p.Arg2030Gln 22229821:100:855
status: NEWX
ABCA4 p.Arg2030Gln 22229821:100:1079
status: NEW[hide] Stargardt macular dystrophy: common ABCA4 mutation... Mol Vis. 2012;18:280-9. Epub 2012 Feb 1. Roberts LJ, Nossek CA, Greenberg LJ, Ramesar RS
Stargardt macular dystrophy: common ABCA4 mutations in South Africa--establishment of a rapid genetic test and relating risk to patients.
Mol Vis. 2012;18:280-9. Epub 2012 Feb 1., [PMID:22328824]
Abstract [show]
PURPOSE: Based on the previous indications of founder ATP-binding cassette sub-family A member 4 gene (ABCA4) mutations in a South African subpopulation, the purpose was to devise a mechanism for identifying common disease-causing mutations in subjects with ABCA4-associated retinopathies (AARs). Facilitating patient access to this data and determining the frequencies of the mutations in the South African population would enhance the current molecular diagnostic service offered. METHODS: The majority of subjects in this study were of Caucasian ancestry and affected with Stargardt macular dystrophy. The initial cohort consisted of DNA samples from 181 patients, and was screened using the ABCR400 chip. An assay was then designed to screen a secondary cohort of 72 patients for seven of the most commonly occurring ABCA4 mutations in this population. A total of 269 control individuals were also screened for the seven ABCA4 mutations. RESULTS: Microarray screening results from a cohort of 181 patients affected with AARs revealed that seven ABCA4 mutations (p.Arg152*, c.768G>T, p.Arg602Trp, p.Gly863Ala, p.Cys1490Tyr, c.5461-10T>C, and p.Leu2027Phe) occurred at a relatively high frequency. The newly designed genetic assay identified two of the seven disease-associated mutations in 28/72 patients in a secondary patient cohort. In the control cohort, 12/269 individuals were found to be heterozygotes, resulting in an estimated background frequency of these mutations in this particular population of 4.46 per 100 individuals. CONCLUSIONS: The relatively high detection rate of seven ABCA4 mutations in the primary patient cohort led to the design and subsequent utility of a multiplex assay. This assay can be used as a viable screening tool and to reduce costs and laboratory time. The estimated background frequency of the seven ABCA4 mutations, together with the improved diagnostic service, could be used by counselors to facilitate clinical and genetic management of South African families with AARs.
Comments [show]
None has been submitted yet.
No. Sentence Comment
139 of alleles detected Frequency p.Cys54Tyr c. 161 G>A 2 0.55% p.Arg152* c. 454 C>T 12 3.31% p.Arg152Gln c. 455 G>A 3 0.83% p.Gly172Ser c. 514 G>A 1 0.28% p.Arg212Cys c. 634 C>T 1 0.28% p.Lys223Gln c. 667 A>C 1 0.28% p.V256V (Splice) c. 768 G>T 18 4.97% p.Pro291Leu c. 872 C>T 1 0.28% p.Trp439* c. 1317 G>A 1 0.28% p.Ala538Asp c. 1613 C>A 1 0.28% p.Leu541Pro c. 1622 T>C 1 0.28% p.Arg602Trp c. 1885C>T 30 8.29% p.Val643Met c. 1927 G>A 1 0.28% p.Arg653Cys c. 1957 C>T 1 0.28% p.Arg681* c. 2041 C>T 3 0.83% p.Val767Asp c. 2300 T>A 1 0.28% p.Trp855* c.2564_2571delGGTACCTT 2 0.55% p.Gly863Ala c. 2588 G>C 11 3.04% p.Val931Met c. 2791 G>A 1 0.28% p.Asn965Ser c. 2894 A>G 4 1.10% p.Val989Ala c. 2966 T>C 1 0.28% p.Gly991Arg c. 2971 G>C 1 0.28% p.Thr1019Met c. 3056 C>T 1 0.28% p.Ala1038Val c. 3113 C>T 3 0.83% p.Glu1087Lys c. 3259 G>A 1 0.28% p.Arg1108Cys c. 3322 C>T 2 0.55% p.Leu1201Arg c. 3602 T>G 4 1.10% p.Arg1300Gln c. 3899 G>A 4 1.10% p.Pro1380Leu c. 4139 C>T 3 0.83% p.Trp1408Arg c. 4222 T>C 1 0.28% - c. 4253+5G>A 1 0.28% p.Phe1440Ser c. 4319 T>C 1 0.28% p.Arg1443His c. 4328 G>A 1 0.28% p.Cys1490Tyr c.4469 G>A 54 14.92% p.Gln1513Pro fs*42 c. 4535 insC 1 0.28% p.Ala1598Asp c. 4793C>A 1 0.28% p.Arg1640Trp c. 4918 C>T 2 0.55% p.Ser1642Arg c. 4926 C>G 1 0.28% p.V1681_C1685del c. 5041 del15 1 0.28% - c. 5461-10T>C 24 6.63% - c. 5714+5 G>A 2 0.55% p.Pro1948Leu c. 5843 C>T 1 0.28% p.Gly1961Glu c. 5882 G>A 4 1.10% p.Leu2027Phe c.6079 C>T 30 8.29% p.Arg2030* c. 6088 C>T 1 0.28% p.Arg2030Gln c. 6089 G>A 3 0.83% p.Arg2038Trp c. 6112 C>T 1 0.28% p.Arg2107His c. 6320 G>A 2 0.55% p.Arg2118Glu fs*27 c. 6352 delA 1 0.28% p.Cys2150Tyr c. 6449 G>A 1 0.28% p.Gln2220* c. 6658 C>T 1 0.28% p.Gly863Ala mutation, which appears to have a founder effect in the Netherlands [13,15], the results obtained from the current study are in agreement with September et al.`s conclusions [9].
X
ABCA4 p.Arg2030Gln 22328824:139:1481
status: NEW[hide] Cone photoreceptor abnormalities correlate with vi... Invest Ophthalmol Vis Sci. 2011 May 17;52(6):3281-92. doi: 10.1167/iovs.10-6538. Print 2011 May. Chen Y, Ratnam K, Sundquist SM, Lujan B, Ayyagari R, Gudiseva VH, Roorda A, Duncan JL
Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt disease.
Invest Ophthalmol Vis Sci. 2011 May 17;52(6):3281-92. doi: 10.1167/iovs.10-6538. Print 2011 May., [PMID:21296825]
Abstract [show]
PURPOSE. To study the relationship between macular cone structure, fundus autofluorescence (AF), and visual function in patients with Stargardt disease (STGD). METHODS. High-resolution images of the macula were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography in 12 patients with STGD and 27 age-matched healthy subjects. Measures of retinal structure and AF were correlated with visual function, including best-corrected visual acuity, color vision, kinetic and static perimetry, fundus-guided microperimetry, and full-field electroretinography. Mutation analysis of the ABCA4 gene was completed in all patients. RESULTS. Patients were 15 to 55 years old, and visual acuity ranged from 20/25-20/320. Central scotomas were present in all patients, although the fovea was spared in three patients. The earliest cone spacing abnormalities were observed in regions of homogeneous AF, normal visual function, and normal outer retinal structure. Outer retinal structure and AF were most normal near the optic disc. Longitudinal studies showed progressive increases in AF followed by reduced AF associated with losses of visual sensitivity, outer retinal layers, and cones. At least one disease-causing mutation in the ABCA4 gene was identified in 11 of 12 patients studied; 1 of 12 patients showed no disease-causing ABCA4 mutations. CONCLUSIONS. AOSLO imaging demonstrated abnormal cone spacing in regions of abnormal fundus AF and reduced visual function. These findings provide support for a model of disease progression in which lipofuscin accumulation results in homogeneously increased AF with cone spacing abnormalities, followed by heterogeneously increased AF with cone loss, then reduced AF with cone and RPE cell death.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 TABLE1.ClinicalCharacteristicsofthePatientswithStargardtDisease Patient/EyeAge(y)/SexABCA4MutationsBCVA ETDRS ScoreColorVision* GoldmannVisual Field† HumphreyVisualField 10-2 Foveal Threshold (dB)Fixation F1P1OS16/MPro1486Leu/6bp insϩ32bpdel atbase672 20/4075None,0,1.34V4e:full;14e:1°ctl scotoma 8°ctlscotomawithϽ1 logunitsensitivityloss 30Foveal F1P2OS15/MPro1486Leu/6bp insϩ32bpdel atbase672 20/16040NS,2,1.99V4e:full;14e:1°ctl scotoma Densescotomabeginning 4°superiortofixation 27Superior F2P1OS25/FGlu1412Stop20/6361None,0,1.00V4e,14e:full,12e: 5°ctlscotoma 6°ctlscotoma31Foveal F3P1OD24/MGly863Ala20/10050NS,6,2.72V4e:full;14e:3-4° ctlscotoma 3°-4°scotomasuperior tofixation 32Superior F4P1OS16/FNodisease-causing mutations identified 20/20035NS,5,2.25V4e:full;14e:35° ctlscotoma 15°ctlscotomawith eccentricfixation superonasally 8Nasal,slightlybelow horizontal meridian F5P1OS42/M5461-10TϾCintron 39/Gly1961Glu 20/32023NS,5,2.27V4e:full;14e:10° ctlscotoma 12°densectlscotoma27Superonasal F6P1OS19/FLys223Gln/C2291 15bp/5amino aciddeletion (CSGVI) 20/20035NS,6,1.99V4e:full;14e:35° ctlscotoma 10°ctlscotoma20Superonasal F7P1OS55/FArg212Cys/ Gly863Ala/ Thr959Ile 20/16040NS,3,2.01V4e:10°ctl scotoma;14e:20° ctlscotoma Dense15°ctlscotoma6Superonasal F8P1OS36/MSer336Cys/ Arg1068/Ser‡ 20/20034NS,8,3.62V4e:20°ctl scotoma;14e:25° ctlscotoma Densescotomabeginning 6°superiortofixation 12Superior F9P1OS28/MArg1108His/ Val1433lle 20/32025NS,11,3.30V4e:full;14e:15° scotomafrom5- 25°superiorto fixation Densescotomabeginning 5°superiortofixation 23Superior F10P1OS55/FIVS20ϩ5GϾA splice/Gly1961Glu 20/32025NS,6,2.55V4e:30°ctl scotoma;14e:35° ctlscotoma Densescotomaextending fromfixationto10° inferonasally 19Inferonasal F11P1OS50/MArg2030Gln20/2580Tritan,7,2.61V4e:full;14e:25° ctlscotomafrom 10-25°with fovealsparing Densescotomaextending fromfixationto10° withfovealsparing 27Foveal ctl,central;F,family;F,female;M,male;NS,nonspecificorientation;OD,righteye;OS,lefteye;P,proband.
X
ABCA4 p.Arg2030Gln 21296825:109:2131
status: NEW[hide] Loss of peripapillary sparing in non-group I Starg... Exp Eye Res. 2010 Nov;91(5):592-600. Epub 2010 Aug 7. Burke TR, Allikmets R, Smith RT, Gouras P, Tsang SH
Loss of peripapillary sparing in non-group I Stargardt disease.
Exp Eye Res. 2010 Nov;91(5):592-600. Epub 2010 Aug 7., [PMID:20696155]
Abstract [show]
The aim of this study was to assess peripapillary sparing in patients with non-group I Stargardt disease. We suggest this as a useful clinical sign for formulating disease severity. Patients with a diagnosis of Stargardt disease were grouped by electroretinogram (ERG). Fundus autofluorescence was used to assess the peripapillary area for involvement in the Stargardt disease process. From a cohort of 32 patients (64 eyes), 17 patients (33 eyes) demonstrated loss of peripapillary sparing. One of 15 patients in Group I, six of 7 patients in group II and 9 of 10 patients in group III demonstrated peripapillary atrophy. One patient in group II had peripapillary flecks. All patients had at least one mutation detected in the ABCA4 gene. Both mutations were detected in 21 patients. Patients in groups II and III had the earliest ages of onset and the poorest visual acuities. Two novel disease causing mutation in the ABCA4 gene were detected. Our data supports the observation that peripapillary sparing is not universal finding for Stargardt disease and peripapillary atrophy is a useful clinical sign for identifying patients with Stargardt disease who fall into the more severe ERG groups, i.e. groups II and III. The presence of atrophy suggests a continuum of disease between groups II and III. Loss of peripapillary sparing is likely associated with the more deleterious mutations of the ABCA4 gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
135 Patient 15 had 3 changes of the ABCA4 gene detected: M1 V, R2030Q and P1380L.
X
ABCA4 p.Arg2030Gln 20696155:135:9
status: NEWX
ABCA4 p.Arg2030Gln 20696155:135:59
status: NEW136 M1 V and R2030Q have been previously reported to be synthenic; i.e. form a complex allele, however segregation analysis was not performed in this family due to unavailability of parental DNA.
X
ABCA4 p.Arg2030Gln 20696155:136:9
status: NEW184 Also, the type of involvement of the peripapillary area Table 1 Summary of clinical and genetic information for patients with ERG Group I Stargardt Disease. Case Mutation Mutation OA Duration Age at AF Visual Acuity Flecks Atrophy GA (mm2 ) PPA # Sex Allele 1 Allele 2 PPA (years) (years) (years) OD OS OD OS OD OS OD OS Pattern RON 1 Male G1961E G1961E e 19 13 32 20/70 20/70 M M M M 1.6 0.2 None 2 Female G1961E *IVS43 þ 1 G > T e 8 21 27 20/200 20/200 M M M M na na None 3.1 Male L541P/A1038V G1961E e 28 3 31 20/50 20/30 M M M M na na None 3.2 Male L541P/A1038V G1961E e 28 5 33 20/60 20/50 M M M M na na None 4.1 Female L541P/A1038V G1961E e 14 3 17 20/30 20/25 None None None None na na None 4.2 Female L541P/A1038V G1961E e 14 10 24 20/150 20/200 M M M M na na None 5 Female G1961E R2077W e 25 5 30 20/60 20/50 None None M M na na None 6.1 Female G1961E L541P/A1038V e 18 3 21 20/150 20/150 None None M M na na None 6.2 Female G1961E L541P/A1038V e 15 3 18 20/150 20/150 None None M M na na None 7 Female R602Q R602Q e 31 5 36 20/20 20/60 M,EM M,EM M M 0.7 0.3 None 8 Male L541P/A1038V ND e 22 24 46 20/200 20/200 M M M M 13.2 4.1 None 9 Femlae A1038V ND e 27 10 37 20/100 20/60 M,EM M,EM M M na na None 10 Female G1961E ND e 27 6 33 20/150 20/150 M M M M na na None 11 Female G1961E ND e 43 24 67 20/40 20/200 M M M M 4.8 na None 12 Male R212C ND OU 5 23 28 20/200 20/200 M,EM M,EM M M 1.6 4.2 Patchy N,T Abbreviations: ERG, electroretinogram; PPA, peripapillary atrophy; OD, right eye; OS, left eye; OU, both eyes; OA, onset age; AF, autofluoresence; M, macula; EM, extramacular retina; GA, geographic atrophy; na, not available; RON, relation to optic nerve; N, nasal; T, temporal; ND, mutation was not detected by the ABCR array e suggesting the presence of a currently unknown mutant allele; and *newly described mutation.
X
ABCA4 p.Arg2030Gln 20696155:184:482
status: NEW185 Table 2 Summary of clinical and genetic information for patients with ERG Groups II or III Stargardt Disease. Case Mutation Mutation ERG OA Duration Age at AF Visual Acuity Flecks GA position GA (mm2) PPA # Sex Allele 1 Allele 2 PPA Group (years) (years) (years) OD OS OD OS OD OS OD OS Pattern RON 13 Female P1380L R1640Q OU II 11 24 35 HM HM EM EM M,EM M,EM na na Scalloped - 14 Male IVS38-10 T>C IVS40+5 G>A OU II 7 6 13 20/150 20/150 M,EM M,EM M M na na Flecks N 15 Female M1 V/R2030Q P1380L OU II 8 10 18 20/150 20/150 M,EM M,EM M M 3.52 na Patchy N,T 16 Female P1380L P1380L OU II 18 8 26 20/400 20/400 M,EM M,EM M M 0.25 na Patchy N,T 17 Female L541P/A1038 V L2027F OU II 10 22 32 CF CF M,EM M,EM M M 11.7 5.1 Patchy N,T 18 Male A1773 V ND OU II 35 6 41 CF 20/30 M,EM M,EM M M 4.2 3.7 Patchy N,T 19 Female L2027F ND OU I/II 10 17 27 20/400 20/400 M,EM M,EM M M 1.6 0.1 Patchy N,T 20 Male R602 W R1300X OU III 8 18 26 CF CF None None M,EM M,EM na na Scalloped N,T 21 Female C54Y IVS14+1 G>C OU III 8 55 63 CF HM EM None M,EM M,EM na na Complete - 22.1 Male 4537delC *R107X OU III 5 8 13 20/200 20/200 EM EM M M 2.3 1.7 Patchy N,T 22.2 Female 4537delC *R107X - III 6 2 8 20/200 20/200 M,EM M,EM M M na na - - 23 Male P1380L IVS40+5 G>A OU III 29 26 55 20/400 20/400 EM EM M,EM M,EM na na Complete - 24 Male A1598D A1598D OU III 13 40 53 20/400 20/400 NA NA M,EM M,EM na na Scalloped N,T 25 Male G172S ND OU III 25 7 32 CF CF None None M,EM M,EM na na Complete - 26 Female R1108C ND OU III 9 50 59 20/400 20/400 EM EM M,EM M,EM na na Complete - 27 Male V767D ND OD III 5 10 15 20/400 20/400 EM EM M M na na Patchy T 28 Male P1380L ND OU II/III 9 21 30 20/400 20/400 EM EM M M na na Patchy N,T Abbreviations: ERG, electroretinogram; PPA, peripapillary atrophy; OD, right eye; OS, left eye; OU, both eyes; OA, onset age; AF, autofluoresence; M, macula; EM, extramacular retina; GA, geographic atrophy; na, not available; RON, relation to optic nerve; N, nasal; T, temporal; ND, mutation was not detected by the ABCR array, suggesting the presence of a currently unknown mutant allele; and *newly described mutation.
X
ABCA4 p.Arg2030Gln 20696155:185:482
status: NEW134 Patient 15 had 3 changes of the ABCA4 gene detected: M1 V, R2030Q and P1380L.
X
ABCA4 p.Arg2030Gln 20696155:134:59
status: NEW[hide] Analysis of autofluorescent retinal images and mea... Exp Eye Res. 2010 Aug;91(2):143-52. Epub 2010 Apr 14. Chen B, Tosha C, Gorin MB, Nusinowitz S
Analysis of autofluorescent retinal images and measurement of atrophic lesion growth in Stargardt disease.
Exp Eye Res. 2010 Aug;91(2):143-52. Epub 2010 Apr 14., [PMID:20398653]
Abstract [show]
Current retinal imaging techniques using scanning laser ophthalmoscopy (SLO) provide a powerful mechanism for characterizing the topographical distribution of lipofuscin fluorophores and atrophic lesions (ALs) in retinal disease. In this paper we describe a novel Edge-Flow-Driven Variational Image Segmentation analysis to measure and evaluate progressive change in the area of ALs as well as regions of hyperfluorescence (HF). The algorithm is embedded in a series of almost completely automated image processing steps that allow rapid comparison of serial images. The sensitivity of the methodology to detect change was evaluated by measuring progression of AF lesion size in a cohort of Stargardt Macular Dystrophy (STGD) patients. Fifty-two STGD subjects (mean age = 41.0 +/- 16.6 years, range 9-78 yrs) at varying stages of disease participated in this prospective study. Twenty-four of the 52 subjects presented with atrophic lesions in one or both eyes on first evaluation. For this subgroup of subjects, the mean (+/-1 sd) follow-up time was 2.92 (+0.26) years (range 0.57-3.26 years) and the mean (+/-1 sd) rate of change was found to be approximately 0.94 (+/-0.87) mm(2)/year (range 0.2-2.13 mm(2)/yr). With this methodology, progressive enlargement of AL area was detectable in as little as one year, while regions of HF generally decreased, although there was considerable variability in the appearnce of HF, presumably reflecting the combined effects of the creation or expansion of lipofuscin deposits and resorption and loss associated with retinal cell death. Our findings suggest that this methodology is sufficiently sensitive to detect change and provides a clinically relevant tool to monitor progression not only with regards to natural history, but also to evaluate the efficacy of potential therapeutic interventions in STGD. Finally, we evaluated the association between AL area and measures of rod- and cone-mediated retinal function, as assessed with electroretinography (ERG). In general, the larger the AL, the poorer the ERG response, with a greater impact of lesion size on cone- rather than rod-mediated retinal function, a finding that was expected on the basis of the location and size of the AL and the distribution of rod- and cone-photoreceptors.
Comments [show]
None has been submitted yet.
No. Sentence Comment
82 ID# Age Years followed Visual Acuity AL Area (mm2 ) HF Area (mm2 ) ffERG Amplitudes (mV) ffERG IT (msec) ABCA4 Variants OD OS OD OS OD OS OD OS OD OS Rod Cone Rod Cone Rod Cone Rod Cone AI AII Group A S0047 53 2.83 20/40 20/40 31.60 33.85 0.20 0.07 304.0 125.4 392.9 143.3 69.5 29.3 72.7 29.3 NF NF S0023 49 3.26 20/160 20/160 9.92 12.67 1.24 1.49 292.1 52.2 272.4 46.4 77.9 36.8 78.3 35.2 L541P/A1038V NF S0050 78 2.71 20/250 20/160 2.02 0.07 1.21 0.67 355.0 82.2 373.1 87.2 76.7 34.1 76.7 34.8 S2255I IVS5,þ1,G > C S0045 44 3.16 20/200 20/160 17.27 44.72 NM NM 177.0 55.7 201.9 50.0 85.3 41.5 87.7 39.9 L541P/A1038V R2107K S0018 35 2.28 20/200 20/250 4.31 2.53 NM NM ND ND ND ND ND ND ND ND G1961E S2255I S0033 63 2.35 20/800 20/400 15.51 12.09 1.30 0.22 168.2 53.0 180.9 45.4 96.3 38.0 101.0 38.4 R943Q IVS8,-9, T > C S0048 62 2.56 20/80 20/20 48.45 40.73 NM NM 119.7 69.5 213.9 54.6 71.2 35.6 80.6 35.2 R290Q K346T S0036 62 2.81 20/640 20/500 55.70 43.38 NM NM 174.8 41.1 158.1 50.8 106.6 38.5 102.3 35.2 R1129L Q234X S0029 62 2.81 20/40 20/80 57.62 61.25 NM NM 219.0 26.0 209.2 35.2 77.9 31.3 73.6 30.9 R2030Q NF S0024 43 3.20 20/25 20/25 4.91 3.91 4.18 1.48 98.2 23.7 148.0 36.2 84.0 33.2 85.5 33.6 NF NF S0078 35 1.17 20/100 20/125 5.64 5.39 0.70 0.83 230.1 106.7 187.6 108.8 71.2 34.1 64.6 34.1 IVS39-10,T > C NF S0032 64 2.56 20/250 20/320 8.67 3.67 0.67 0.74 273.2 75.5 235.1 114.7 87.9 30.5 72.7 30.1 R1108C L2027F S0051 52 1.90 20/25 20/20 32.78 29.23 NM NM ND ND ND ND ND ND ND ND E471K NF S0115 16 0.57 20/50 20/50 0.77 3.43 NM NM ND ND ND ND ND ND ND ND NF NF S0077 49 1.14 20/40 20/25 N/A 8.54 0.16 1.89 279.9 111.9 299.3 105.2 N/A N/A N/A N/A NF NF S0042 43 1.84 20/125 20/200 118.15 126.69 NM NM 122.3 27.7 114.8 29.3 85.7 36.4 89.6 36.0 S2255I E471K S0037 46 2.38 20/125 20/200 8.73 N/A 1.29 0.86 338.7 119.3 373.7 109.4 72.3 28.1 70.7 28.1 G1961E S2255I S0020 42 0.0 20/200 20/160 1.16 1.82 NM NM 140.4 43.2 159.9 45.8 81.3 31.3 71.5 29.3 NF NF S0041 44 0.0 20/200 20/160 4.73 7.09 0.96 1.36 260.5 65* 297.2 95.3 113.7 29.7 91.8 28.9 R1129L NF S0087 44 0.0 20/20 20/20 14.89 23.09 NM NM 180.9 66.8 182.2 78.0 76.1 32.9 72.2 32.9 IVS40, þ5,G > A NF S0053 43 0.0 20/100 20/160 1.33 1.85 NM NM ND ND ND ND ND ND ND ND S2255I NF S0097 73 0.0 20/200 20/200 49.21 54.26 NM NM ND ND ND ND ND ND ND ND D1532E NF S0080 28 0.0 20/125 20/200 NA 0.98 0.56 0.03 333.1 117.2 325.1 121.4 80.2 32.5 82.6 32.9 E1122K S2255I S0210 49 0.0 20/160 20/200 0.21 NA NM NM 304.1 76.1 425.7 81.1 72.8 33.7 79.8 33.7 NF NF Group B S0133 30 0.0 20/125 20/32 0.51 0.01 387.1 123.7 374.8 105.1 65.4 32.9 65.0 32.9 NF NF S0046 49 0.0 20/160 20/160 1.48 1.68 491.2 148.9 494.9 145.3 72.7 30.1 77.3 29.7 P1380L G1961E S0141 40 0.0 20/13 20/32 1.88 0.41 389.0 156.5 343.5 150.6 70.8 33.3 69.7 34.4 NF NF S0058 61 0.0 20/50 20/50 1.48 1.52 ND ND ND ND ND ND ND ND NF NF S0149 16 0.0 20/80 20/100 1.59 0.62 285.0 87.4 333.4 115.3 62.6 32.5 61.4 32.5 NF NF S0083 15 0.0 20/13 20/13 0.17 0.48 441.1 144.2 472.0 155.5 74.4 33.3 71.6 33.3 G863A NF S0216 44 0.0 20/25 20/32 0.52 1.04 228.7 97.7 192.7 75.3 83.8 36.8 85.7 36.0 NF NF S0076 9 0.0 20/200 20/160 3.70 4.23 557.7 139.5 319.8 117.3 81.6 29.7 73.4 28.9 W1408R T1526M S0021 19 0.0 20/160 20/160 1.81 1.08 390.4 202.1 ND ND 63.3 29.3 ND ND L2027F W31R S0085 35 0.0 20/16 20/20 2.70 2.56 ND ND ND ND ND ND ND ND C54T R219T S0044 30 0.0 20/250 20/250 4.23 3.77 ND ND ND ND ND ND ND ND A1794D L2027F S0035 47 0.0 20/160 20/125 0.46 0.13 239.6 112.3 325.0 141.6 64.1 28.1 62.5 28.1 G863A E471K S0065 61 0.0 20/100 20/125 0.83 0.15 243.4 58.6 226.5 49.2 74.8 32.9 84.5 33.3 G1961E NF S0213 27 0.0 20/25 20/25 0.99 1.03 384.2 124.4 424.4 137.9 72.4 31.7 72.4 35.2 NF NF S0088 55 0.0 20/25 20/20 0.11 0.47 ND ND ND ND ND ND ND ND R1898H NF S0127 16 0.0 20/63 20/63 0.08 0.69 536.3 128.9 470.3 136.4 65.4 30.9 77.1 30.9 L541P/A1038V NF S0057 47 0.48 20/125 20/160 1.20 1.75 252.1 80.3 210.5 100.5 75.5 32.9 89.6 32.5 NF NF S0043 53 2.91 20/200 20/200 0.97 0.53 250.5 173.2 354.6 179.2 72.7 28.5 80.1 30.1 G1961E F873I S0101 37 1.1 20/40 20/20 0.14 0.25 382.2 159.7 422.7 156.7 70.5 32.5 74.0 32.9 A1038V IVS42 þ 1,G > A S0027 17 2.18 20/50 20/50 1.60 2.12 196.3 36.3 198.0 51.0 84.7 32.9 98.8 35.3 NF NF S0104 20 1.19 20/160 20/200 0.05 0.12 237.4 77.7 440.1 88.7 63.0 30.9 64.6 30.1 NF NF S0110 26 1.02 20/200 20/125 0.65 0.56 333.8 94.5 349.4 98.7 68.9 32.1 68.9 32.5 R1129L NF S0049 34 2.13 20/50 20/200 0.76 0.92 374.4 97.2 344.0 90.5 81.0 32.9 65.8 33.7 R1129L NF S0075 22 1.06 20/63 20/125 0.40 0.69 454.5 114.0 452.7 122.8 77.5 32.1 75.5 32.9 G1961E NF S0039 36 2.2 20/160 20/100 0.15 0.13 347.7 137.1 395.8 142.0 80.1 31.3 61.7 30.9 M1V R2107H S0054 31 1.93 20/40 20/40 0.41 0.56 ND ND ND ND ND ND ND ND G1961E S2255I S0040 11 2.97 20/160 20/160 0.46 0.07 610.2 72.5 375.6 67.4 106.5 37.2 93.5 32.9 R572X N1805D S0028 54 2.73 20/16 20/16 1.04 1.54 425.5 105.8 386.3 107.8 83.4 34.4 84.1 34.8 L541P/A1038V R2030Q ND ¼ not done.
X
ABCA4 p.Arg2030Gln 20398653:82:1113
status: NEWX
ABCA4 p.Arg2030Gln 20398653:82:4956
status: NEW81 ID# Age Years followed Visual Acuity AL Area (mm2 ) HF Area (mm2 ) ffERG Amplitudes (mV) ffERG IT (msec) ABCA4 Variants OD OS OD OS OD OS OD OS OD OS Rod Cone Rod Cone Rod Cone Rod Cone AI AII Group A S0047 53 2.83 20/40 20/40 31.60 33.85 0.20 0.07 304.0 125.4 392.9 143.3 69.5 29.3 72.7 29.3 NF NF S0023 49 3.26 20/160 20/160 9.92 12.67 1.24 1.49 292.1 52.2 272.4 46.4 77.9 36.8 78.3 35.2 L541P/A1038V NF S0050 78 2.71 20/250 20/160 2.02 0.07 1.21 0.67 355.0 82.2 373.1 87.2 76.7 34.1 76.7 34.8 S2255I IVS5,&#fe;1,G > C S0045 44 3.16 20/200 20/160 17.27 44.72 NM NM 177.0 55.7 201.9 50.0 85.3 41.5 87.7 39.9 L541P/A1038V R2107K S0018 35 2.28 20/200 20/250 4.31 2.53 NM NM ND ND ND ND ND ND ND ND G1961E S2255I S0033 63 2.35 20/800 20/400 15.51 12.09 1.30 0.22 168.2 53.0 180.9 45.4 96.3 38.0 101.0 38.4 R943Q IVS8,-9, T > C S0048 62 2.56 20/80 20/20 48.45 40.73 NM NM 119.7 69.5 213.9 54.6 71.2 35.6 80.6 35.2 R290Q K346T S0036 62 2.81 20/640 20/500 55.70 43.38 NM NM 174.8 41.1 158.1 50.8 106.6 38.5 102.3 35.2 R1129L Q234X S0029 62 2.81 20/40 20/80 57.62 61.25 NM NM 219.0 26.0 209.2 35.2 77.9 31.3 73.6 30.9 R2030Q NF S0024 43 3.20 20/25 20/25 4.91 3.91 4.18 1.48 98.2 23.7 148.0 36.2 84.0 33.2 85.5 33.6 NF NF S0078 35 1.17 20/100 20/125 5.64 5.39 0.70 0.83 230.1 106.7 187.6 108.8 71.2 34.1 64.6 34.1 IVS39-10,T > C NF S0032 64 2.56 20/250 20/320 8.67 3.67 0.67 0.74 273.2 75.5 235.1 114.7 87.9 30.5 72.7 30.1 R1108C L2027F S0051 52 1.90 20/25 20/20 32.78 29.23 NM NM ND ND ND ND ND ND ND ND E471K NF S0115 16 0.57 20/50 20/50 0.77 3.43 NM NM ND ND ND ND ND ND ND ND NF NF S0077 49 1.14 20/40 20/25 N/A 8.54 0.16 1.89 279.9 111.9 299.3 105.2 N/A N/A N/A N/A NF NF S0042 43 1.84 20/125 20/200 118.15 126.69 NM NM 122.3 27.7 114.8 29.3 85.7 36.4 89.6 36.0 S2255I E471K S0037 46 2.38 20/125 20/200 8.73 N/A 1.29 0.86 338.7 119.3 373.7 109.4 72.3 28.1 70.7 28.1 G1961E S2255I S0020 42 0.0 20/200 20/160 1.16 1.82 NM NM 140.4 43.2 159.9 45.8 81.3 31.3 71.5 29.3 NF NF S0041 44 0.0 20/200 20/160 4.73 7.09 0.96 1.36 260.5 65* 297.2 95.3 113.7 29.7 91.8 28.9 R1129L NF S0087 44 0.0 20/20 20/20 14.89 23.09 NM NM 180.9 66.8 182.2 78.0 76.1 32.9 72.2 32.9 IVS40, &#fe;5,G > A NF S0053 43 0.0 20/100 20/160 1.33 1.85 NM NM ND ND ND ND ND ND ND ND S2255I NF S0097 73 0.0 20/200 20/200 49.21 54.26 NM NM ND ND ND ND ND ND ND ND D1532E NF S0080 28 0.0 20/125 20/200 NA 0.98 0.56 0.03 333.1 117.2 325.1 121.4 80.2 32.5 82.6 32.9 E1122K S2255I S0210 49 0.0 20/160 20/200 0.21 NA NM NM 304.1 76.1 425.7 81.1 72.8 33.7 79.8 33.7 NF NF Group B S0133 30 0.0 20/125 20/32 0.51 0.01 387.1 123.7 374.8 105.1 65.4 32.9 65.0 32.9 NF NF S0046 49 0.0 20/160 20/160 1.48 1.68 491.2 148.9 494.9 145.3 72.7 30.1 77.3 29.7 P1380L G1961E S0141 40 0.0 20/13 20/32 1.88 0.41 389.0 156.5 343.5 150.6 70.8 33.3 69.7 34.4 NF NF S0058 61 0.0 20/50 20/50 1.48 1.52 ND ND ND ND ND ND ND ND NF NF S0149 16 0.0 20/80 20/100 1.59 0.62 285.0 87.4 333.4 115.3 62.6 32.5 61.4 32.5 NF NF S0083 15 0.0 20/13 20/13 0.17 0.48 441.1 144.2 472.0 155.5 74.4 33.3 71.6 33.3 G863A NF S0216 44 0.0 20/25 20/32 0.52 1.04 228.7 97.7 192.7 75.3 83.8 36.8 85.7 36.0 NF NF S0076 9 0.0 20/200 20/160 3.70 4.23 557.7 139.5 319.8 117.3 81.6 29.7 73.4 28.9 W1408R T1526M S0021 19 0.0 20/160 20/160 1.81 1.08 390.4 202.1 ND ND 63.3 29.3 ND ND L2027F W31R S0085 35 0.0 20/16 20/20 2.70 2.56 ND ND ND ND ND ND ND ND C54T R219T S0044 30 0.0 20/250 20/250 4.23 3.77 ND ND ND ND ND ND ND ND A1794D L2027F S0035 47 0.0 20/160 20/125 0.46 0.13 239.6 112.3 325.0 141.6 64.1 28.1 62.5 28.1 G863A E471K S0065 61 0.0 20/100 20/125 0.83 0.15 243.4 58.6 226.5 49.2 74.8 32.9 84.5 33.3 G1961E NF S0213 27 0.0 20/25 20/25 0.99 1.03 384.2 124.4 424.4 137.9 72.4 31.7 72.4 35.2 NF NF S0088 55 0.0 20/25 20/20 0.11 0.47 ND ND ND ND ND ND ND ND R1898H NF S0127 16 0.0 20/63 20/63 0.08 0.69 536.3 128.9 470.3 136.4 65.4 30.9 77.1 30.9 L541P/A1038V NF S0057 47 0.48 20/125 20/160 1.20 1.75 252.1 80.3 210.5 100.5 75.5 32.9 89.6 32.5 NF NF S0043 53 2.91 20/200 20/200 0.97 0.53 250.5 173.2 354.6 179.2 72.7 28.5 80.1 30.1 G1961E F873I S0101 37 1.1 20/40 20/20 0.14 0.25 382.2 159.7 422.7 156.7 70.5 32.5 74.0 32.9 A1038V IVS42 &#fe; 1,G > A S0027 17 2.18 20/50 20/50 1.60 2.12 196.3 36.3 198.0 51.0 84.7 32.9 98.8 35.3 NF NF S0104 20 1.19 20/160 20/200 0.05 0.12 237.4 77.7 440.1 88.7 63.0 30.9 64.6 30.1 NF NF S0110 26 1.02 20/200 20/125 0.65 0.56 333.8 94.5 349.4 98.7 68.9 32.1 68.9 32.5 R1129L NF S0049 34 2.13 20/50 20/200 0.76 0.92 374.4 97.2 344.0 90.5 81.0 32.9 65.8 33.7 R1129L NF S0075 22 1.06 20/63 20/125 0.40 0.69 454.5 114.0 452.7 122.8 77.5 32.1 75.5 32.9 G1961E NF S0039 36 2.2 20/160 20/100 0.15 0.13 347.7 137.1 395.8 142.0 80.1 31.3 61.7 30.9 M1V R2107H S0054 31 1.93 20/40 20/40 0.41 0.56 ND ND ND ND ND ND ND ND G1961E S2255I S0040 11 2.97 20/160 20/160 0.46 0.07 610.2 72.5 375.6 67.4 106.5 37.2 93.5 32.9 R572X N1805D S0028 54 2.73 20/16 20/16 1.04 1.54 425.5 105.8 386.3 107.8 83.4 34.4 84.1 34.8 L541P/A1038V R2030Q ND &#bc; not done.
X
ABCA4 p.Arg2030Gln 20398653:81:1112
status: NEWX
ABCA4 p.Arg2030Gln 20398653:81:4953
status: NEW[hide] Outcome of ABCA4 microarray screening in routine c... Mol Vis. 2009 Dec 20;15:2841-7. Ernest PJ, Boon CJ, Klevering BJ, Hoefsloot LH, Hoyng CB
Outcome of ABCA4 microarray screening in routine clinical practice.
Mol Vis. 2009 Dec 20;15:2841-7., [PMID:20029649]
Abstract [show]
PURPOSE: To retrospectively analyze the clinical characteristics of patients who were screened for mutations with the ATP-binding cassette transporter gene ABCA4 (ABCA4) microarray in a routine clinical DNA diagnostics setting. METHODS: We performed a retrospective analysis of the medical charts of 65 patients who underwent an ABCA4 microarray screening between the years 2002 and 2006. An additional denaturing gradient gel electrophoresis (DGGE) was performed in these patients if less than two mutations were found with the microarray. We included all patients who were suspected of autosomal recessive Stargardt disease (STGD1), autosomal recessive cone-rod dystrophy (arCRD), or autosomal recessive retinitis pigmentosa at the time of microarray request. After a retrospective analysis of the clinical characteristics, the patients who were suspected of STGD1 were categorized as having either a typical or atypical form of STGD1, according to the age at onset, fundus appearance, fluorescein angiography, and electroretinography. The occurrence of typical clinical features for STGD1 was compared between patients with different numbers of discovered mutations. RESULTS: Of the 44 patients who were suspected of STGD1, 26 patients (59%) had sufficient data available for a classification in either typical (six patients; 23%) or atypical (20 patients; 77%) STGD1. In the suspected STGD1 group, 59% of all expected pathogenic alleles were found with the ABCA4 microarray. DGGE led to the finding of 12 more mutations, resulting in an overall detection rate of 73%. Thirty-one percent of patients with two or three discovered ABCA4 mutations met all typical STGD1 criteria. An age at onset younger than 25 years and a dark choroid on fluorescein angiography were the most predictive clinical features to find ABCA4 mutations in patients suspected of STGD1. In 18 patients suspected of arCRD, microarray screening detected 22% of the possible pathogenic alleles. CONCLUSIONS: In addition to confirmation of the diagnosis in typical STGD1, ABCA4 microarray screening is usually requested in daily clinical practice to strengthen the diagnosis when the disease is atypical. This study supports the view that the efficiency and accuracy of ABCA4 microarray screening are directly dependent upon the clinical features of the patients who are screened.
Comments [show]
None has been submitted yet.
No. Sentence Comment
143 DISCOVERED MUTATIONS IN THE ABCA4 GENE IN THE PATIENTS INCLUDED IN THIS STUDY Nucleotide change Effect Alleles References Mutations already included in the ABCA4 microarray c.286A>G p.Asn96Asp 2 [25] c.656G>C p.Arg219Thr 1 [10] c.740A>T p.Asn247Ile 1 This study* c.768G>T splice site 7 [13] c.899C>A p.Thr300Asn 1 [14] c.1805G>A p.Arg602Gln 1 [9] c.1822T>A p.Phe608Ile 2 [13] c.1853G>A p.Gly618Glu 1 [19] c.1938-1G>A splice site 1 [26] c.2588G>C p.DelGly863/Gly863Ala 8 [13] c.2919del exons20-22 deletion/frameshift 2 [13] c.3335C>A p.Thr1112Asn 1 [13] c.3874C>T p.Gln1292X 1 This study* c.3899G>A p.Arg1300Gln 1 [27] c.4297G>A p.Val1433Ile 1 [17] c.4462T>C p.Cys1488Arg 1 [17] c.4506C>A p.Cys1502X 1 This study* c.4539+1G>T splice site 1 [28] c.4774+1G>A splice site 1 [1] c.5161-5162delAC p.Thr1721fs 1 [27] c.5337C>A p.Tyr1779X 1 This study* c.5461-10T>C unknown 9 [9] c.5537T>C p.Ile1846Thr 1 [13] c.5693G>A p.Arg1898His 1 [1] c.5715+5G>A splice site 2 [28] c.5882G>A p.Gly1961Glu 10 [1] c.6088C>T p.Arg2030X 1 [14] c.6089G>A p.Arg2030Gln 1 [9] c.6238-6239delTC p.Ser2080fs 1 [29] c.6529G>A p.Asp2177Asn 1 [1] New mutations found with DGGE analysis c.303+4A>C splice site 1 c.872C>T p.Pro291Leu 1 c.2906A>G p.Lys969Arg 1 c.2947A>G p.Thr983Ala 1 c.3233G>A p.Gly1078Glu 1 c.3305A>T p.Asp1102Val 1 c.4353+1G>A splice site 1 c.5113C>T p.Arg1705Trp 1 c.5762_5763dup p.Ala1922fs 1 c.6411T>A p.Cys2137X 1 Total 74 Mutations are designated by their nucleotide change, followed by their effect on the protein and the number of alleles that were found with the mutation.
X
ABCA4 p.Arg2030Gln 20029649:143:1032
status: NEW[hide] Lipofuscin- and melanin-related fundus autofluores... Am J Ophthalmol. 2009 May;147(5):895-902, 902.e1. Epub 2009 Feb 25. Kellner S, Kellner U, Weber BH, Fiebig B, Weinitz S, Ruether K
Lipofuscin- and melanin-related fundus autofluorescence in patients with ABCA4-associated retinal dystrophies.
Am J Ophthalmol. 2009 May;147(5):895-902, 902.e1. Epub 2009 Feb 25., [PMID:19243736]
Abstract [show]
PURPOSE: To compare melanin-related near-infrared fundus autofluorescence (NIA; excitation 787 nm, emission > 800 nm) to lipofuscin-related fundus autofluorescence (FAF; excitation 488 nm, emission > 500 nm) in patients with retinal dystrophies associated with ABCA4 gene mutations (ABCA4-RD). DESIGN: Observational case series. METHODS: Sixteen consecutive patients with ABCA4-RD diagnosed in one institution were included. FAF and NIA imaging were performed with a confocal scanning laser ophthalmoscope (Heidelberg Retina Angiograph 2; Heidelberg Engineering, Heidelberg, Germany). The pattern and size of retinal pigment epithelial (RPE) alterations detected with FAF and NIA were evaluated. RESULTS: FAF and NIA alterations were detected in all patients. In 7 of 16 patients, the alterations progressed beyond the vascular arcades, and in 9 of 16, they were confined to the macula. Spots of increased NIA (4/16) were less frequent compared with spots of increased FAF (15/16). Confluent patches of reduced NIA were frequent (12/16), and severely reduced NIA was observed in 3 cases. Areas with reduced NIA corresponded to either increased or reduced FAF. Preservation of subfoveal FAF or NIA corresponded to visual acuity > or = 0.4. Abnormalities detected with NIA were more extensive or more severe compared to FAF in 15 of 16 patients. CONCLUSION: Patterns of FAF and NIA indicate different involvement of lipofuscin and melanin and their derivates in the pathophysiologic process of ABCA4-RD. NIA imaging provides a noninvasive in vivo visualization of RPE abnormalities that may precede FAF alterations during the degenerative process. Combined FAF and NIA imaging will provide further insight in the development of ABCA4-RD and could help to monitor future therapeutic interventions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
32 Age Gender ABCA4 Mutation VA RE/LE Full-field ERG Multifocal ERG Group 1a CRD 2808 34 F c.5413AϾG (p.Asn1805Asp) c.4880_4903dup24 (p.Leu1627_Ala1634dup) 0.05 0.05 DA and LA markedly reduced No recordable potentials CRD 2830 53 F c.2690CϾT (p.Thr897Ile), c.6176GϾC (p.Gly2059Ala) 0.5 0.7 DA and LA moderately reduced Pericentral amplitude reduction CRD 2797 54 M c.4297GϾA (p.Val1433Ile) 2. mutation not foundc 0.1 0.16 DA and LA moderately reduced Not done SD 2872 44 F c.4462TϾC (p.Cys1488Arg) 2. mutation not done 0.6 0.7 DA and LA borderline Central amplitude reduction CRD 2861 72 F c.122GϾA (p.Trp41Ter) 2. mutation not done 0.4 0.5 DA: mildly and LA: moderately reduced Central amplitude reduction CRD 2644 67 F c.634CϾT (p.Arg212Cys), c.656GϾC (p.Arg219Thr), c.2588GϾC (p.Gly863Ala/ delGly863) 0.6 0.04 DA and LA moderately reduced Central amplitude reduction CRD 2936 44 F c.1622TϾC (p.Leu541Pro)/ c.3113CϾT (p.Ala1038Val), 2. mutation not done 1.0 1.0 DA: mildly and LA: moderately reduced Pericentral amplitude reduction Group 2b SD 2837 42 M c.1622TϾC (p.Leu541Pro)/ c.3113CϾT (p.Ala1038Val), c.5882GϾA (p.Gly1961Glu) 0.16 0.16 Normal Central amplitude reduction SD 2780 37 M c.768GϾT (splice mutation) c.5882GϾA (p.Gly1961Glu) 0.1 0.1 Normal Central amplitude reduction SD 2942 47 F c.1622TϾC (p.Leu541Pro) c.6320 GϾA (p.Arg2107His) 0.1 0.16 Not done Central amplitude reduction SD 2930 40 F c.6089GϾA (p.Arg2030Gln) c.6543del36bp, (p.Leu2182_Phe2193del) 0.1 0.1 DA and LA mildly reduced Central amplitude reduction SD 2933 43 F c.1609CϾT (p.Arg537Cys) c.5882GϾA (p.Gly1961Glu) c.1654GϾA (p.Val552Ile) 0.05 0.1 Normal Not done SD 2669 13 F c.768GϾT (splice mutation) c.6449GϾA (p.Cys2150Tyr) 0.1 0.16 DA and LA borderline Central amplitude reduction SD 2700 22 F c.1609CϾT (p.Arg537Cys) c.2588GϾC (p.Gly863Ala) 0.1 0.1 Normal Central amplitude reduction SD 2833 29 M c.1928TϾG (p.Val643Gly) 2. mutation not foundc 0.1 0.1 Normal Not done SD 2799 13 M c.3113CϾT (p.Ala1038Val) c.5461-10TϾC 0.4 0.4 Not done Central amplitude reduction CRD ϭ cone-rod dystrophy; DA ϭ dark adaptation; ERG ϭ electroretinography; F ϭ female; LA ϭ light adaptation; LE ϭ left eye; M ϭ male; RE ϭ right eye; SD ϭ Stargardt disease; VA ϭ visual acuity.
X
ABCA4 p.Arg2030Gln 19243736:32:1531
status: NEWX
ABCA4 p.Arg2030Gln 19243736:32:1645
status: NEW[hide] ABCA4 disease progression and a proposed strategy ... Hum Mol Genet. 2009 Mar 1;18(5):931-41. Epub 2008 Dec 12. Cideciyan AV, Swider M, Aleman TS, Tsybovsky Y, Schwartz SB, Windsor EA, Roman AJ, Sumaroka A, Steinberg JD, Jacobson SG, Stone EM, Palczewski K
ABCA4 disease progression and a proposed strategy for gene therapy.
Hum Mol Genet. 2009 Mar 1;18(5):931-41. Epub 2008 Dec 12., [PMID:19074458]
Abstract [show]
Autosomal recessive retinal diseases caused by mutations in the ABCA4 gene are being considered for gene replacement therapy. All individuals with ABCA4-disease show macular degeneration, but only some are thought to progress to retina-wide blindness. It is currently not predictable if or when specific ABCA4 genotypes will show extramacular disease, and how fast it will progress thereafter. Early clinical trials of focal subretinal gene therapy will aim to arrest disease progression in the extramacular retina. In 66 individuals with known disease-causing ABCA4 alleles, we defined retina-wide disease expression by measuring rod- and cone-photoreceptor-mediated vision. Serial measurements over a mean period of 8.7 years were consistent with a model wherein a normal plateau phase of variable length was followed by initiation of retina-wide disease that progressed exponentially. Once initiated, the mean rate of disease progression was 1.1 log/decade for rods and 0.45 log/decade for cones. Spatio-temporal progression of disease could be described as the sum of two components, one with a central-to-peripheral gradient and the other with a uniform retina-wide pattern. Estimates of the age of disease initiation were used as a severity metric and contributions made by each ABCA4 allele were predicted. One-third of the non-truncating alleles were found to cause more severe disease than premature truncations supporting the existence of a pathogenic component beyond simple loss of function. Genotype-based inclusion/exclusion criteria and prediction of the age of retina-wide disease initiation will be invaluable for selecting appropriate candidates for clinical trials in ABCA4 disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
51 P54 (T1526M/R2030Q) progressed from a mildly abnormal loss of 7.6 dB at age 47 to a greater loss of 14.4 dB at age 54.
X
ABCA4 p.Arg2030Gln 19074458:51:12
status: NEW151 Estimated severity of ABCA4 alleles and their properties ABCA4 allele Delay of retina-wide disease initiation (years)a In vitro or in vivo studiesb Molecular structural localizationc C2150Y 225.8 NBD-2 A1038V;L541P 214.0 35, 38 ECD-1/NBD-1 IVS38-10 T.C 211.1 L244P 25.7 ECD-1 E1122K 23.5 NBD-1 C54Y 22.1 35 ECD-1 IVS35þ2 T.C 22.1 R602W 21.8 38 ECD-1 V1896D 21.8 TM12 L1940P 21.4 NBD-2 Truncation mutationsd 0.0 E1087D 2.8 NBD-1 R220C 3.9 ECD-1 A1598D 3.9 ECD-2 R1640Q 3.9 ECD-2 R1098C 4.9 NBD-1 P1380L 7.4 35 TM7 N965S 7.6 35 NBD-1 V1433I 8.6 ECD-2 R1108C 10.4 35 NBD-1 T1526M 14.5 35 ECD-2 R2030Q 14.5 NBD-2 L2027F 15.1 35,37 NBD-2 G818E 17.3 35 TM5/TM6 S100P 18.2 ECD-1 L1201R 18.2 NBD-1 R18W 18.5 Nt D600E 18.5 ECD-1 L11P 21.7 Nt D654N 25.3 36 ECD-1 K2172R 27.9 NBD-2 IVS40þ5 G.A 28.1 G1961E 37.9 35 NBD-2 G1961R 44.0 NBD-2 a Delay of retina-wide disease initiation relative to the standard of age 10.6 years.
X
ABCA4 p.Arg2030Gln 19074458:151:595
status: NEW[hide] Peripapillary atrophy in Stargardt disease. Retina. 2009 Feb;29(2):181-6. Hwang JC, Zernant J, Allikmets R, Barile GR, Chang S, Smith RT
Peripapillary atrophy in Stargardt disease.
Retina. 2009 Feb;29(2):181-6., [PMID:18854780]
Abstract [show]
OBJECTIVE: To demonstrate that Stargardt disease (STGD) can present with peripapillary atrophy. METHODS: Retrospective case series. The medical records of 150 consecutive patients (300 eyes) were reviewed retrospectively from a STGD database from January 1999 to May 2007 at Columbia University's Harkness Eye Institute. STGD patients demonstrating peripapillary atrophy were identified. RESULTS: Three of 150 cases of STGD (2.0%) demonstrated peripapillary atrophy. Case 1 revealed peripapillary and central atrophy with heterozygous ABCA4 mutations P1380L and IVS40 + 5G>A. Case 2 demonstrated atrophic fleck lesions involving the peripapillary region and central atrophy with homozygous ABCA4 mutations P1380L and P1380L. Case 3 revealed bilateral central atrophy and pisciform fleck atrophy involving the peripapillary, macular, and peripheral regions with ABCA4 mutations P1380L and R2030Q. Overall, ABCA4 mutation P1380L was noted in 13 cases (8.7%), IVS40 + 5G>A in 6 cases (4.0%), and R2030Q in 1 case (0.7%). The remaining cases shared one common STGD mutation with Case 1, 2, and 3 (P1380L or IVS40 + 5G>A) and demonstrated classic STGD findings of central atrophy and varying presence of peripheral flecks without peripapillary lesions. CONCLUSION: STGD can present with peripapillary atrophy. This relatively uncommon phenotype may arise from specific combinations of STGD ABCA4 mutations rather than single mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
6 Case 2 demonstrated atrophic fleck lesions involving the peripapillary region and central atrophy with homozygous ABCA4 mutations P1380L and P1380L. Case 3 revealed bilateral central atrophy and pisciform fleck atrophy involving the peripapillary, macular, and peripheral regions with ABCA4 mutations P1380L and R2030Q.
X
ABCA4 p.Arg2030Gln 18854780:6:312
status: NEW7 Overall, ABCA4 mutation P1380L was noted in 13 cases (8.7%), IVS40 ϩ 5GϾA in 6 cases (4.0%), and R2030Q in 1 case (0.7%).
X
ABCA4 p.Arg2030Gln 18854780:7:109
status: NEW47 Genotyping was significant for ABCA4 mutations P1380L and R2030Q.
X
ABCA4 p.Arg2030Gln 18854780:47:58
status: NEW65 STGD mutations P1380L and R2030Q.
X
ABCA4 p.Arg2030Gln 18854780:65:26
status: NEW88 Case 2 demonstrated atrophic fleck lesions involving the peripapillary region, central atrophy, and homozygous ABCA4 mutations P1380L and P1380L. Case 3 revealed bilateral central atrophy and pisciform fleck atrophy involving the peripapillary, macular, and peripheral regions with ABCA4 mutations P1380L and R2030Q.
X
ABCA4 p.Arg2030Gln 18854780:88:309
status: NEW92 Overall, ABCA4 mutation P1380L was noted in 13 cases (8.7%), IVS40 ϩ 5GϾA in 6 cases (4.0%), and R2030Q in 1 case (0.7%).
X
ABCA4 p.Arg2030Gln 18854780:92:109
status: NEW93 Cases 4 and 5 share common ABCA4 mutations with cases 1, 2, and 3 (P1380L or IVS40 ϩ 5GϾA), but did not yield findings of peripapillary atrophy. We were unable to find any previous reports in the literature of peripapillary atrophy in STGD, compound heterozygous ABCA4 mutations P1380L and IVS40 ϩ 5GϾA, clinical descriptions of homozygous mutations P1380L and P1380L, or clinical descriptions of compound heterozygous mutations P1380L and R2030Q.
X
ABCA4 p.Arg2030Gln 18854780:93:464
status: NEW102 Summary of Findings Case Number ABCA4 Mutation(s) Confirming Stargardt Disease Peripapillary Atrophy BCVA Age of Onset (yrs) Duration of Disease (yrs)OD OS 1 P1380L IVS40 ϩ 5GϾA Yes 20/400 20/400 29 16 2 P1380L P1380L Yes 20/40 20/150 18 1 3 P1380L R2030Q Yes 20/150 20/150 8 6 4 P1380L S1696N No 20/150 20/70 45 7 5 IVS40 ϩ 5GϾA - No 20/400 20/400 17 28 BCVA, best-corrected visual acuity.
X
ABCA4 p.Arg2030Gln 18854780:102:261
status: NEW[hide] ABCA4 mutations in Portuguese Stargardt patients: ... Mol Vis. 2009;15:584-91. Epub 2009 Mar 25. Maia-Lopes S, Aguirre-Lamban J, Castelo-Branco M, Riveiro-Alvarez R, Ayuso C, Silva ED
ABCA4 mutations in Portuguese Stargardt patients: identification of new mutations and their phenotypic analysis.
Mol Vis. 2009;15:584-91. Epub 2009 Mar 25., [PMID:19365591]
Abstract [show]
PURPOSE: To resolve the spectrum of causative retina-specific ATP-binding cassette transporter gene (ABCA4) gene mutations in Portuguese Stargardt (STGD) patients and compare allele frequencies obtained in this cohort with those of previous population surveys. METHODS: Using a microarray technique (ABCR400 gene chip), we screened all previously reported ABCA4 gene mutations in the genomic DNA of 27 patients from 21 unrelated Stargardt families whose phenotypes had been clinically evaluated using psychophysics and electrophysiological measurements. Furthermore, we performed denaturing high performance liquid chromatography whenever one or both mutant alleles failed to be detected using the ABCR gene chip. RESULTS: A total of 36 mutant alleles (out of the 54 tested) were identified in STGD patients, resulting in a detection rate of 67%. Two mutant alleles were present in 12 out of 21 STGD families (57%), whereas in four out of 21 (19%) of the families, only one mutant allele was found. We report the presence of 22 putative pathogenic alterations, including two sequence changes not found in other populations, c.2T>C (p.Met1Thr) and c.4036_4037delAC (p.Thr1346fs), and two novel disease-associated variants, c.400C>T (p.Gln134X) and c.4720G>T (p.Glu1574X). The great majority of the mutations were missense (72.7%). Seven frameshift variants (19.4%), three nonsense mutations (8.3%), and one splicing sequence change (2.7%) were also found in STGD chromosomes. The most prevalent pathologic variant was the missense mutation p.Leu11Pro. Present in 19% of the families, this mutation represents a quite high prevalence in comparison to other European populations. In addition, 23 polymorphisms were also identified, including four novel intronic sequence variants. CONCLUSIONS: To our knowledge, this study represents the first report of ABCA4 mutations in Portuguese STGD patients and provides further evidence of different mutation frequency across populations. Phenotypic characterization of novel putative mutations was addressed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
62 [Val931Met]+[Ser1642Arg], found in 4.8% of the families, and p.
X
ABCA4 p.Arg2030Gln 19365591:62:12
status: NEW63 [Met1Val]+ [Arg2030Gln], found in 4.8% of the families (for details, see Table 1).
X
ABCA4 p.Arg2030Gln 19365591:63:12
status: NEWX
ABCA4 p.Arg2030Gln 19365591:63:158
status: NEW64 Most of the mutations detected have been reported as STGD-associated variants: p.Met1Val, p.Asn96Asp, p.Arg290Trp, p.Val931Met, p.Gly1961Glu, p.Leu2027Phe, p.Arg2030Gln, p.Asp1048fs, and IVS40+5G>A.
X
ABCA4 p.Arg2030Gln 19365591:64:158
status: NEW69 4139C>T(28) p.Asn96Asp [30]/p.Pro1380Leu [13] 2 4458 Mi 5 8/10 / 6/10 ND / ND ND/ND 4455 S 8 1/10 / 8/10 ND / ND ND/ND 3 4431 Mo 6 1,6/10 / 1,6/10 c.1804C>T(13) / c.IVS+5G>A(40) p.Arg602Trp [30]/SPLICE [11] 4 4626 S 6 FC / FC c.3211_3212insGT(22) / c.3211_3212insGT(22) p.Asp1048fs [5]/p.Asp1048fs [5] 5 4514 S 12 1/10 / 1/10 c.32T>C(1) / c.
X
ABCA4 p.Arg2030Gln 19365591:69:57
status: NEW70 [1A>G(1)]+[6089G>A(44)] p.Leu11Pro [12]/p.(Met1Val [6])+(Arg2030Gln [9]) 6 4525 Mo 14 1/10 / 1/10 ND / c.868C>T(8) ND/p.Arg290Trp [6] 7 4585 Mo 11 0.5/10 / 0.5/10 c.6079C>T(44) / ND p.Leu2027Phe [5]/ND 8 4678 Mo 9 0.5/10 / 1/10 c.3113C>T(21) / c.3602T>G(24) p.Ala1038Val [5]/p.Leu1201Arg [9] 9 4675 Mo 7 0.5/10 / 1/10 c.2T<C(1) / c.2T<C(1) p.Met1Thr/p.Met1Thr 10 4737 Mo 24 1.2/10 / 1.2/10 c.5882G>A(42) / c.3211_3212insGT(22) p.Gly1961Glu [4]/p.Asp1048fs 11 4613 S 9 FC / FC c.
X
ABCA4 p.Arg2030Gln 19365591:70:57
status: NEW[hide] Evidence of widespread retinal dysfunction in pati... Invest Ophthalmol Vis Sci. 2008 Mar;49(3):1191-9. Maia-Lopes S, Silva ED, Silva MF, Reis A, Faria P, Castelo-Branco M
Evidence of widespread retinal dysfunction in patients with stargardt disease and morphologically unaffected carrier relatives.
Invest Ophthalmol Vis Sci. 2008 Mar;49(3):1191-9., [PMID:18326749]
Abstract [show]
PURPOSE: To characterize contrast sensitivity (CS) across the visual field for two achromatic spatial-temporal frequencies in 21 families with Stargardt disease (STGD) and to correlate psychophysical impairment with patterns of change in multifocal electroretinography (mfERG). METHODS: Twenty-seven eyes from patients with STGD, 16 eyes from asymptomatic relatives, and 44 age-matched control eyes were included. Chromatic CS function was assessed by comparing protan, deutan, and tritan (Cambridge Color Test; Cambridge Research Systems Ltd., Rochester, UK) and anomaloscope measures (IF-2; Roland Consult, Wiesbaden, Germany). Achromatic CS measures were obtained with custom-made software in nine locations by using randomly interleaved staircases. The first task-low spatial frequency (LSF)-matched the known frequency-doubling method that is believed to activate the magnocellular pathway preferentially. The second included an intermediate spatial frequency (ISF, 3.5 cyc/deg). mfERGs (RETIscan; Roland Consult) were also obtained. Relatives were screened for ABCA4 mutations by ABCR400 microarray and direct sequencing. RESULTS: Central impairment of achromatic and chromatic CS (along the three isolation axes) was observed in STGD. LSF and ISF tasks revealed significant and widespread dysfunction in patients and their morphologically unaffected relatives, 80% of whom were found to be ABCA4 mutation carriers. Significant reduction of P1 amplitudes was also observed in both groups. CONCLUSIONS: CS function is impaired in patients with STGD at distinct spatial-temporal frequencies, which, in addition to the color vision deficits, suggests dual impairment of the magno- parvocellular pathways. STGD morphologically unaffected carriers may show patterns of psychophysical dysfunction that are mirrored by abnormal mfERG responses.
Comments [show]
None has been submitted yet.
No. Sentence Comment
150 Several other sequence changes that have been significantly correlated to the STGD phenotype (M1V, N96D, R290W, L2027F, R2030Q, V2050L, 3211insGT, and IVS40ϩ5GϾA) were also identified.
X
ABCA4 p.Arg2030Gln 18326749:150:120
status: NEW134 Several other sequence changes that have been significantly correlated to the STGD phenotype (M1V, N96D, R290W, L2027F, R2030Q, V2050L, 3211insGT, and IVS40af9;5Gb0e;A) were also identified.
X
ABCA4 p.Arg2030Gln 18326749:134:120
status: NEW[hide] ABCA4-associated retinal degenerations spare struc... Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4739-46. Cideciyan AV, Swider M, Aleman TS, Sumaroka A, Schwartz SB, Roman MI, Milam AH, Bennett J, Stone EM, Jacobson SG
ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina.
Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4739-46., [PMID:16303974]
Abstract [show]
PURPOSE: To study the parapapillary retinal region in patients with ABCA4-associated retinal degenerations. METHODS: Patients with Stargardt disease or cone-rod dystrophy and disease-causing variants in the ABCA4 gene were included. Fixation location was determined under fundus visualization, and central cone-mediated vision was measured. Intensity and texture abnormalities of autofluorescence (AF) images were quantified. Parapapillary retina of an eye donor with ungenotyped Stargardt disease was examined microscopically. RESULTS: AF images ranged from normal, to spatially homogenous abnormal increase of intensity, to a spatially heterogenous speckled pattern, to variably sized patches of low intensity. A parapapillary ring of normal-appearing AF was visible at all disease stages. Quantitative analysis of the intensity and texture properties of AF images showed the preserved region to be an annulus, at least 0.6 mm wide, surrounding the optic nerve head. A similar region of relatively preserved photoreceptor nuclei was apparent in the donor retina. In patients with foveal fixation, there was better cone sensitivity at a parapapillary locus in the nasal retina than at the same eccentricity in the temporal retina. In patients with eccentric fixation, approximately 30% had a preferred retinal locus in the parapapillary retina. CONCLUSIONS: Human retinal degenerations caused by ABCA4 mutations spare the structure of retina and RPE in a circular parapapillary region that commonly serves as the preferred fixation locus when central vision is lost. The retina between fovea and optic nerve head could serve as a convenient, accessible, and informative region for structural and functional studies to determine natural history or outcome of therapy in ABCA4-associated disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
72 A more advanced disease stage of ABCA4-RD is illustrated by P46, a 48-year-old woman with clinically diagnosed STGD phenotype II and a molecularly diagnosed R2030Q mutation in the ABCA4 gene.
X
ABCA4 p.Arg2030Gln 16303974:72:157
status: NEW[hide] Genotyping microarray (gene chip) for the ABCR (AB... Hum Mutat. 2003 Nov;22(5):395-403. Jaakson K, Zernant J, Kulm M, Hutchinson A, Tonisson N, Glavac D, Ravnik-Glavac M, Hawlina M, Meltzer MR, Caruso RC, Testa F, Maugeri A, Hoyng CB, Gouras P, Simonelli F, Lewis RA, Lupski JR, Cremers FP, Allikmets R
Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.
Hum Mutat. 2003 Nov;22(5):395-403., [PMID:14517951]
Abstract [show]
Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research.
Comments [show]
None has been submitted yet.
No. Sentence Comment
115 Mutations Detected in theTwoTest Populations by the ABCR400 Array,That Had Not Been Found by SSCP Number Nucleotide change Protein e¡ect Number of cases 1 161G4A C54Y 3 2 194G4A G65E 1 3 428C4T P143L 1 4 455G4A R152Q 1 5 514G4A G172S 1 6 635G4A R212H 1 7 656G4C R219T 1 8 768G4Ta Splice/V256V 3 9 1007C4G S336C 2 10 1268A4G H423R 4 11 1411G4A E471K 2 12 1622T4Ca L541P 8 13 1933G4A D645N 1 14 2041C4T R681X 5 15 2090G4A W697X 1 16 2471T4C I824T 1 17 2588G4Ca Splice/G863A 5 18 2828G4A R943Q 1 19 2966T4C V989A 1 20 2971G4C G991R 1 21 4139C4T P1380L 8 22 4195G4A E1399K 1 23 4328G4A R1443H 1 24 4457C4T P1486L 1 25 4462T4Ca C1488R 1 26 4469G4Aa C1490Y 1 27 4918C4Ta R1640W 2 28 IVS40+5G4A Splice 2 29 5537T4C I1846T 2 30 5882G4A G1961E 5 31 6089G4A R2030Q 1 32 6104T4C L2035P 1 33 6449G4A C2150Y 1 Mutation numbering is based on the cDNA sequence (GenBank NM_000350).
X
ABCA4 p.Arg2030Gln 14517951:115:753
status: NEW[hide] An analysis of allelic variation in the ABCA4 gene... Invest Ophthalmol Vis Sci. 2001 May;42(6):1179-89. Webster AR, Heon E, Lotery AJ, Vandenburgh K, Casavant TL, Oh KT, Beck G, Fishman GA, Lam BL, Levin A, Heckenlively JR, Jacobson SG, Weleber RG, Sheffield VC, Stone EM
An analysis of allelic variation in the ABCA4 gene.
Invest Ophthalmol Vis Sci. 2001 May;42(6):1179-89., [PMID:11328725]
Abstract [show]
PURPOSE: To assess the allelic variation of the ATP-binding transporter protein (ABCA4). METHODS: A combination of single-strand conformation polymorphism (SSCP) and automated DNA sequencing was used to systematically screen this gene for sequence variations in 374 unrelated probands with a clinical diagnosis of Stargardt disease, 182 patients with age-related macular degeneration (AMD), and 96 normal subjects. RESULTS: There was no significant difference in the proportion of any single variant or class of variant between the control and AMD groups. In contrast, truncating variants, amino acid substitutions, synonymous codon changes, and intronic variants were significantly enriched in patients with Stargardt disease when compared with their presence in subjects without Stargardt disease (Kruskal-Wallis P < 0.0001 for each variant group). Overall, there were 2480 instances of 213 different variants in the ABCA4 gene, including 589 instances of 97 amino acid substitutions, and 45 instances of 33 truncating variants. CONCLUSIONS: Of the 97 amino acid substitutions, 11 occurred at a frequency that made them unlikely to be high-penetrance recessive disease-causing variants (HPRDCV). After accounting for variants in cis, one or more changes that were compatible with HPRDCV were found on 35% of all Stargardt-associated alleles overall. The nucleotide diversity of the ABCA4 coding region, a collective measure of the number and prevalence of polymorphic sites in a region of DNA, was found to be 1.28, a value that is 9 to 400 times greater than that of two other macular disease genes that were examined in a similar fashion (VMD2 and EFEMP1).
Comments [show]
None has been submitted yet.
No. Sentence Comment
102 Thirty-Three Truncated and 98 Amino Acid-Changing Variants in the ABCA4 Gene Exon Nucleotide Change Effect (A) (B) AMD (n ؍ 182) Control (n ؍ 96) STGD (n ؍ 374) Allele Prevalence 2 106delT FS NS 0 0 1 Ͻ0.01 2 160 ϩ 1g 3 a Splice site NS 0 0 1 Ͻ0.01 3 161G 3 A Cys54Tyr NS 0 0 6 Ͻ0.01 3 179C 3 T Ala60Val NS 0 0 2 Ͻ0.01 3 194G 3 A Gly65Glu NS 0 0 2 Ͻ0.01 3 223T 3 G Cys75Gly NS 0 0 2 Ͻ0.01 3 247delCAAA FS NS 0 0 2 Ͻ0.01 3 298C 3 T Ser100Pro NS 0 0 1 Ͻ0.01 5 454C 3 T Arg152Stop NS 0 0 2 Ͻ0.01 6 574G 3 A Ala192Thr NS 0 0 1 Ͻ0.01 6 618C 3 G Ser206Arg NS 0 0 3 Ͻ0.01 6 634C 3 T Arg212Cys 0.02 Yes 0 0 7 0.01 6 635G 3 A Arg212His NS 2 2 6 0.01 6 658C 3 T Arg220Cys NS 0 0 2 Ͻ0.01 6 661delG FS NS 0 0 1 Ͻ0.01 666delAAAGACGGTGC 6 GC FS NS 0 0 1 Ͻ0.01 6 746A 3 C Asp249Gly NS 0 0 1 Ͻ0.01 8 899C 3 A Thr300Asn NS 0 0 1 Ͻ0.01 8 997C 3 T Arg333Trp NS 0 0 1 Ͻ0.01 9 1140T 3 A Asn380Lys NS 0 0 1 Ͻ0.01 9 1222C 3 T Arg408Stop NS 0 0 1 Ͻ0.01 10 1268A 3 G His423Arg NS 1 0 7 0.01 10 1335C 3 G Ser445Arg NS 0 0 1 Ͻ0.01 10 1344delG FS NS 0 0 1 Ͻ0.01 11 1411G 3 A Glu471Lys NS 0 0 3 Ͻ0.01 11 1513delATCAC FS NS 0 0 1 Ͻ0.01 12 1622T 3 C Leu541Pro 0.001 Yes 0 0 11 0.01 13 1804C 3 T Arg602Trp NS 0 0 3 Ͻ0.01 13 1805G 3 A Arg602Gln NS 0 0 1 Ͻ0.01 13 1819G 3 T Gly607Trp NS 0 0 1 Ͻ0.01 13 1823T 3 A Phe608Ile NS 0 0 1 Ͻ0.01 13 1927G 3 A Val643Met NS 0 0 1 Ͻ0.01 14 1989G 3 T Trp663Stop NS 0 0 1 Ͻ0.01 14 2005delAT FS NS 0 0 3 Ͻ0.01 14 2041C 3 T Arg681Stop NS 0 0 2 Ͻ0.01 14 2147C 3 T Thr716Met NS 0 0 1 Ͻ0.01 15 2291G 3 A Cys764Tyr NS 0 0 1 Ͻ0.01 15 2294G 3 A Ser765Asn NS 0 0 1 Ͻ0.01 15 2300T 3 A Val767Asp NS 0 0 2 Ͻ0.01 16 2385del16bp FS NS 0 0 1 Ͻ0.01 16 2453G 3 A Gly818Glu NS 0 0 1 Ͻ0.01 16 2461T 3 A Trp821Arg NS 0 0 1 Ͻ0.01 16 2546T 3 C Val849Ala NS 0 0 4 Ͻ0.01 16 2552G 3 A Gly851Asp NS 0 0 1 Ͻ0.01 16 2560G 3 A Ala854Thr NS 0 0 1 Ͻ0.01 17 2588G 3 C Gly863Ala 0.0006 No 2 2 28 0.02 17 2617T 3 C Phe873Leu NS 0 0 1 Ͻ0.01 18 2690C 3 T Thr897Ile NS 0 0 1 Ͻ0.01 18 2701A 3 G Thr901Ala NS 0 1 0 Ͻ0.01 18 2703A 3 G Thr901Arg NS 0 0 2 Ͻ0.01 19 2828G 3 A Arg943Gln NS 20 13 37 0.05 19 2883delC FS NS 0 0 1 Ͻ0.01 20 2894A 3 G Asn965Ser NS 0 0 3 Ͻ0.01 19 2912C 3 A Thr971Asn NS 0 0 1 Ͻ0.01 19 2915C 3 A Thr972Asn NS 0 0 1 Ͻ0.01 20 2920T 3 C Ser974Pro NS 0 0 1 Ͻ0.01 20 2966T 3 C Val989Ala NS 0 0 2 Ͻ0.01 20 2977del8bp FS NS 0 0 1 Ͻ0.01 20 3041T 3 G Leu1014Arg NS 0 0 1 Ͻ0.01 21 3055A 3 G Thr1019Ala NS 0 0 1 Ͻ0.01 21 3064G 3 A Glu1022Lys NS 0 0 1 Ͻ0.01 21 3091A 3 G Lys1031Glu NS 0 0 1 Ͻ0.01 21 3113G 3 T Ala1038Val 0.001 Yes 1 0 17 0.01 22 3205insAA FS NS 0 0 1 Ͻ0.01 22 3261G 3 A Glu1087Lys NS 0 0 2 Ͻ0.01 22 3322C 3 T Arg1108Cys 0.04 Yes 0 0 6 Ͻ0.01 22 3323G 3 A Arg1108His NS 0 0 1 Ͻ0.01 23 3364G 3 A Glu1122Lys NS 0 0 1 Ͻ0.01 (continues) Exon Nucleotide Change Effect (A) (B) AMD (n ؍ 182) Control (n ؍ 96) STGD (n ؍ 374) Allele Prevalence 23 3386G 3 T Arg1129Leu NS 0 0 3 Ͻ0.01 24 3531C 3 A Cys1158Stop NS 0 0 1 Ͻ0.01 25 3749T 3 C Leu1250Pro NS 0 0 1 Ͻ0.01 26 3835delGATTCT FS NS 0 0 1 Ͻ0.01 27 3940C 3 A Pro1314Thr NS 0 1 0 Ͻ0.01 28 4139C 3 T Pro1380Leu 0.001 Yes 0 0 10 0.01 28 4222T 3 C Trp1408Arg NS 0 0 2 Ͻ0.01 28 4223G 3 T Trp1408Leu NS 0 0 2 Ͻ0.01 28 4234C 3 T Gln1412stop NS 0 0 1 Ͻ0.01 29 4297G 3 A Val1433Ile NS 1 0 0 Ͻ0.01 29 4319T 3 C Phe1440Ser NS 0 0 1 Ͻ0.01 30 4353 - 1g 3 t Splice site NS 0 0 1 Ͻ0.01 30 4457C 3 T Pro1486Leu NS 0 0 1 Ͻ0.01 30 4462T 3 C Cys1488Arg NS 0 0 3 Ͻ0.01 30 4463G 3 T Cys1488Phe NS 0 0 2 Ͻ0.01 30 4469G 3 A Cys1490Tyr NS 0 0 3 Ͻ0.01 30 4531insC FS NS 0 0 2 Ͻ0.01 32 4538A 3 G Gln1513Arg NS 0 0 1 Ͻ0.01 30 4539 ϩ 1g 3 t Splice site NS 0 0 1 Ͻ0.01 31 4574T 3 C Leu1525Pro NS 0 0 1 Ͻ0.01 33 4733delGTTT FS NS 0 0 1 Ͻ0.01 4859delATAACAinsTCC 35 T FS NS 0 0 1 Ͻ0.01 36 4909G 3 A Ala1637Thr NS 0 0 1 Ͻ0.01 35 4918C 3 T Arg1640Trp NS 0 0 1 Ͻ0.01 35 4919G 3 A Arg1640Gln NS 0 0 1 Ͻ0.01 35 4954T 3 G Tyr1652Asp NS 0 0 1 Ͻ0.01 36 5077G 3 A Val1693Ile NS 0 0 1 Ͻ0.01 36 5186T 3 C Leu1729Pro NS 0 0 2 Ͻ0.01 36 5206T 3 C Ser1736Pro NS 0 0 1 Ͻ0.01 36 5212del11bp FS NS 0 0 1 Ͻ0.01 37 5225delTGGTGGTGGGC FS NS 0 0 1 Ͻ0.01 del LPA 37 5278del9bp 1760 NS 0 0 1 Ͻ0.01 37 5288delG FS NS 0 0 1 Ͻ0.01 38 5395A 3 G Asn1799Asp NS 0 0 1 Ͻ0.01 38 5451T 3 G Asp1817Glu NS 1 0 4 Ͻ0.01 39 5584 ϩ 5g 3 a Splice site 0.02 Yes 0 0 6 Ͻ0.01 40 5603A 3 T Asn1868Ile 0.0006 No 20 7 79 0.08 40 5651T 3 A Val1884GLu NS 0 0 1 Ͻ0.01 40 5657G 3 A Gly1886Glu NS 0 0 1 Ͻ0.01 40 5687T 3 A Val1896Asp NS 0 0 1 Ͻ0.01 40 5693G 3 A Arg1898His NS 0 0 1 Ͻ0.01 40 5714 ϩ 5g 3 a Splice site NS 0 0 1 Ͻ0.01 42 5843CA 3 TG Pro1948Leu NS 11 7 28 0.04 42 5882G 3 A Gly1961Glu Ͻ0.0001 Yes 1 0 43 0.03 43 5908C 3 T Leu1970Phe NS 1 0 1 Ͻ0.01 43 5917delG FS NS 0 0 1 Ͻ0.01 44 6079C 3 T Leu2027Phe 0.01 Yes 0 0 9 0.01 44 6088C 3 T Arg2030Stop NS 0 0 2 Ͻ0.01 44 6089G 3 A Arg2030Gln NS 0 0 1 Ͻ0.01 44 6112A 3 T Arg2038Trp NS 0 0 1 Ͻ0.01 45 6148A 3 C Val2050Leu NS 1 0 0 Ͻ0.01 46 6212A 3 T Tyr2071Phe NS 0 0 1 Ͻ0.01 45 6229C 3 T Arg2077Trp NS 0 0 2 Ͻ0.01 46 6320G 3 A Arg2107His 0.01 Yes 0 0 10 0.01 46 6383A 3 G His2128Arg NS 0 0 1 Ͻ0.01 47 6446G 3 T Arg2149Leu NS 0 0 1 Ͻ0.01 47 6449G 3 A Cys2150Tyr NS 0 0 5 Ͻ0.01 48 6529G 3 A Asp2177Asn NS 2 0 0 Ͻ0.01 48 6686T 3 C Leu2229Pro NS 0 0 1 Ͻ0.01 48 6707delTCACACAG FS NS 0 0 1 Ͻ0.01 48 6729 ϩ 1g 3 a Splice site NS 0 0 1 Ͻ0.01 49 6764G 3 T Ser2255Ile 0.009 No 16 4 54 0.06 49 6788G 3 T Arg2263Leu NS 0 0 1 Ͻ0.01 (A) The probability under the null hypothesis of similar prevalence of each variant in Stargardt (STGD) compared with non-STGD alleles (two-tailed Fisher`s exact test); (B) compatability of the variant existing in a ratio of 100:1 in STGD to control alleles, calculated using the binomial distribution.
X
ABCA4 p.Arg2030Gln 11328725:102:5522
status: NEW103 Thirty-Three Truncated and 98 Amino Acid-Changing Variants in the ABCA4 Gene Exon Nucleotide Change Effect (A) (B) AMD (n d1d; 182) Control (n d1d; 96) STGD (n d1d; 374) Allele Prevalence 2 106delT FS NS 0 0 1 b0d;0.01 2 160 af9; 1g 3 a Splice site NS 0 0 1 b0d;0.01 3 161G 3 A Cys54Tyr NS 0 0 6 b0d;0.01 3 179C 3 T Ala60Val NS 0 0 2 b0d;0.01 3 194G 3 A Gly65Glu NS 0 0 2 b0d;0.01 3 223T 3 G Cys75Gly NS 0 0 2 b0d;0.01 3 247delCAAA FS NS 0 0 2 b0d;0.01 3 298C 3 T Ser100Pro NS 0 0 1 b0d;0.01 5 454C 3 T Arg152Stop NS 0 0 2 b0d;0.01 6 574G 3 A Ala192Thr NS 0 0 1 b0d;0.01 6 618C 3 G Ser206Arg NS 0 0 3 b0d;0.01 6 634C 3 T Arg212Cys 0.02 Yes 0 0 7 0.01 6 635G 3 A Arg212His NS 2 2 6 0.01 6 658C 3 T Arg220Cys NS 0 0 2 b0d;0.01 6 661delG FS NS 0 0 1 b0d;0.01 666delAAAGACGGTGC 6 GC FS NS 0 0 1 b0d;0.01 6 746A 3 C Asp249Gly NS 0 0 1 b0d;0.01 8 899C 3 A Thr300Asn NS 0 0 1 b0d;0.01 8 997C 3 T Arg333Trp NS 0 0 1 b0d;0.01 9 1140T 3 A Asn380Lys NS 0 0 1 b0d;0.01 9 1222C 3 T Arg408Stop NS 0 0 1 b0d;0.01 10 1268A 3 G His423Arg NS 1 0 7 0.01 10 1335C 3 G Ser445Arg NS 0 0 1 b0d;0.01 10 1344delG FS NS 0 0 1 b0d;0.01 11 1411G 3 A Glu471Lys NS 0 0 3 b0d;0.01 11 1513delATCAC FS NS 0 0 1 b0d;0.01 12 1622T 3 C Leu541Pro 0.001 Yes 0 0 11 0.01 13 1804C 3 T Arg602Trp NS 0 0 3 b0d;0.01 13 1805G 3 A Arg602Gln NS 0 0 1 b0d;0.01 13 1819G 3 T Gly607Trp NS 0 0 1 b0d;0.01 13 1823T 3 A Phe608Ile NS 0 0 1 b0d;0.01 13 1927G 3 A Val643Met NS 0 0 1 b0d;0.01 14 1989G 3 T Trp663Stop NS 0 0 1 b0d;0.01 14 2005delAT FS NS 0 0 3 b0d;0.01 14 2041C 3 T Arg681Stop NS 0 0 2 b0d;0.01 14 2147C 3 T Thr716Met NS 0 0 1 b0d;0.01 15 2291G 3 A Cys764Tyr NS 0 0 1 b0d;0.01 15 2294G 3 A Ser765Asn NS 0 0 1 b0d;0.01 15 2300T 3 A Val767Asp NS 0 0 2 b0d;0.01 16 2385del16bp FS NS 0 0 1 b0d;0.01 16 2453G 3 A Gly818Glu NS 0 0 1 b0d;0.01 16 2461T 3 A Trp821Arg NS 0 0 1 b0d;0.01 16 2546T 3 C Val849Ala NS 0 0 4 b0d;0.01 16 2552G 3 A Gly851Asp NS 0 0 1 b0d;0.01 16 2560G 3 A Ala854Thr NS 0 0 1 b0d;0.01 17 2588G 3 C Gly863Ala 0.0006 No 2 2 28 0.02 17 2617T 3 C Phe873Leu NS 0 0 1 b0d;0.01 18 2690C 3 T Thr897Ile NS 0 0 1 b0d;0.01 18 2701A 3 G Thr901Ala NS 0 1 0 b0d;0.01 18 2703A 3 G Thr901Arg NS 0 0 2 b0d;0.01 19 2828G 3 A Arg943Gln NS 20 13 37 0.05 19 2883delC FS NS 0 0 1 b0d;0.01 20 2894A 3 G Asn965Ser NS 0 0 3 b0d;0.01 19 2912C 3 A Thr971Asn NS 0 0 1 b0d;0.01 19 2915C 3 A Thr972Asn NS 0 0 1 b0d;0.01 20 2920T 3 C Ser974Pro NS 0 0 1 b0d;0.01 20 2966T 3 C Val989Ala NS 0 0 2 b0d;0.01 20 2977del8bp FS NS 0 0 1 b0d;0.01 20 3041T 3 G Leu1014Arg NS 0 0 1 b0d;0.01 21 3055A 3 G Thr1019Ala NS 0 0 1 b0d;0.01 21 3064G 3 A Glu1022Lys NS 0 0 1 b0d;0.01 21 3091A 3 G Lys1031Glu NS 0 0 1 b0d;0.01 21 3113G 3 T Ala1038Val 0.001 Yes 1 0 17 0.01 22 3205insAA FS NS 0 0 1 b0d;0.01 22 3261G 3 A Glu1087Lys NS 0 0 2 b0d;0.01 22 3322C 3 T Arg1108Cys 0.04 Yes 0 0 6 b0d;0.01 22 3323G 3 A Arg1108His NS 0 0 1 b0d;0.01 23 3364G 3 A Glu1122Lys NS 0 0 1 b0d;0.01 (continues) Exon Nucleotide Change Effect (A) (B) AMD (n d1d; 182) Control (n d1d; 96) STGD (n d1d; 374) Allele Prevalence 23 3386G 3 T Arg1129Leu NS 0 0 3 b0d;0.01 24 3531C 3 A Cys1158Stop NS 0 0 1 b0d;0.01 25 3749T 3 C Leu1250Pro NS 0 0 1 b0d;0.01 26 3835delGATTCT FS NS 0 0 1 b0d;0.01 27 3940C 3 A Pro1314Thr NS 0 1 0 b0d;0.01 28 4139C 3 T Pro1380Leu 0.001 Yes 0 0 10 0.01 28 4222T 3 C Trp1408Arg NS 0 0 2 b0d;0.01 28 4223G 3 T Trp1408Leu NS 0 0 2 b0d;0.01 28 4234C 3 T Gln1412stop NS 0 0 1 b0d;0.01 29 4297G 3 A Val1433Ile NS 1 0 0 b0d;0.01 29 4319T 3 C Phe1440Ser NS 0 0 1 b0d;0.01 30 4353 afa; 1g 3 t Splice site NS 0 0 1 b0d;0.01 30 4457C 3 T Pro1486Leu NS 0 0 1 b0d;0.01 30 4462T 3 C Cys1488Arg NS 0 0 3 b0d;0.01 30 4463G 3 T Cys1488Phe NS 0 0 2 b0d;0.01 30 4469G 3 A Cys1490Tyr NS 0 0 3 b0d;0.01 30 4531insC FS NS 0 0 2 b0d;0.01 32 4538A 3 G Gln1513Arg NS 0 0 1 b0d;0.01 30 4539 af9; 1g 3 t Splice site NS 0 0 1 b0d;0.01 31 4574T 3 C Leu1525Pro NS 0 0 1 b0d;0.01 33 4733delGTTT FS NS 0 0 1 b0d;0.01 4859delATAACAinsTCC 35 T FS NS 0 0 1 b0d;0.01 36 4909G 3 A Ala1637Thr NS 0 0 1 b0d;0.01 35 4918C 3 T Arg1640Trp NS 0 0 1 b0d;0.01 35 4919G 3 A Arg1640Gln NS 0 0 1 b0d;0.01 35 4954T 3 G Tyr1652Asp NS 0 0 1 b0d;0.01 36 5077G 3 A Val1693Ile NS 0 0 1 b0d;0.01 36 5186T 3 C Leu1729Pro NS 0 0 2 b0d;0.01 36 5206T 3 C Ser1736Pro NS 0 0 1 b0d;0.01 36 5212del11bp FS NS 0 0 1 b0d;0.01 37 5225delTGGTGGTGGGC FS NS 0 0 1 b0d;0.01 del LPA 37 5278del9bp 1760 NS 0 0 1 b0d;0.01 37 5288delG FS NS 0 0 1 b0d;0.01 38 5395A 3 G Asn1799Asp NS 0 0 1 b0d;0.01 38 5451T 3 G Asp1817Glu NS 1 0 4 b0d;0.01 39 5584 af9; 5g 3 a Splice site 0.02 Yes 0 0 6 b0d;0.01 40 5603A 3 T Asn1868Ile 0.0006 No 20 7 79 0.08 40 5651T 3 A Val1884GLu NS 0 0 1 b0d;0.01 40 5657G 3 A Gly1886Glu NS 0 0 1 b0d;0.01 40 5687T 3 A Val1896Asp NS 0 0 1 b0d;0.01 40 5693G 3 A Arg1898His NS 0 0 1 b0d;0.01 40 5714 af9; 5g 3 a Splice site NS 0 0 1 b0d;0.01 42 5843CA 3 TG Pro1948Leu NS 11 7 28 0.04 42 5882G 3 A Gly1961Glu b0d;0.0001 Yes 1 0 43 0.03 43 5908C 3 T Leu1970Phe NS 1 0 1 b0d;0.01 43 5917delG FS NS 0 0 1 b0d;0.01 44 6079C 3 T Leu2027Phe 0.01 Yes 0 0 9 0.01 44 6088C 3 T Arg2030Stop NS 0 0 2 b0d;0.01 44 6089G 3 A Arg2030Gln NS 0 0 1 b0d;0.01 44 6112A 3 T Arg2038Trp NS 0 0 1 b0d;0.01 45 6148A 3 C Val2050Leu NS 1 0 0 b0d;0.01 46 6212A 3 T Tyr2071Phe NS 0 0 1 b0d;0.01 45 6229C 3 T Arg2077Trp NS 0 0 2 b0d;0.01 46 6320G 3 A Arg2107His 0.01 Yes 0 0 10 0.01 46 6383A 3 G His2128Arg NS 0 0 1 b0d;0.01 47 6446G 3 T Arg2149Leu NS 0 0 1 b0d;0.01 47 6449G 3 A Cys2150Tyr NS 0 0 5 b0d;0.01 48 6529G 3 A Asp2177Asn NS 2 0 0 b0d;0.01 48 6686T 3 C Leu2229Pro NS 0 0 1 b0d;0.01 48 6707delTCACACAG FS NS 0 0 1 b0d;0.01 48 6729 af9; 1g 3 a Splice site NS 0 0 1 b0d;0.01 49 6764G 3 T Ser2255Ile 0.009 No 16 4 54 0.06 49 6788G 3 T Arg2263Leu NS 0 0 1 b0d;0.01 (A) The probability under the null hypothesis of similar prevalence of each variant in Stargardt (STGD) compared with non-STGD alleles (two-tailed Fisher`s exact test); (B) compatability of the variant existing in a ratio of 100:1 in STGD to control alleles, calculated using the binomial distribution.
X
ABCA4 p.Arg2030Gln 11328725:103:5432
status: NEW[hide] Late-onset Stargardt disease is associated with mi... Hum Genet. 2001 Apr;108(4):346-55. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR
Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4).
Hum Genet. 2001 Apr;108(4):346-55., [PMID:11379881]
Abstract [show]
Based on recent studies of the photoreceptor-specific ABC transporter gene ABCR (ABCA4) in Stargardt disease (STGD1) and other retinal dystrophies, we and others have developed a model in which the severity of retinal disease correlates inversely with residual ABCR activity. This model predicts that patients with late-onset STGDI may retain partial ABCR activity attributable to mild missense alleles. To test this hypothesis, we used late-onset STGDI patients (onset: > or =35 years) to provide an in vivo functional analysis of various combinations of mutant alleles. We sequenced directly the entire coding region of ABCR and detected mutations in 33/50 (66%) disease chromosomes, but surprisingly, 11/33 (33%) were truncating alleles. Importantly, all 22 missense mutations were located outside the known functional domains of ABCR (ATP-binding or transmembrane), whereas in our general cohort of STGDI subjects, alterations occurred with equal frequency across the entire protein. We suggest that these missense mutations in regions of unknown function are milder alleles and more susceptible to modifier effects. Thus, we have corroborated a prediction from the model of ABCR pathogenicity that (1) one mutant ABCR allele is always missense in late-onset STGD1 patients, and (2) the age-of-onset is correlated with the amount of ABCR activity of this allele. In addition, we report three new pseudodominant families that now comprise eight of 178 outbred STGD1 families and suggest a carrier frequency of STGD1-associated ABCR mutations of about 4.5% (approximately 1/22).
Comments [show]
None has been submitted yet.
No. Sentence Comment
65 Allele 1 nucleotide Amino acid Allele 2 Amino acid Age of change nucleotide change onset (years) AR129-08 37 AR140-01 6079C→T L2027F 3322C→T R1108C 36 AR204-04 35 AR280-03 6316C→T R2106C 6710insA T2237fs 35 AR311-04 4462T→C C1488R 35 AR336-03 2588G→C G863A 5898+1G→A E1966splice 39 AR343-06 2588G→C G863A 3322C→T R1108C 43 AR387-03 4919G→A R1640Q 2971G→C G991R 40 AR410-04 768G→T V256splice 3113C→T A1038V 38 AR440-03 6238-6239del2 bp S2080fs 44 AR448-01a 454C→T R152X 6089G→A R2030Q 52 AR452-04 2005-2006del2 bp M669fs 6089G→A R2030Q 40 AR455-05 [1622T→C;3113C→T] [L541P;A1038V] 43 AR474-02 36 AR516-01a 5196+1G→A I1732splice 3113C→T A1038V 47 AR518-03 3322C→T R1108C 35 AR540-01a 4685T→C I1562T 51 AR594-02a 5196+1G→A I1732splice 36 AR606-04 3322C→T R1108C 2588G→C G863A 39 AR608-02 1025-1038del14 bp D342fs 40 AR617-03 2827C→T R943W 39 AR632-02a 3386G→T R1129L 50 AR649-03 3303G→A W1101X 3113C→T A1038V 36 AR662-02a 1015T→G W339G 50 AR723-01a 3602T→G L1201R 65 Fig.1 Pedigrees of late-onset Stargardt disease families (filled symbols STGD1-affected individuals).
X
ABCA4 p.Arg2030Gln 11379881:65:575
status: NEWX
ABCA4 p.Arg2030Gln 11379881:65:633
status: NEW79 Of note, subject AR448-01 with onset of STGD1 at 52 years was a compound heterozygote for the nonsense allele R152X and missense allele R2030Q.
X
ABCA4 p.Arg2030Gln 11379881:79:136
status: NEW103 In family AR452, three asymptomatic siblings AR452-03, -06, and -09 carry one mutant allele; however, the unaffected individual AR452-05 (age 43 years) has inherited two mutant alleles, 2005-2006del2 bp and R2030Q, identical to his STGD1-affected siblings AR452-04 and AR452-08 (onset at 40 and 29 years).
X
ABCA4 p.Arg2030Gln 11379881:103:207
status: NEW111 To compare this observation directly with our previous report (Lewis et al. 1999), we replaced five mutations (A1038V, L2027F, R2030Q, R2038W, V2050L) to linker regions.
X
ABCA4 p.Arg2030Gln 11379881:111:127
status: NEW[hide] Genotype/Phenotype analysis of a photoreceptor-spe... Am J Hum Genet. 1999 Feb;64(2):422-34. Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, Lupski JR, Leppert M, Dean M
Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease.
Am J Hum Genet. 1999 Feb;64(2):422-34., [PMID:9973280]
Abstract [show]
Mutation scanning and direct DNA sequencing of all 50 exons of ABCR were completed for 150 families segregating recessive Stargardt disease (STGD1). ABCR variations were identified in 173 (57%) disease chromosomes, the majority of which represent missense amino acid substitutions. These ABCR variants were not found in 220 unaffected control individuals (440 chromosomes) but do cosegregate with the disease in these families with STGD1, and many occur in conserved functional domains. Missense amino acid substitutions located in the amino terminal one-third of the protein appear to be associated with earlier onset of the disease and may represent misfolding alleles. The two most common mutant alleles, G1961E and A1038V, each identified in 16 of 173 disease chromosomes, composed 18.5% of mutations identified. G1961E has been associated previously, at a statistically significant level in the heterozygous state, with age-related macular degeneration (AMD). Clinical evaluation of these 150 families with STGD1 revealed a high frequency of AMD in first- and second-degree relatives. These findings support the hypothesis that compound heterozygous ABCR mutations are responsible for STGD1 and that some heterozygous ABCR mutations may enhance susceptibility to AMD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 2 0071GrA R24H 1 19 2894ArG N965S 3 36 5196ϩ1GrA Splice 2 3 0161GrA C54Y 1 21 3113CrT A1038V 16 5196ϩ2TrC Splice 1 0179CrT A60V 1 22 3211insGT FS 1 37 5281del9 PAL1761del 1 0203CrG P68R 1 3212CrT S1071L 1 38 5459GrC R1820P 1 0223TrG C75G 1 3215TrC V1072A 1 39 5512CrT H1838Y 1 6 0634CrT R212C 1 3259GrA E1087K 1 5527CrT R1843W 1 0664del13 FS 1 3322CrT R1108C 6 40 5585-1GrA Splice 1 0746ArG D249G 1 23 3364GrA E1122K 1 5657GrA G1886E 1 8 1007CrG S336C 1 3385GrT R1129C 1 5693GrA R1898H 4 1018TrG Y340D 1 3386GrT R1129L 2 5714ϩ5GrA Splice 8 11 1411GrA E471K 1 24 3602TrG L1201R 1 42 5882GrA G1961E 16 12 1569TrG D523E 1 25 3610GrA D1204N 1 5898ϩ1GrT Splice 3 1622TrC L541P 1 28 4139CrT P1380L 4 43 5908CrT L1970F 1 1715GrA R572Q 2 4216CrT H1406Y 1 5929GrA G1977S 1 1715GrC R572P 1 4222TrC W1408R 4 6005ϩ1GrT Splice 1 13 1804CrT R602W 1 4232insTATG FS 1 44 6079CrT L2027F 11 1822TrA F608I 2 4253ϩ5GrT Splice 1 6088CrT R2030X 1 1917CrA Y639X 1 29 4297GrA V1433I 1 6089GrA R2030Q 1 1933GrA D645N 1 4316GrA G1439D 2 6112CrT R2038W 1 14 2005delAT FS 1 4319TrC F1440S 1 45 6148GrC V2050L 2 2090GrA W697X 1 4346GrA W1449X 1 6166ArT K2056X 1 2160ϩ1GrC Splice 1 30a 4462TrC C1488R 2 6229CrT R2077W 1 16 2453GrA G818E 1 4457CrT P1486L 1 46 6286GrA E2096K 1 2461TrA W821R 1 30b 4469GrA C1490Y 3 6316CrT R2106C 1 2536GrC D846H 1 4539ϩ1GrT Splice 1 47 6391GrA E2131K 1 2552GrC G851D 1 31 4577CrT T1526M 7 6415CrT R2139W 1 17 2588GrC G863A 11 4594GrA D1532N 3 6445CrT R2149X 1 19 2791GrA V931M 2 35 4947delC FS 1 48 6543del36 1181del12 1 2827CrT R943W 1 36 5041del15 VVAIC1681del 2 6709insG FS 1 2884delC FS 1 5087GrA S1696N 1 NOTE.-FS ϭ frameshift.
X
ABCA4 p.Arg2030Gln 9973280:76:1005
status: NEW111 In three instances, identical codons were affected by different base-pair substitutions, yielding different predicted missense amino acid substitutions (R572Q and R572P; R1129C and R1129L) or a missense substitution and a stop codon (R2030Q and R2030X).
X
ABCA4 p.Arg2030Gln 9973280:111:234
status: NEW77 2 0071GrA R24H 1 19 2894ArG N965S 3 36 5196af9;1GrA Splice 2 3 0161GrA C54Y 1 21 3113CrT A1038V 16 5196af9;2TrC Splice 1 0179CrT A60V 1 22 3211insGT FS 1 37 5281del9 PAL1761del 1 0203CrG P68R 1 3212CrT S1071L 1 38 5459GrC R1820P 1 0223TrG C75G 1 3215TrC V1072A 1 39 5512CrT H1838Y 1 6 0634CrT R212C 1 3259GrA E1087K 1 5527CrT R1843W 1 0664del13 FS 1 3322CrT R1108C 6 40 5585afa;1GrA Splice 1 0746ArG D249G 1 23 3364GrA E1122K 1 5657GrA G1886E 1 8 1007CrG S336C 1 3385GrT R1129C 1 5693GrA R1898H 4 1018TrG Y340D 1 3386GrT R1129L 2 5714af9;5GrA Splice 8 11 1411GrA E471K 1 24 3602TrG L1201R 1 42 5882GrA G1961E 16 12 1569TrG D523E 1 25 3610GrA D1204N 1 5898af9;1GrT Splice 3 1622TrC L541P 1 28 4139CrT P1380L 4 43 5908CrT L1970F 1 1715GrA R572Q 2 4216CrT H1406Y 1 5929GrA G1977S 1 1715GrC R572P 1 4222TrC W1408R 4 6005af9;1GrT Splice 1 13 1804CrT R602W 1 4232insTATG FS 1 44 6079CrT L2027F 11 1822TrA F608I 2 4253af9;5GrT Splice 1 6088CrT R2030X 1 1917CrA Y639X 1 29 4297GrA V1433I 1 6089GrA R2030Q 1 1933GrA D645N 1 4316GrA G1439D 2 6112CrT R2038W 1 14 2005delAT FS 1 4319TrC F1440S 1 45 6148GrC V2050L 2 2090GrA W697X 1 4346GrA W1449X 1 6166ArT K2056X 1 2160af9;1GrC Splice 1 30a 4462TrC C1488R 2 6229CrT R2077W 1 16 2453GrA G818E 1 4457CrT P1486L 1 46 6286GrA E2096K 1 2461TrA W821R 1 30b 4469GrA C1490Y 3 6316CrT R2106C 1 2536GrC D846H 1 4539af9;1GrT Splice 1 47 6391GrA E2131K 1 2552GrC G851D 1 31 4577CrT T1526M 7 6415CrT R2139W 1 17 2588GrC G863A 11 4594GrA D1532N 3 6445CrT R2149X 1 19 2791GrA V931M 2 35 4947delC FS 1 48 6543del36 1181del12 1 2827CrT R943W 1 36 5041del15 VVAIC1681del 2 6709insG FS 1 2884delC FS 1 5087GrA S1696N 1 NOTE.-FS afd; frameshift.
X
ABCA4 p.Arg2030Gln 9973280:77:1011
status: NEW112 In three instances, identical codons were affected by different base-pair substitutions, yielding different predicted missense amino acid substitutions (R572Q and R572P; R1129C and R1129L) or a missense substitution and a stop codon (R2030Q and R2030X).
X
ABCA4 p.Arg2030Gln 9973280:112:234
status: NEW[hide] Clinical and molecular genetic study of 12 Italian... Genet Mol Res. 2012 Dec 17;11(4):4342-50. doi: 10.4238/2012.October.9.3. Oldani M, Marchi S, Giani A, Cecchin S, Rigoni E, Persi A, Podavini D, Guerrini A, Nervegna A, Staurenghi G, Bertelli M
Clinical and molecular genetic study of 12 Italian families with autosomal recessive Stargardt disease.
Genet Mol Res. 2012 Dec 17;11(4):4342-50. doi: 10.4238/2012.October.9.3., [PMID:23096905]
Abstract [show]
Stargardt disease was diagnosed in 12 patients from 12 families using complete ophthalmologic examination, fundus photography, fundus autofluorescence, and spectral-domain optical coherence tomography. DNA was extracted for polymerase chain reaction (PCR) and direct DNA sequencing (ABCA4 gene). Genetic counseling and eye examination were offered to 16 additional family members. Various patterns of presentation were observed in patients with clinical diagnoses of Stargardt disease. The genetic study identified 2 mutations in 75% of families (9/12); a second mutation could not be found in the remaining 25% of families (3/12). The most frequent mutation was G1961E, found in 17% of families (2/12). This finding is similar to that of a previous analysis report of an Italian patient series. Four new mutations were also identified: Tyr1858Asp, Leu1195fsX1196, p.Tyr850Cys, and p.Thr959Ala. Our results suggest that PCR and direct DNA sequencing are the most appropriate techniques for the analysis of the ABCA4 gene. However, this method requires supplementation with specific PCR analysis to diagnose large deletions. The study of the families identified healthy carriers and affected subjects in presymptomatic stages and was also useful for evaluating the risk of transmission to progeny. Combined ophthalmologic and genetic evaluation enabled better clinical management of these families.
Comments [show]
None has been submitted yet.
No. Sentence Comment
69 of patients Subject Allele 1 Allele 2 Age of diagnosis (years) Visual acuity Right eye Left eye 1 F1 ID81 Tyr1858Asp Met1Val; Arg2030Gln 22 20/50 20/32 2 F2 ID220 Ile156Val Gly607Arg; Gly1961Glu 30 20/800 20/400 3 F3 ID362 Met1Val Gly1961Glu; Arg2030Gln 60 20/40 20/32 4 F4 ID197 Asp1532Asn Arg2030term 40 20/32 20/32 5 F6 ID363 Tyr362Term Gly863Ala 16 20/200 20/250 6 F7 ID365 Arg1098Cys Cys1488Arg 50 20/32 20/800 7 F8 ID394 Arg18Trp Val767Asp 10 20/800 20/800 8 F9 ID396 IVS40+5G>A IVS13+1G>A 19 20/40 20/50 9 F10 ID366 p.Gln1513Profs*42 - 20 20/200 20/200 10 F12 ID377 Leu1195Argfs*2 - 50 20/32 20/20 11 F13 ID4 Cys2150Tyr - 70 20/400 20/400 12 F17 ID457 p.Tyr850Cys p.Thr959Ala 50 20/20 20/40 F1 = family 1; ID = reference code to a specific patient.
X
ABCA4 p.Arg2030Gln 23096905:69:148
status: NEWX
ABCA4 p.Arg2030Gln 23096905:69:291
status: NEW[hide] Detection rate of pathogenic mutations in ABCA4 us... Arch Ophthalmol. 2012 Nov;130(11):1486-90. doi: 10.1001/archophthalmol.2012.1697. Downes SM, Packham E, Cranston T, Clouston P, Seller A, Nemeth AH
Detection rate of pathogenic mutations in ABCA4 using direct sequencing: clinical and research implications.
Arch Ophthalmol. 2012 Nov;130(11):1486-90. doi: 10.1001/archophthalmol.2012.1697., [PMID:23143460]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
28 In 5 of the 11 patients, the identification of 2 pathogenic mutations confirmed the historical diagnosis and all had chorioretinal atro- Table. Results From Direct Sequencing of the ABCA4 Gene in 50 Patients Subject No. Change 1 Change 2 Phase Segregation Age at Onset, y Phenotype Grade, Macula Flecks/ Cones/Rodsa Additional Variants Conclusion Nucleotide Amino Acid Nucleotide Amino Acid 1 1Ab0e;G M1V 2588Gb0e;C G863A In trans Unaffected parents carriers 30 STGD maf9;/0/0 R2030Q 3 PVs 2 161Gb0e;A C54Y 2588Gb0e;C G863A In trans Affected sibling with same mutations 12 STGD m/0/0 0 2 PVs 3 161Gb0e;A C54Y 5882Gb0e;A G1961E NK NK 18 STGD m/0/0 0 2 PVs 4 634Cb0e;T R212C 4457Cb0e;T P1486L In trans Unaffected parents carriers 17 STGD m/0/0 0 2 PVs 5 2588Gb0e;C G863A 4469Gb0e;A C1490Y NK NK 48 STGD maf9;/0/1 0 2 PVs 6 2971Gb0e;C G991R 4254-2Ab0e;G Splice NK NK 21 STGD m/0/0 0 2 PVs 7 2971Gb0e;C G991R 3602Tb0e;G L1201R NK NK 18 STGD maf9;af9;/NP/NP V643M (likely), G885E (likely), G1441D (unlikely), V2244V (highly likely) b0e;2 PVs 8 3322Cb0e;T R1108C 768Gb0e;T V256V NK NK 13 STGD maf9;af9;/1/1 0 2 PVs 9 3322Cb0e;T R1108C 6079Cb0e;T L2027F NK NK 26 STGD maf9;/0/0 0 2 PVs 10 3386Gb0e;T R1129L 4469Gb0e;A C1490Y In trans Unaffected parents carriers 15 STGD maf9;/0/0 R152Q (unlikely) 2 PVs (continued) ARCH OPHTHALMOL/VOL 130 (NO. 11), NOV 2012 WWW.ARCHOPHTHALMOL.COM 1486 phy on current clinical examination, consistent with progression of the disorder.5 One of the 11 patients with chorioretinal atrophy (subject 40) had a single stop codon, again strongly supporting the original clinical diagnosis. Six of the 11 patients did not have pathogenic mutations in ABCA4.
X
ABCA4 p.Arg2030Gln 23143460:28:486
status: NEW30 In 3 of the 6 patients with a historical diagnosis Table. Results From Direct Sequencing of the ABCA4 Gene in 50 Patients (continued) Subject No. Change 1 Change 2 Phase Segregation Age at Onset, y Phenotype Grade, Macula Flecks/ Cones/Rodsa Additional Variants Conclusion Nucleotide Amino Acid Nucleotide Amino Acid 11 4139Cb0e;T P1380L 5714 af9; 5Gb0e;A Splice NK NK 19 STGD m/0/0 0 2 PVs 12 4457Cb0e;T P1486L 4457Cb0e;T P1486L In trans Unaffected sibling carries 1 mutation 25 STGD maf9;af9;/1/1 0 2 PVs 13 4537dupC Q1513fs 6391Gb0e;A E2131K In trans Unaffected parents carriers 10 STGD maf9;/0/0 R152Q in cis with Q1513fs, E2131K in cis with E471K 2 PVs 14 6079Cb0e;T L2027F 6079Cb0e;T L2027F In trans Unaffected sibling carrier 28 STGD maf9;af9;/0/0 0 2 PVs 15 5018 af9; 2Tb0e;C NA 6316Cb0e;T R2106C In trans Affected sibling with same mutations 17 STGD m/0/1 0 2 PVs 16 3004Cb0e;T R1002Wb 1957Cb0e;T R653C In trans NK 16 STGD m/0/1 0 2 PVs 17 1253Tb0e;C F418S 2588Gb0e;C G863A NK NK 52 STGD maf9;/0/0 0 2 PVs 18 6709Ab0e;C T2237Pb 3064Gb0e;A E1022K In trans 2 Affected siblings with same mutations 6 STGD maf9;af9;/0/0 0 2 PVs 19 5260Tb0e;G Y1754D 4469Gb0e;A C1490Y In trans NK 12 STGD maf9;af9;/0/0 0 2 PVs 20 551Cb0e;T S184Fb 4793Cb0e;A A1598D NK 2 Affected siblings with same mutations 58 STGD m/NP/NP 0 2 PVs 21 550-551TCb0e;CG S184Rb 5882Gb0e;A G1961E In trans Affected sibling with same mutations 25 STGD maf9;af9;/0/0 0 2 PVs 22 5313-3Cb0e;G Spliceb 5882Gb0e;A G1961E In trans Unaffected parents carriers 47 STGD m/0/1 0 2 PVs 23 2588Gb0e;C G863A 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans NA 26 STGD maf9;af9;/3/1 1 In cis with G863A 2 PVs 24 5537Tb0e;C I1846T 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans Unaffected son carries I1846T only 17 STGD maf9;af9;/3/3 0 2 PVs 25 6089Gb0e;A R2030Q 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans Unaffected sibling carries R2030Q 4 STGD m/NP/NP 0 2 PVs 26 6730-1Gb0e;C Spliceb 2588Gb0e;C G863A NK NK 15 STGD NP/NP/NP 0 2 PVs 27 3291Ab0e;T R1097Sb 3056Cb0e;T T1019M In trans NK 9 STGD NP/NP/NP 1 In cis with R1097S 2 PVs 28 498delT L167HisfsX2b Not present NA NA NK 28 STGD m/1/1 0 1 PV 29 2345Gb0e;A W782Xb Not present NA NA Unaffected mother carries mutation 25 STGD m/1/1 0 1 PV 30 2588Gb0e;C G863A 4326Cb0e;A N1442K NK NK 36 STGD maf9;/0/0 0 1 PV af9; N1442K (unlikely) 31 2966Tb0e;C V989A Not present NA NA NK 49 STGD m/1/1 0 1 PV (continued) ARCH OPHTHALMOL/VOL 130 (NO. 11), NOV 2012 WWW.ARCHOPHTHALMOL.COM 1487 (c)2012 American Medical Association. All rights reserved. Downloaded From: http://archopht.jamanetwork.com/ by a Semmelweis University Budapest User on 12/06/2015 lopathy is genetically heterogeneous. A total of 10 novel mutations were identified (Table).
X
ABCA4 p.Arg2030Gln 23143460:30:1985
status: NEWX
ABCA4 p.Arg2030Gln 23143460:30:2090
status: NEW[hide] A longitudinal study of stargardt disease: clinica... Am J Ophthalmol. 2013 Jun;155(6):1075-1088.e13. doi: 10.1016/j.ajo.2013.01.018. Epub 2013 Mar 15. Fujinami K, Lois N, Davidson AE, Mackay DS, Hogg CR, Stone EM, Tsunoda K, Tsubota K, Bunce C, Robson AG, Moore AT, Webster AR, Holder GE, Michaelides M
A longitudinal study of stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations.
Am J Ophthalmol. 2013 Jun;155(6):1075-1088.e13. doi: 10.1016/j.ajo.2013.01.018. Epub 2013 Mar 15., [PMID:23499370]
Abstract [show]
PURPOSE: To investigate the clinical and electrophysiologic natural history of Stargardt disease and correlate with the genotype. DESIGN: Cohort study of 59 patients. METHODS: Clinical history, examination, and electrophysiologic assessment were undertaken in a longitudinal survey. Patients were classified into 3 groups based on electrophysiologic findings, as previously published: Group 1 had dysfunction confined to the macula; Group 2 had macular and generalized cone system dysfunction; and Group 3 had macular and both generalized cone and rod system dysfunction. At baseline, there were 27 patients in Group 1, 17 in Group 2, and 15 in Group 3. Amplitude reduction of >50% in the relevant electroretinogram (ERG) component or a peak time shift of >3 ms for the 30 Hz flicker ERG or bright flash a-wave was considered clinically significant ERG deterioration. Molecular screening of ABCA4 was undertaken. RESULTS: The mean age at baseline was 31.7 years, with the mean follow-up interval being 10.5 years. A total of 22% of patients from Group 1 showed ERG group transition during follow-up, with 11% progressing to Group 2 and 11% to Group 3. Forty-seven percent of patients in Group 2 progressed to Group 3. There was clinically significant ERG deterioration in 54% of all subjects: 22% of Group 1, 65% of Group 2, and 100% of Group 3. At least 1 disease-causing ABCA4 variant was identified in 47 patients. CONCLUSIONS: All patients with initial rod ERG involvement demonstrated clinically significant electrophysiologic deterioration; only 20% of patients with normal full-field ERGs at baseline showed clinically significant progression. Such data assist counseling by providing more accurate prognostic information and are also highly relevant in the design, patient selection, and monitoring of potential therapeutic interventions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
89 Clinical Data and Molecular Genetic Status of 59 Patients With Stargardt Disease Pt Onset (y) Age (y) logMAR VA Variants Identifieda BL FU BL FU 1 16 17 26 0.0/1.0 0.0/0.48 c.768G>T / p.Gly863Ala / p.Arg943Gln 2 15 17 25 0.78/0.78 1.0/1.0 p. Arg1443His 3 11 18 27 0.78/1.0 1.0/1.0 p.Trp439* / p.Gly863Ala / p.Leu1970Phe 4 19 21 32 0.78/0.78 1.0/1.0 p.Leu2027Phe 5 10 22 30 0.48/0.48 1.0/0.78 p.Gly863Ala / p.Arg943Gln / c.5461-10 T>C 6 18 26 37 0.78/1.0 1.0/1.0 p.Pro1380Phe 7 25 28 40 0.78/1.0 1.3/0.78 ND 8 24 29 38 1.0/0.78 1.0/1.0 p.Phe418Ser / p.Leu2027Phe 9 24 31 44 1.0/1.0 1.3/1.0 c.4253&#fe;5 G>T / p.Gly1507Arg 10 26 32 44 0.78/0.78 1.0/1.0 p.Cys1490Tyr / p.Arg2030Gln 11 31 34 46 0.18/0.3 0.6/0.7 ND 12 17 35 47 1.0/1.0 1.0/1.0 p.Asn96His 13 23 35 45 1.0/0.3 1.0/0.48 p.Gly1513Profs*1554 14 33 37 48 0.18/1.48 1.0/1.3 ND 15 38 40 51 0.18/0.78 1.0/1.0 p.Arg2107His 16 42 43 53 0.0/0.0 1.0/1.0 ND 17 22 48 59 1.0/1.0 1.0/1.0 p.Cys54Tyr 18 20 49 59 1.0/0.6 1.0/1.0 p.Pro1380Leu / p.Gly1961Glu 19 35 50 61 1.0/0.3 1.0/1.0 p.Arg1108Cys 20 25 56 67 1.3/0.18 1.0/1.0 p.Trp439* / p.Gly863Ala 21 48 59 71 1.0/0.78 1.0/1.0 p. Ile156 Val / p. Cys1455Arg / p. Phe1839Ser 22 21 22 31 0.3/1.0 1.0/1.0 p.Arg2107His 23 21 23 33 1.0/1.0 1.0/1.0 p.Gly863Ala 24 48 64 73 0.0/1.0 0.18/3.0 p.Tyr1652* 25 17 19 29 0.78/0.3 1.0/1.0 c.5461-10 T>C 26 17 21 33 1.0/0.78 1.0/1.0 ND 27 27 53 66 1.78/1.78 1.3/1.0 p.Ser1071Cysfs*1084 28 5 14 21 0.78/0.78 1.0/1.0 p.Arg408* / p.Val675lle 29 9 15 27 1.08/1.08 1.0/1.0 p.Cys2150Tyr 30 14 24 32 1.0/0.78 1.0/1.0 ND 31 18 28 39 1.0/1.0 1.0/1.0 p.Gly863Ala / p.Arg1108Cys / p.Arg943Gln 32 14 29 37 1.0/1.0 1.0/1.0 p.Arg653Cys / p.Arg2030Gln 33 19 29 40 1.0/1.0 1.0/1.08 ND 34 34 40 49 0.3/0.48 1.0/1.0 p.Gly863Ala / p.Glu1087Lys 35 25 43 54 1.0/1.0 1.0/1.0 p.Cys54Tyr / p.Gly863Ala 36 38 60 69 1.0/1.0 1.3/1.08 p.Val931Met / c.5461-10 T>C 37 10 11 20 1.0/0.78 1.3/1.3 p.Pro1380Leu 38 10 15 23 1.0/1.0 1.3/1.3 p.Ser1071Cysfs*1084 / p.Pro1380Leu 39 24 25 38 1.56/0.3 2.0/2.0 c.5461-10 T>C / c.5714&#fe;5 G>A 40 18 26 36 1.3/1.3 2.0/1.3 ND 41 32 33 45 0.48/0.48 1.0/1.0 ND 42 32 35 46 1.3/0.0 3.0/1.0 p.Cys54Tyr 43 30 35 45 0.48/0.48 2.0/1.3 ND 44 15 41 49 1.3/1.3 2.0/1.3 p.Asn965Ser 45 8 8 20 0.78/0.78 1.0/1.0 p.Thr1019Met 46 10 11 23 1.0/1.0 1.0/1.0 p.Thr1019Met 47 8 12 24 2.0/1.56 1.78/1.48 p.Cys2150Tyr 48 17 18 26 1.0/0.78 1.3/1.0 c.5461-10 T>C / p.Leu2027Phe 49 8 21 33 1.3/1.3 2.0/2.0 p.Asp574Aspfs*582 50 8 27 39 2.0/1.56 1.78/1.48 c.5461-10 T>C 51 24 31 43 1.18/1.18 1.08/1.3 p.Arg1640Trp / p.Leu2027Phe Continued on next page respective electrophysiologic traces appear in Figure 2.
X
ABCA4 p.Arg2030Gln 23499370:89:668
status: NEWX
ABCA4 p.Arg2030Gln 23499370:89:1656
status: NEW[hide] Clinical and molecular analysis of Stargardt disea... Am J Ophthalmol. 2013 Sep;156(3):487-501.e1. doi: 10.1016/j.ajo.2013.05.003. Fujinami K, Sergouniotis PI, Davidson AE, Wright G, Chana RK, Tsunoda K, Tsubota K, Egan CA, Robson AG, Moore AT, Holder GE, Michaelides M, Webster AR
Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function.
Am J Ophthalmol. 2013 Sep;156(3):487-501.e1. doi: 10.1016/j.ajo.2013.05.003., [PMID:23953153]
Abstract [show]
PURPOSE: To describe a cohort of patients with Stargardt disease who show a foveal-sparing phenotype. DESIGN: Retrospective case series. METHODS: The foveal-sparing phenotype was defined as foveal preservation on autofluorescence imaging, despite a retinopathy otherwise consistent with Stargardt disease. Forty such individuals were ascertained and a full ophthalmic examination was undertaken. Following mutation screening of ABCA4, the molecular findings were compared with those of patients with Stargardt disease but no foveal sparing. RESULTS: The median age of onset and age at examination of 40 patients with the foveal-sparing phenotype were 43.5 and 46.5 years. The median logMAR visual acuity was 0.18. Twenty-two patients (22/40, 55%) had patchy parafoveal atrophy and flecks; 8 (20%) had numerous flecks at the posterior pole without atrophy; 7 (17.5%) had mottled retinal pigment epithelial changes; 2 (5%) had multiple atrophic lesions, extending beyond the arcades; and 1 (2.5%) had a bull's-eye appearance. The median central foveal thickness assessed with spectral-domain optical coherence tomographic images was 183.0 mum (n = 33), with outer retinal tubulation observed in 15 (45%). Twenty-two of 33 subjects (67%) had electrophysiological evidence of macular dysfunction without generalized retinal dysfunction. Disease-causing variants were found in 31 patients (31/40, 78%). There was a higher prevalence of the variant p.Arg2030Gln in the cohort with foveal sparing compared to the group with foveal atrophy (6.45% vs 1.07%). CONCLUSIONS: The distinct clinical and molecular characteristics of patients with the foveal-sparing phenotype are described. The presence of 2 distinct phenotypes of Stargardt disease (foveal sparing and foveal atrophy) suggests that there may be more than 1 disease mechanism in ABCA4 retinopathy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
12 There was a higher prevalence of the variant p.Arg2030Gln in the cohort with foveal sparing compared to the group with foveal atrophy (6.45% vs 1.07%).
X
ABCA4 p.Arg2030Gln 23953153:12:47
status: NEW45 Mutation screening of ABCA4 was performed with the arrayed primer extension (APEX) microarray (ABCR400 chip, Asper Ophthalmics, TABLE 1. Summary of Clinical Findings and Molecular Status of 40 Patients With a Foveal-Sparing Phenotypea of Stargardt Disease Patient Onsetb (y) Age (y) LogMAR Visual Acuity Fundus Patternc OCT ERGe Mutation Status CFTd (mm) ORT Group PERG mfERG OD OS OD OS OD OS OD OS 1 45 45 0 0 3 219 223 NA NA NA NA NA [c.1411 G>A, p.Glu471Lys/c.2588 G>C, p. Gly863Ala/c.4594 G>A, p.Asp1532Asn/c.5693 G>A, p.Arg1898His] 2 33 33 0.18 0.48 1 NA NA 3 ND ND NA NA [c.1622 T>C, p.Leu541Pro/c.3113 C>T, p.Ala1038Val/c.6089 G>A, p.Arg2030Gln] 3 53 66 0.18 0.18 1 NA NA 2 A A NA NA [c.768 G>T, Splice site/c. 6320 G>A, p. Arg2107His ] 4 37 54 1.48 0.18 1 32 39 U 3 ND ND 2 2 [c.1760 &#fe;1 G>T, Splice site/c.4594 G>T, p.Asg1532Tyr ] 5 57 57 0.3 0.18 1 NA NA 1 ND ND NA NA [c.
X
ABCA4 p.Arg2030Gln 23953153:45:644
status: NEW46 1805G>A, p. Arg602Gln/c.3898 C>T, p.Arg1300*] 6 65* 65 0.18 0 1 211 187 U 1 N N NA NA [c.5461-10 T>C, Splice site/c. 6089 G>A, p.Arg2030Gln] 7 54* 54 0 0 1 189 198 1 A A NA NA [c.
X
ABCA4 p.Arg2030Gln 23953153:46:129
status: NEW47 6089 G>A, p.Arg2030Gln/c.6118 C>T, p.Arg2040*] 8 39 44 0.1 0.1 4 297 230 U 3 A A NA NA [c.71 G>A, p.Arg24His/c.4577 C>T, p. Thr1526Met] 9 35* 35 0.18 0.18 2 142 154 3 ND ND NA NA [c.658 C>T, p.p.Arg220Cys/c.2588 G>C, p. Gly863Ala] 10 45 54 0.48 0.18 1 102 116 3 ND A NA NA [c.1957 C>T, p.Arg653Cys/c.5693 G>A, p.Arg1898His] 11 43 43 0.1 0 2 170 185 1 A A 2 2 [c.2588 G>C, p. Gly863Ala/c.4139 C>T, p.Ala1038Val] 12 36** 38 0.3 0 1 220 212 U 1 A A 1 1 [c.4139 C>T, p.Ala1038Val/c.4594 G>T, p.Asp1532Asn] 13 62 68 0.1 0.48 1 196 189 U 1 N N 2 2 [c.4222 T>C, p.Trp1408Arg/c.4918 C>T, p.Arg1640Trp] 14 36 44 0.48 0.48 3 79 89 1 A A NA NA [c.4222 T>C, p.Trp1408Arg/c.4918 C>T, p.Arg1640Trp] 15 46* 46 0.1 0.1 3 NA NA 1 A A NA NA [c.4469 G>A, p.Cys1490Tyr/c.
X
ABCA4 p.Arg2030Gln 23953153:47:12
status: NEW48 6089 G>A, p.Arg2030Gln] 16 44* 44 0.18 0 2 NA NA 1 A A NA NA [c.6079 C>T, p.Leu2027Phe/c.6079 C>T, p.Leu2027Phe] 17 48 73 0.18 3 4 135 86 U 2 A ND NA NA [c.4956 T>G, p.Tyr1652*] 18 56 57 0 0 2 254 273 1 ND A NA NA [c.5018&#fe;2 T>C, Splice site] 19 53* 53 0.48 0.18 1 137 133 1 A A NA NA [c.5461-10 T>C, Splice site] 20 49 58 0.18 0 1 256 222 U 1 A N 1 1 [c.5461-10 T>C, Splice site] 21 47** 47 0.3 0.3 1 239 202 U 1 A A 1 1 [c.1805 G>A, p.Arg602Gln] 22 50* 50 0.48 0.18 1 263 261 U 1 N N NA NA [c.1957 C>T, p.Arg653Cys] 23 39* 39 0 0.1 2 225 228 1 N N NA NA [c.2588 G>C, p. Gly863Ala] 24 55 57 0.48 0.48 1 117 74 1 ND ND NA NA [c.3602 T>G, p.Leu1201Arg] 25 50 54 0.48 0.18 1 147 144 U 3 ND ND NA NA [c.3602 T>G, p.Leu1201Arg] 26 43 47 2 0.18 1 70 52 1 ND ND NA NA [c.4319 T>C, p.Phe1440Ser] 27 30 51 0.3 0.3 1 75 79 U 3 A A NA NA [c.4685 T>C, p.Ile1562Thr] 28 29 34 0.18 0.18 3 132 107 1 A A NA NA [c.4926 C>G, p.Ser1642Arg] 29 52* 52 0.18 0.18 3 180 200 1 ND ND 2 2 [c.5882 G>A, p.Gly1961Glu] 30 28 28 0.1 0.1 2 NA NA 1 N ND NA NA [c.6079 C>T, p.Leu2027Phe] 31 40* 40 0.1 0.1 2 222 223 U NA NA NA NA NA [c.6079 C>T, p.Leu2027Phe] 32 45 48 0.18 3 1 237 252 U NA NA NA NA NA NA Continued on next page Tartu, Estonia) in all probands.43 The term ''variants`` used herein includes those sequence changes previously shown to be enriched in patients with Stargardt disease from prior studies.
X
ABCA4 p.Arg2030Gln 23953153:48:12
status: NEW127 2588G>C, p.Gly863Ala 4 Het Allikmets46 Intol. 0.01 PRD 0.996 No change 68/13006 db SNP (rs76157638) 21 c.3113C>T, p.Ala1038Val 1 Het Webster53 Tol. NA Benign 0.014 Donor 43.5 70 New site (&#fe;61.72) 22/13006 db SNP (rs61751374) 24 c.3602T>G, p.Leu1201Arg 2 Het Lewis48 Tol. NA Benign 0.052 Donor 61.3 74 New site (&#fe;20.08) 416/13006 db SNP (rs61750126) 27 c.3898C>T, p.Arg1300* 1 Het Rivera49 NA NA ND 28 c.4139C>T, p.Pro1380Leu 2 Het Lewis48 Intol. 0.01 Benign 0.377 No change 2/13006 db SNP (rs61750130) 28 c.4222 T>C, p.Trp1408Arg 2 Het Lewis48 Tol. NA PRD 0.845 No change ND dbSNP (rs61750135) 29 c.4319T>C, p.Phe1440Ser 1 Het Lewis48 Tol. NA PRD 0.744 No change ND dbSNP (rs61750141) 30 c.4469G>A, p.Cys1490Tyr 1 Het Webster53 Intol. 0.03 PRD 0.994 No change ND dbSNP (rs61751402) 31 c.4577C>T, p.Thr1526Met 1 Het Lewis48 Intol. 0.00 PRD 0.91 No change ND db SNP (rs61750152) 31 c.4594G>T, p.Asp1532Asn 3 Het Lewis48 Tol. NA PRD 0.853 No change ND 33 c.4685T>C, p.Ile1562Thr 1 Het Allikmets46 Tol. NA Benign 0.034 No change 18/13006 db SNP (rs1762111) 35 c.4956T>G, p.Tyr1652* 1 Het Fumagalli52 NA NA Acceptor 43 72 New site (&#fe;67.36) ND 35 c.4918C>T, p.Arg1640Trp 2 Het Rozet47 Intol. 0.00 PRD 1 No change ND dbSNP (rs61751404) 35 c.4926C>G, p.Ser1642Arg 1 Het Birch50 Tol. 0.68 Benign 0.116 No change ND db SNP (rs61753017) Int 35 c.5018&#fe;2T>C, Splice site 1 Het Fumagalli52 NA NA Donor 81.2 54 WT site broken (33.07) ND Int 38 c.5461-10T>C 3 Het Briggs50 NA NA No change 3/13006 db SNP (rs1800728) 40 c.5693G>A, p.Arg1898His 2 Het Allikmets46 NA Benign 0.00 No change 25/13006 db SNP (rs1800552) 42 c.5882G>A, p.Gly1961Glu 1 Het Allikmets46 Tol. 0.18 PRD 1 No change 41/13006 db SNP (rs1800553) 44 c.6079C>T, p.Leu2027Phe 4 Homo Lewis48 Intol. 0.02 PRD 0.999 No change 4/13006 db SNP (rs61751408) 44 c.6089G>A, p.Arg2030Gln 4 Het Lewis48 Tol. NA PRD 0.995 No change 8/13006 db SNP (rs61750641) 44 c.6118C>T, p.Arg2040* 1 Het Rosenberg54 NA NA ND 46 c.6320G>A, p.Arg2107His 1 Het Fishman8 Intol. 0.00 PRD 0.996 No change 91/13006 db SNP (rs62642564) EVS &#bc; Exome Variant Server; HSF &#bc; Human Splicing Finder program; Hum var score &#bc; Human var score; Int &#bc; intron; Intol &#bc; intolerant; Mt CV &#bc; mutant consensus value; NA &#bc; not applicable; ND &#bc; not detected; PRD &#bc; probably damaging; Pred. &#bc; prediction; SIFT &#bc; Sorting Intolerant from Tolerance program; Tol. &#bc; tolerant; Wt CV &#bc; wild-type consensus value.
X
ABCA4 p.Arg2030Gln 23953153:127:1832
status: NEW136 The most common variants identified were p.Gly863Ala, c.5461-10T>C, p.Leu2027Phe, and p.Arg2030Gln, occurring, respectively, in 4, 3, 3, and 4 patients with the foveal-sparing phenotype of Stargardt disease.
X
ABCA4 p.Arg2030Gln 23953153:136:88
status: NEW142 Allele Frequencies of 72 ABCA4 Variants Identified in a Comparison Groupa With the Typical Stargardt Disease (140 Patients Without Evidence of Foveal Sparing on Autofluorescence Imaging) (Continued) Exon Nucleotide Substitution and Amino Acid Change Number of Alleles Allele Frequency Int 33 c.4773&#fe;48C>T 1 0.36% 34 c.4793C>A, p.Ala1598Asp 1 0.36% 35 c.c.4918C>T, p.Arg1640Trp 1 0.36% Int 35 c.5018&#fe;2T>C, Splice site 2 0.71% 36 c.5114G>A, p.Arg1705Gln 2 0.71% 37 c.5222_5233delTGGTGGTGGGC, p.Lys1741Hisfs 1 0.36% 37 c.5281_5289delCTT CCT GCC, p.Pro1761_Leu1763del 2 0.71% Int 38 c.5461-10T>C 23 8.21% Int 39 c.5585-1G>A, Splice site 1 0.36% Int 40 c.5714&#fe;5G>A, Splice site 5 1.79% 42 c.5882G>A, p.Gly1961Glu 17 6.07% 43 c.5908C>T, p.Leu1970Phe 2 0.71% 43 c.5917delG, p.Val1973* 1 0.36% 44 c.6079C>T, p.Leu2027Phe 10 3.57% 44 c.6089G>A, p.Arg2030Gln 3 1.07% 44 c.6118C>T, p.Arg2040* 1 0.36% 45 c.6148G>C, p.Val2050Leu 3 1.43% 46 c.6286G>A, p.Glu2096Lys 1 0.36% 46 c.6320G>A, p.Arg2107His 4 1.43% 47 c.6445C>T, p.Arg2149* 1 0.36% 47 c.6449G>A, p.Cys2150Tyr 3 1.07% 48 c.6658C>T, p.Gln2220* 3 1.07% 48 c.6709_6710insG, p.Thr2237Serfs 1 0.36% Int &#bc; Intron.
X
ABCA4 p.Arg2030Gln 23953153:142:850
status: NEW146 Sequence variant frequencies were compared between the 2 groups of patients and there was a suggestion of a higher frequency of the variant p.Arg2030Gln in the cohort with the foveal-sparing phenotype compared to the group with typical Stargardt disease (Table 4).
X
ABCA4 p.Arg2030Gln 23953153:146:142
status: NEW160 Thirty likely disease-causing variants were identified in 31 patients, including 29 previously reported disease-causing variants and the 1 novel putative disease-causing splice site variant, c.1760&#fe;1G>T.8,20,46-54 Interestingly, there was a suggestion of a higher frequency of the substitution p.Arg2030Gln in the foveal-sparing cohort (incidence ratio: 6.5% for the foveal-sparing phenotype and 1.1% for typical Stargardt), with a possible lower incidence of p.Gly1961Glu in the foveal-sparing cohort (incidence ratio: 1.6% for the foveal-sparing phenotype and 6.1% for typical Stargardt).
X
ABCA4 p.Arg2030Gln 23953153:160:300
status: NEW164 Comparison of the Most Prevalent ABCA4 Variants` Frequency Between the Cohort With the Foveal-Sparing Stargardt Disease and the Group With the Typical Stargardt Disease (Without Evidence of Foveal Sparing) Number of Alleles and Those Frequencies Foveal-Sparing Stargardt Disease (n &#bc; 31, Total 30 Variants in 62 Alleles) Typical Stargardt Disease (n &#bc; 140, Total 72 Variants in 280 Alleles) c.2588G>C, p.Gly863Ala 4 (6.45%) 19 (6.79%) c.4139C>T, p.Pro1380Leu 2 (3.23%) 14 (5.00%) c.6079C>T, p.Leu2027Phe 4 (6.45%) 10 (3.57%) c.6089G>A, p.Arg2030Gln 4 (6.45%) 3 (1.07%) c.5461-10T>C 3 (4.84%) 23 (8.21%) c.5882G>A, p.Gly1961Glu 1 (1.61%) 17 (6.07%) in the foveal-sparing phenotype compared to the typical phenotype; there was also clear concordance in sibships with the foveal-sparing phenotype, although a possible influence of genetic/environmental modifiers cannot be excluded.
X
ABCA4 p.Arg2030Gln 23953153:164:546
status: NEW[hide] ABCA4 gene screening by next-generation sequencing... Invest Ophthalmol Vis Sci. 2013 Oct 11;54(10):6662-74. doi: 10.1167/iovs.13-12570. Fujinami K, Zernant J, Chana RK, Wright GA, Tsunoda K, Ozawa Y, Tsubota K, Webster AR, Moore AT, Allikmets R, Michaelides M
ABCA4 gene screening by next-generation sequencing in a British cohort.
Invest Ophthalmol Vis Sci. 2013 Oct 11;54(10):6662-74. doi: 10.1167/iovs.13-12570., [PMID:23982839]
Abstract [show]
PURPOSE: We applied a recently reported next-generation sequencing (NGS) strategy for screening the ABCA4 gene in a British cohort with ABCA4-associated disease and report novel mutations. METHODS: We identified 79 patients with a clinical diagnosis of ABCA4-associated disease who had a single variant identified by the ABCA4 microarray. Comprehensive phenotypic data were obtained, and the NGS strategy was applied to identify the second allele by means of sequencing the entire coding region and adjacent intronic sequences of the ABCA4 gene. Identified variants were confirmed by Sanger sequencing and assessed for pathogenicity by in silico analysis. RESULTS: Of the 42 variants detected by prescreening with the microarray, in silico analysis suggested that 34, found in 66 subjects, were disease-causing and 8, found in 13 subjects, were benign variants. We detected 42 variants by NGS, of which 39 were classified as disease-causing. Of these 39 variants, 31 were novel, including 16 missense, 7 splice-site-altering, 4 nonsense, 1 in-frame deletion, and 3 frameshift variants. Two or more disease-causing variants were confirmed in 37 (47%) of 79 patients, one disease-causing variant in 36 (46%) subjects, and no disease-causing variant in 6 (7%) individuals. CONCLUSIONS: Application of the NGS platform for ABCA4 screening enabled detection of the second disease-associated allele in approximately half of the patients in a British cohort where one mutation had been detected with the arrayed primer extension (APEX) array. The time- and cost-efficient NGS strategy is useful in screening large cohorts, which will be increasingly valuable with the advent of ABCA4-directed therapies.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 40 c.4926C>G p.S1642R DC c.5041_5055del GTGGTTGCCATCTGC p.V1681_C1685del DC 2 41 c.4956T>G p.Y1652* DC 1 42 c.5018&#fe;2T>C Splice site DC 1 43 c.5461-10T>C DC c.6385A>G p.S2129G PDC 2 44 c.5461-10T>C DC 1 45 c.5461-10T>C DC 1 46 c.5461-10T>C DC 1 47 c.5461-10T>C DC 1 48 c.5461-10T>C DC 1 49 c.5461-10T>C DC 1 50 c.5461-10T>C DC 1 51 c.5585-1G>A Splice site DC 1 52 c.5714&#fe;5G>A Splice site DC c.6209C>G p.T2070R DC 2 53 c.5882G>A p.G1961E DC c.2686A>G p.K896E B 1 54 c.5882G>A p.G1961E DC c.3050&#fe;1G>C Splice site DC 2 55 c.5882G>A p.G1961E DC c.3392delC/3393C>G p.A1131Gfs DC 2 56 c.5882G>A p.G1961E DC c.4539&#fe;2T>G Splice site DC 2 57 c.5882G>A p.G1961E DC c.4552A>C p.S1518R DC 2 58 c.5882G>A p.G1961E DC c.5899-2delA Splice site DC 2 59 c.5882G>A p.G1961E DC 1 60 c.6079C>T p.L2027F DC c.1906C>T p.Q636* DC 2 61 c.6079C>T p.L2027F DC c.3322C>T p.R1108C DC 2 Allele 2 (p.R1108C) was APEX-false-negative 62 c.6079C>T p.L2027F DC c.3370G>T p.D1124Y DC 2 63 c.6079C>T p.L2027F DC 1 64 c.6089G>A p.R2030Q DC c.4326C>A p.N1442K DC 2 65 c.6445C>T p.R2149* DC 1 66 c.6709A>C p.T2237P DC c.5899-3_5899-2delTA Splice site DC 2 67 c.2971G>C p.G991R B c.4538A>G p.Q1513R DC 1 68 c.3602T>G p.L1201R B c.1749G>C p.K583N DC 1 69 c.3602T>G p.L1201R B c.1982_1983insG p.A662fs DC 1 70 c.3602T>G p.L1201R B c.2972G>T p.G991V DC 1 71 c.4685T>C p.I1562T B c.3289A>T p.R1097* DC 1 72 c.6320G>A p.R2107H B c.2510T>C p.L837P DC 1 73 c.6320G>A p.R2107H B c.4352&#fe;1G>A Splice site DC 1 74 c.2701A>G p.T901A B 0 75 c.3602T>G p.L1201R B 0 76 c.4283C>T p.T1428M B 0 77 c.466A>G p.I156V B 0 78 c.466A>G p.I156V B 0 79 c.4715C>T p.T1572M B 0 Putative novel variants are shown in italics.
X
ABCA4 p.Arg2030Gln 23982839:56:1008
status: NEW63 Hum Var Score (0-1) Site Wt CV Mt CV CV % Variation 30 c.4537_4538insC p.G1513fs 1 38 [ Briggs CE, et al. 19 ND False-negative in NGS in patient 38 31 c.4577C>T p.T1526M 1 39 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 0.910 No change ND db SNP (rs61750152) 33 c.4685T>C p.I1562T 1 71 [ [ Yatsenko, et al. 13 Tol. NA PRD 0.783 No change ND Benign 33 c.4715C>T p.T1572M 1 79 [ [ Pang CP and Lamm DS 23 Del. 0.02 B 0.326 No change ND db SNP (rs185093512) Benign 35 c.4926C>G p.S1642R 1 40 [ [ Birch DG, et al. 22 Tol. 0.68 B 0.116 No change ND db SNP (rs61753017) 35 c.4956T>G p.Y1652* 1 41 [ [ Fumagalli A, et al. 16 ND db SNP (rs61750561) IVS35 c.5018&#fe;2T>C Splice site 1 42 [ [ APEX Don. 81.2 54.3 WT site broken (33.07) ND 36 c.5113C>T p.R1705W 1 7 [ Ernest PJ, et al. 26 Del. NA PRD 0.996 Don. 46.5 73.3 No change ND IVS38 c.5461-10T>C 8 43, 44, 45, 46, 47, 48, 49, 50 [ [ Briggs CE, et al. 19 No change 3/13006 db SNP (rs1800728) IVS39 c.5585-1G>A Splice site 1 51 [ [ Shroyer NF, et al. 21 Acc. 86.3 57.4 WT site broken (33.53) ND IVS40 c.5714&#fe;5G>A Splice site 1 52 [ [ Cremers FP, et al. 8 Don. 85.5 73.3 Wild type site broken (14.23) ND 42 c.5882G>A p.G1961E 7 53, 54, 55, 56, 57, 58, 59 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 0.998 No change 41/13006 db SNP (rs1800553) 44 c.6079C>T p.L2027F 4 60, 61, 62, 63 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 1.000 No change 4/13006 db SNP (rs61751408) 44 c.6089G>A p.R2030Q 1 64 [ [ Lewis RA, et al. 11 Del. 0.00 PRD 0.995 No change 8/13006 db SNP (rs61750641) 46 c.6320G>A p.R2107H 2 72, 73 [ [ Fishman GA, et al. 15 Del. 0.04 PRD 0.999 No change 91/13006 db SNP (rs62642564) Benign 47 c.6445C>T p.R2149* 1 65 [ [ Lewis RA, et al. 14 1/13006 db SNP (rs61750654) 48 c.6529G>A p.D2177N 1 19 [ Rivera A, et al. 17 Tol. 0.41 B 0.004 No change 116/13006 db SNP (rs1800555) Benign 48 c.6709A>C p.T2237P 1 66 [ [ APEX Del. NA POD 0.719 No change ND IVS48 c.6729&#fe;4_ &#fe;18del AGTTGGCCCTGGGGC Splice site 1 17 [ Littink KW, et al. 28 NA ND Splice-site alteration (described as splice site) includes the change expected to affect splicing, for example, when the splice donor or splice acceptor site is changed, and the change that might affect splicing, for example, changes close to the splice donor or splice acceptor site, or in the first or last nucleotide of an exon. SIFT (version 4.0.4) results are reported to be tolerant if tolerance index is ߥ0.05 or deleterious if tolerance index is <0.05.
X
ABCA4 p.Arg2030Gln 23982839:63:1417
status: NEW[hide] Inner and outer retinal changes in retinal degener... Invest Ophthalmol Vis Sci. 2014 Mar 20;55(3):1810-22. doi: 10.1167/iovs.13-13768. Huang WC, Cideciyan AV, Roman AJ, Sumaroka A, Sheplock R, Schwartz SB, Stone EM, Jacobson SG
Inner and outer retinal changes in retinal degenerations associated with ABCA4 mutations.
Invest Ophthalmol Vis Sci. 2014 Mar 20;55(3):1810-22. doi: 10.1167/iovs.13-13768., [PMID:24550365]
Abstract [show]
PURPOSE: To investigate in vivo inner and outer retinal microstructure and effects of structural abnormalities on visual function in patients with retinal degeneration caused by ABCA4 mutations (ABCA4-RD). METHODS: Patients with ABCA4-RD (n = 45; age range, 9-71 years) were studied by spectral-domain optical coherence tomography (OCT) scans extending from the fovea to 30 degrees eccentricity along horizontal and vertical meridians. Thicknesses of outer and inner retinal laminae were analyzed. Serial OCT measurements available over a mean period of 4 years (range, 2-8 years) allowed examination of the progression of outer and inner retinal changes. A subset of patients had dark-adapted chromatic static threshold perimetry. RESULTS: There was a spectrum of photoreceptor layer thickness changes from localized central retinal abnormalities to extensive thinning across central and near midperipheral retina. The inner retina also showed changes. There was thickening of the inner nuclear layer (INL) that was mainly associated with regions of photoreceptor loss. Serial data documented only limited change in some patients while others showed an increase in outer nuclear layer (ONL) thinning accompanied by increased INL thickening in some regions imaged. Visual function in regions both with and without INL thickening was describable with a previously defined model based on photoreceptor quantum catch. CONCLUSIONS: Inner retinal laminar abnormalities, as in other human photoreceptor diseases, can be a feature of ABCA4-RD. These changes are likely due to the retinal remodeling that accompanies photoreceptor loss. Rod photoreceptor-mediated visual loss in retinal regionswith inner laminopathy at the stages studied did not exceed the prediction from photoreceptor loss alone.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 Characteristics of the ABCA4-Related Retinal Disease Patients Patient Age at Visits, y Sex Allele 1 Allele 2 Previous Report*ߤ P1 9, 12 M E341G F608I P2 9, 15 M R681X C2150Y P28* P3ߥ 12 M N965S W821R P1ߤ P4 13, 16 M V256V T1526M P21*, P15ߤ P5 14, 20 F W1408R IVS40&#fe;5 G>A P49* P6ߥ 16 F V989A IVS28&#fe;5 G>T P17ߤ P7ߥ 16 M N965S W821R P18ߤ P8 18, 20 F Y362X IVS38-10 T>C P9ߥ 18 F V989A IVS28&#fe;5 G>T P10 18, 22 M G1961E R1129L P3ߤ P11 20 M R1640Q c.5174_5175insG P12ߥ 20 M G1961E G1961E/P68L P13 22, 25 M G863A IVS35&#fe;2 T>C P20ߤ P14 22, 24 F G1961E R152X P12*, P21ߤ P15ߥ 23 M G1961E G1961E/P68L P16 25, 27 M G1961E R152X P11* P17 26, 32 F L1940P R1129L P64* P18 27, 34 F R1925G A1038V/L541P P19 27, 29 M c.4530_4531insC R1705Q P52*, P5ߤ P20 28, 30 F G1961E A1038V/L541P P23ߤ P21 31, 35 M T1019M G1961E P34* P22ߥ 32, 37 M P1486L Deletion of exon 7 P25ߤ P23 33, 35 M G863A R1108C P29*, P6ߤ P24 34, 37 F IVS40&#fe;5 G>A V935A P32*, P7ߤ P25 34 M G1961E &#a7; P8ߤ P26 37, 43 F C54Y G863A P4* P27 39, 44 F G863A C1490Y P30*, P26ߤ P28 40 M G1961E C54Y P7*, P10ߤ P29 41 F IVS38-10 T>C E1087D P59* P30ߥ 43, 47 F G1961E V256V P23*, P11ߤ P31ߥ 47, 51 F P1486L Deletion of exon 7 P32 47 M Y245X Y245X P20* P33ߥ 48, 51 F G1961E V256V P22*, P12ߤ P34 48, 50 F c.3208_3209insTG IVS40&#fe;5 G>A P35 50, 54 M V1433I L2027F P50* P36ߥ 52, 55 F T1526M R2030Q P55*, P28ߤ P37 53, 59 F G1961E P1380L P47*, P13ߤ P38ߥ 53, 61 M L1940P IVS40&#fe;5 G>A P61* P39 58 M D600E R18W P2*, P14ߤ P40 59, 62 M E1122K G1961E P44* P41 59, 62 F R1640Q G1961E P58* P42ߥ 62 F T1526M R2030Q P54* P43ߥ 64, 68 M L1940P IVS40&#fe;5 G>A P62* P44 68 F R1108C IVS40&#fe;5 G>A P42* P45 71 F IVS38-10 T>C &#a7; Novel variants are bold and italicized.
X
ABCA4 p.Arg2030Gln 24550365:74:1511
status: NEWX
ABCA4 p.Arg2030Gln 24550365:74:1750
status: NEW[hide] Quantitative fundus autofluorescence in recessive ... Invest Ophthalmol Vis Sci. 2014 May 1;55(5):2841-52. doi: 10.1167/iovs.13-13624. Burke TR, Duncker T, Woods RL, Greenberg JP, Zernant J, Tsang SH, Smith RT, Allikmets R, Sparrow JR, Delori FC
Quantitative fundus autofluorescence in recessive Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 May 1;55(5):2841-52. doi: 10.1167/iovs.13-13624., [PMID:24677105]
Abstract [show]
PURPOSE: To quantify fundus autofluorescence (qAF) in patients with recessive Stargardt disease (STGD1). METHODS: A total of 42 STGD1 patients (ages: 7-52 years) with at least one confirmed disease-associated ABCA4 mutation were studied. Fundus AF images (488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Texture factor (TF) was calculated to characterize inhomogeneities in the AF image and patients were assigned to the phenotypes of Fishman I through III. RESULTS: Quantified fundus autofluorescence in 36 of 42 patients and TF in 27 of 42 patients were above normal limits for age. Young patients exhibited the relatively highest qAF, with levels up to 8-fold higher than healthy eyes. Quantified fundus autofluorescence and TF were higher in Fishman II and III than Fishman I, who had higher qAF and TF than healthy eyes. Patients carrying the G1916E mutation had lower qAF and TF than most other patients, even in the presence of a second allele associated with severe disease. CONCLUSIONS: Quantified fundus autofluorescence is an indirect approach to measuring RPE lipofuscin in vivo. We report that ABCA4 mutations cause significantly elevated qAF, consistent with previous reports indicating that increased RPE lipofuscin is a hallmark of STGD1. Even when qualitative differences in fundus AF images are not evident, qAF can elucidate phenotypic variation. Quantified fundus autofluorescence will serve to establish genotype-phenotype correlations and as an outcome measure in clinical trials.
Comments [show]
None has been submitted yet.
No. Sentence Comment
48 Four other mutations were found in two to four patients: R1640W (four patients from three families); Y1557C (two patients from one family); G851D (two patients from one family); and R2030Q (two patients from two families).
X
ABCA4 p.Arg2030Gln 24677105:48:182
status: NEW82 [L541P; A1038V]; p.R1640W 850 4.4 12 F 27 9 1.30 1.00 - III p.P1380L; p.P1380L 577 4.8 13 F 39 8 0.12 0.00 - I c.250_251insCAAA 616 2.3 14 M 23 4 0.88 0.60 - II p.C54Y 535 5.1 15.1 M 49 17 1.00 0.88 I I p.Y1557C 646 604 4.1 3.9 15.2 M 46 7 0.10 0.48 I I p.Y1557C 456 508 2.6 2.3 16.1 F 27 14 0.88 0.88 III III p.L2027F; p.G851D 448 459 6.0 6.3 16.2 F 29 19 1.30 1.18 III III p.L2027F; p.G851D 538 569 7.4 7.9 17 M 22 18 1.30 1.00 III III p.P1380L; p.R2030Q 434 411 5.7 6.0 18 M 37 16 0.70 0.70 I I p.G1961E; p.G1961E 281 279 2.6 2.2 19 F 33 5 0.88 0.70 I I p.G1961E; c.4540-2A > G 412 420 2.5 2.8 20 F 26 12 0.60 0.60 - I p.G1961E; p.
X
ABCA4 p.Arg2030Gln 24677105:82:451
status: NEW84 [A854T; A1038V]; p.C2150Y 512 2.3 26 F 52 1 0.70 0.48 I - p.R212C 722 2.0 27 F 52 13 1.00 1.00 - I p.A1038V; p.A848D 459 4.1 28 M 20 5 0.30 0.40 I - p.L2027F; p.R1108H 507 2.3 29 M 23 7 1.00 1.00 I I p.G1961E; p.R2030Q 334 347 2.4 2.0 30 M 44 26 0.70 0.70 - II p.P1380L; p.R1108H 453 4.7 31 F 30 22 1.00 1.30 - I p.G1961E; c.6005&#fe;1G > T 428 2.3 32 M 12 8 0.40 0.40 I - p.W821R; p.C2150Y 306 2.0 33 F 20 9 0.88 0.88 III III p.R602W; p.M1882I 650 655 2.6 2.5 34 F 47 4 0.40 0.40 I - p.G1961E; p.R1129C 400 2.5 35 F 19 3 0.70 0.48 II II p.
X
ABCA4 p.Arg2030Gln 24677105:84:212
status: NEW180 The mutations were confirmed in six or more patients (G1961E, L541P/A1038V, L2027F, and P1380L) or in two to four patients (R1640W, Y1557C, G851D, and R2030Q).
X
ABCA4 p.Arg2030Gln 24677105:180:151
status: NEW234 The L2027F mutation causes an amino acid change in NBD-2 and confers reduced ATP binding.11,48 P1380L is also a severe mutation and is suggested to cause either impaired ATP binding11 or altered transport of ABCA4 protein across the outer segment membrane.46 When P1380L is carried in compound heterozygosity with R2077W, autosomal recessive cone-rod dystrophy results.49 When harbored as a homozygous mutation or as a compound heterozygous mutation with R2030Q or IVS40 &#fe; 5G>A, the mutation is associated with central atrophy and peripapillary disease, the latter being an uncommon phenotype.50 The missense mutation G1961E in exon 42 of the ABCA4 gene is the most common ABCA4 mutation.51 This sequence change results in a glycine to glutamate substitution within the NBD-2 of the protein.11,45 The G1961E allele always cosegregates with the disease in families.45,52 Nevertheless, the G1961E mutation in ABCA4 is perplexing since in an in vitro assay this mutation conferred a markedly aberrant decrease in all-trans-retinal stimulated ABCA4 ATPase activity,11 yet it is considered to be associated with mild disease.
X
ABCA4 p.Arg2030Gln 24677105:234:455
status: NEW[hide] Generalized choriocapillaris dystrophy, a distinct... Invest Ophthalmol Vis Sci. 2014 Apr 29;55(4):2766-76. doi: 10.1167/iovs.13-13391. Bertelsen M, Zernant J, Larsen M, Duno M, Allikmets R, Rosenberg T
Generalized choriocapillaris dystrophy, a distinct phenotype in the spectrum of ABCA4-associated retinopathies.
Invest Ophthalmol Vis Sci. 2014 Apr 29;55(4):2766-76. doi: 10.1167/iovs.13-13391., [PMID:24713488]
Abstract [show]
PURPOSE: We describe a particular form of autosomal recessive generalized choriocapillaris dystrophy phenotype associated with ABCA4 mutations. METHODS: A cohort of 30 patients with identified ABCA4 mutations and a distinct phenotype was studied. A retrospective review of history, fundus photographs, electroretinography, visual field testing, dark adaptometry, and optical coherence tomography was performed. Genetic analyses were performed by ABCA4 microarray analysis, high resolution melting, and/or next generation sequencing of all protein-coding sequences of the ABCA4 gene. RESULTS: The earliest recorded manifestation of ABCA4-associated disease was a central bull's eye type of macular dystrophy that progressed to chorioretinal atrophy of the macula with coarse rounded hyperpigmentations and expanding involvement of the periphery. The mean age at first presentation was 10.3 years, the longest follow-up was 61 years. All patients had two ABCA4 mutations identified, confirming the molecular genetic diagnosis of an ABCA4-associated disease. Most patients harbored at least one mutation classified as "severe," the most common of which was the p.N965S variant that had been found previously at a high frequency among patients with ABCA4-associated retinal dystrophies in Denmark. CONCLUSIONS: Generalized choriocapillaris dystrophy is a progressive ABCA4-associated phenotype characterized by early-onset macular dystrophy that disperses and expands to widespread end-stage chorioretinal atrophy with profound visual loss. All cases in this study were confirmed as harboring two ABCA4 mutations. Most of the ABCA4 mutations were classified as "severe" explaining the early onset, panretinal degeneration, and fast progression of the disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
123 Summary of Detected Potential Pathogenic Variants (Known and Novel [in Bold Face]) Found in the ABCA4 Gene of Patients With Generalized Choriocapillaris Dystrophy Patient Method Mutation 1 Mutation 2 Nucleotide Protein Nucleotide Protein D513 NGS c.203C>T p.P68L c.2894A>G p.N965S D514 Microarray, NGS c.2894A>G p.N965S c.5461-10T>C - D516 NGS c.4926C>G p.S1642R c.5041_5055del p.V1681_C1685del D517 NGS c.5169C>G p.Y1723* c.6079C>T p.L2027F D137 Microarray, NGS c.2894A>G p.N965S c.2894A>G p.N965S D801 Microarray, NGS c.6386&#fe;1G>A Aberrant splicing c.4234C>T p.Q1412* D109 Microarray c.2894A>G p.N965S c.4234C>T p.Q1412* D040 Microarray c.6229C>T p.R2077W c.6229C>T p.R2077W D159 Microarray c.3113C>T p.L541P/A1038V c.3113C>T p.L541P/A1038V D129 Microarray c.2894A>G p.N965S c.3322C>T p.R1108C D115 Microarray c.2894A>G p.N965S c.3113C>T p.L541P/A1038V D033 Microarray c.2894A>G p.N965S c.2041C>T p.R681* D023 Microarray c.203C>T p.P68L c.3329-2A>G Aberrant splicing D001 Microarray c.666_678del p.K223_R226delfs c.4667&#fe;2T>C Aberrant splicing D147 Microarray, HRM c.2894A>G p.N965S c.2408delG p.G803fs D162 Microarray c.3329-2A>G Aberrant splicing c.6089G>A p.R2030Q D022 Microarray, HRM c.4462T>C p.C1488R c.4102C>T p.R1368C D112 Microarray, HRM c.2894A>G p.N965S c.1529T>G p.L510R D108 Microarray, HRM c.1648G>A p.G550R c.4102C>T p.R1368C D107 Microarray c.666_678del p.K223_R226delfs c.2588G>C p.G863A D070 Microarray c.2588G>C p.G863A c.2588G>C p.G863A D116 Microarray c.2300T>A p.V767D c.5461-10T>C - D135 Microarray, HRM c.2894A>G p.N965S c.2408delG p.G803fs D117 Microarray, HRM c.3191-2A>G Aberrant splicing c.2408delG p.G803fs D186 Microarray, HRM c.3322C>T p.R1108C c.6386&#fe;1G>A Aberrant splicing D173 Microarray, HRM c.4469G>A p.C1490Y c.2915C>A p.T972N TABLE 3.
X
ABCA4 p.Arg2030Gln 24713488:123:1169
status: NEW124 In Silico Analysis of ABCA4 Variants Detected in This Study Using Alamut 2.2 Software cDNA Variant Protein Variant Effect on Protein Function AGVGD Class SIFT Prediction Effect on Protein PPH2 Prediction Effect on Protein TASTER Prediction Effect on Splicing Missense variants c.203C>T p.P68L C65 Deleterious Probably damaging Disease causing c.1529T>G p.L510R C65 Deleterious Benign Polymorphism c.1622T>C p.L541P Reduced ATP binding mislocali- zation26,27 C65 Deleterious Probably damaging Disease causing c.1648G>A p.G550R C65 Deleterious Possibly damaging Disease causing New acceptor site c.2300T>A p.V767D Reduced protein28 C65 Deleterious Benign Disease causing c.2588G>C p.G863A Reduced protein level, reduced ATP binding, reduced ATPase activity26 C55 Deleterious Possibly damaging Disease causing Predicted change at acceptor site 1 bp upstream: 11.1%, creating a new stronger acceptor 3 bp downstream c.2894A>G p.N965S Reduced ATP binding26 C45 Deleterious Probably damaging Disease causing New acceptor site c.2915C>A p.T972N C55 Deleterious Probably damaging Disease causing c.3113C>T p.A1038V Reduced ATP binding, reduced ATP hydrolysis26 C65 Deleterious Benign Disease causing c.3322C>T p.R1108C Reduced ATP binding26 C65 Deleterious Probably damaging Disease causing c.4102C>T p.R1368C C65 Deleterious Probably damaging Disease causing c.4462T>C p.C1488R C65 Deleterious Possibly damaging Disease causing c.4469G>A p.C1490Y Misfolding, mislocali- zation27 C65 Deleterious Probably damaging Disease causing Cryptic donor strongly activated c.4926C>G p.S1642R C25 Deleterious Benign Disease causing c.6079C>T p.L2027F Reduced ATP binding26,29 C15 Deleterious Probably damaging Disease causing c.6089G>A p.R2030Q C35 Deleterious Probably damaging Disease causing c.6229C>T p.R2077W Reduced ATP binding26 C65 Deleterious Probably damaging Disease causing Deletion/frame-shift/stop variants c.666_678del p.K223_ R226delfs c.2041C>T p.R681* c.2408delG p.G803fs c.4234C>T p.Q1412* c.5041_5055del p.V1681_ C1685del c.5169C>G p.Y1723* Splicing affecting variants c.3191-2A>G Predicted change at acceptor site 2 bps downstream: 100% c.3329-2A>G Predicted change at acceptor site 2 bps downstream: 100% c.4667&#fe;2T>C Predicted change at donor site 2 bps upstream: 100% generalized choriocapillaris dystrophy have the occasional hallmarks of early Stargardt disease, such as vermillion fundus, fundus hyperautofluorescence, and a dark choroid on fluorescein angiograms.
X
ABCA4 p.Arg2030Gln 24713488:124:1720
status: NEW[hide] The external limiting membrane in early-onset Star... Invest Ophthalmol Vis Sci. 2014 Aug 19;55(10):6139-49. doi: 10.1167/iovs.14-15126. Lee W, Noupuu K, Oll M, Duncker T, Burke T, Zernant J, Bearelly S, Tsang SH, Sparrow JR, Allikmets R
The external limiting membrane in early-onset Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 Aug 19;55(10):6139-49. doi: 10.1167/iovs.14-15126., [PMID:25139735]
Abstract [show]
PURPOSE: To describe pathologic changes of the external limiting membrane (ELM) in young patients with early-onset Stargardt (STGD1) disease. METHODS: Twenty-six STGD1 patients aged younger than 20 years with confirmed disease-causing adenosine triphosphate-binding cassette, subfamily A, member 4 (ABCA4) alleles and 30 age-matched unaffected individuals were studied. Spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (AF), and color fundus photography (CFP) images, as well as full-field electroretinograms were obtained and analyzed for one to four visits in each patient. RESULTS: The ELM in all patients exhibited a distinct thickening that was not observed in unaffected individuals. In addition, accumulations of reflective deposits were noted in the outer nuclear layer in every patient. Four patients exhibited a concave protuberance or bulging of a thickened and hyperreflective ELM band within the fovea containing preserved photoreceptors. Longitudinal SD-OCT data in several patients revealed the persistence of this ELM abnormality over a period of time (1-4 years). Furthermore, the edges of the inner segment ellipsoid band appeared to recede earlier than the ELM band in active lesions. CONCLUSIONS: Structural changes seen in the ELM of this cohort may reflect a gliotic response to cellular stress at the photoreceptor level in early-onset STGD1.
Comments [show]
None has been submitted yet.
No. Sentence Comment
93 [W1408R;R1640W] P20 18 African American 20/125 (0.80) 20/50 (0.40) 2 2 Mid 5 p.R1640W ND P21 12 Caucasian 20/50 (0.40) 20/50 (0.40) 1 1 6 p.W821R p.C2150Y P22 17 Indian 20/40 (0.30) 20/100 (0.70) 1 n/a Mid 3 p.G1961E c.6729&#fe;4_&#fe;18del P23 10 Indian 20/400 (1.30) 20/400 (1.30) 2 2 Early 3 c.885delC p.R537C P24 19 Caucasian 20/20 (0.00) 20/20 (0.00) 1 n/a ND p.G863A c.5898&#fe;1G>A P25 16 Middle Eastern 20/80 (0.60) 20/100 (0.70) 1 1 4 p.A1773V p.G1961E P26 17 Caucasian 20/150 (0.88) 20/200 (1.00) 1 1 2 p.K1547* p.R2030Q ND, not determined; n/a, not available.
X
ABCA4 p.Arg2030Gln 25139735:93:524
status: NEW[hide] Quantitative fundus autofluorescence distinguishes... Ophthalmology. 2015 Feb;122(2):345-55. doi: 10.1016/j.ophtha.2014.08.017. Epub 2014 Oct 3. Duncker T, Tsang SH, Lee W, Zernant J, Allikmets R, Delori FC, Sparrow JR
Quantitative fundus autofluorescence distinguishes ABCA4-associated and non-ABCA4-associated bull's-eye maculopathy.
Ophthalmology. 2015 Feb;122(2):345-55. doi: 10.1016/j.ophtha.2014.08.017. Epub 2014 Oct 3., [PMID:25283059]
Abstract [show]
PURPOSE: Quantitative fundus autofluorescence (qAF) and spectral-domain optical coherence tomography (SD OCT) were performed in patients with bull's-eye maculopathy (BEM) to identify phenotypic markers that can aid in the differentiation of ABCA4-associated and non-ABCA4-associated disease. DESIGN: Prospective cross-sectional study at an academic referral center. SUBJECTS: Thirty-seven BEM patients (age range, 8-60 years) were studied. All patients exhibited a localized macular lesion exhibiting a smooth contour and qualitatively normal-appearing surrounding retina without flecks. Control values consisted of previously published data from 277 healthy subjects (374 eyes; age range, 5-60 years) without a family history of retinal dystrophy. METHODS: Autofluorescence (AF) images (30 degrees , 488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The grey levels (GLs) from 8 circularly arranged segments positioned at an eccentricity of approximately 7 degrees to 9 degrees in each image were calibrated to the reference (0 GL), magnification, and normative optical media density to yield qAF. In addition, horizontal SD OCT images through the fovea were obtained. All patients were screened for ABCA4 mutations using the ABCR600 microarray, next-generation sequencing, or both. MAIN OUTCOME MEASURES: Quantitative AF, correlations between AF and SD OCT, and genotyping for ABCA4 variants. RESULTS: ABCA4 mutations were identified in 22 patients, who tended to be younger (mean age, 21.9+/-8.3 years) than patients without ABCA4 mutations (mean age, 42.1+/-14.9 years). Whereas phenotypic differences were not obvious on the basis of qualitative fundus AF and SD OCT imaging, with qAF, the 2 groups of patients were clearly distinguishable. In the ABCA4-positive group, 37 of 41 eyes (19 of 22 patients) had qAF8 of more than the 95% confidence interval for age. Conversely, in the ABCA4-negative group, 22 of 26 eyes (13 of 15 patients) had qAF8 within the normal range. CONCLUSIONS: The qAF method can differentiate between ABCA4-associated and non-ABCA4-associated BEM and may guide clinical diagnosis and genetic testing.
Comments [show]
None has been submitted yet.
No. Sentence Comment
66 [L541P; A1038V] 438 432 16 M 25 White 0.60 0.60 p.S84fs p.R2107H 294 17 F 24 Black 0.70 0.88 p.G991R p.L1138P 321 326 18 M 26 White 0.00y 0.00y p.R1300* p.R2106C 419 412 19 M 11 White 0.40z 0.40z p.W821R p.C2150Y 304 296 20 F 16 White 0.70 0.40 p.K1547* p.R2030Q 481 513 21 F 13 White 1.30 1.00 pR1108C p.Q1412* 511 528 22 F 18 White 0.00 0.00 p.G863A c.5898&#fe;1G/A 465 431 Mutations in Other Genes 23 F 16 White 0.40 0.48 GUCY2D e p.R838H 152 165 24 M 53 Black 0.88 0.88 CNGA3 e p.
X
ABCA4 p.Arg2030Gln 25283059:66:256
status: NEW[hide] Foveal sparing in Stargardt disease. Invest Ophthalmol Vis Sci. 2014 Oct 16;55(11):7467-78. doi: 10.1167/iovs.13-13825. van Huet RA, Bax NM, Westeneng-Van Haaften SC, Muhamad M, Zonneveld-Vrieling MN, Hoefsloot LH, Cremers FP, Boon CJ, Klevering BJ, Hoyng CB
Foveal sparing in Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 Oct 16;55(11):7467-78. doi: 10.1167/iovs.13-13825., [PMID:25324290]
Abstract [show]
PURPOSE: To provide a clinical and genetic description of a patient cohort with Stargardt disease (STGD1) with identifiable foveal sparing. METHODS: Patients with retinal atrophy (defined as an absence of autofluorescence) that surrounded the fovea by at least 180 degrees and did not include the fovea were defined as having foveal sparing; eyes with visual acuity (VA) worse than 20/200 were excluded. We reviewed the medical files and extracted data regarding medical history, VA, ophthalmoscopy, static perimetry, fundus photography, spectral-domain optical coherence tomography (SD-OCT), fluorescein angiography (FA), fundus autofluorescence (FAF), and electroretinography (ERG). We screened each patient's ABCA4 gene for mutations. RESULTS: Seventeen eyes with foveal sparing were identified in 13 unrelated patients. In 4 eyes, the fovea gradually became atrophic after the initial foveal sparing. The mean age at onset was 51 years (range, 32-67 years). Visual acuity was 20/40 or better in all foveal sparing eyes and was 20/25 or better in 41%. Fundus autofluorescence imaging revealed hyperautofluorescent flecks and parafoveal retinal atrophy; SD-OCT revealed sharply delineated atrophy; and perimetry revealed parafoveal scotomas with intact foveal sensitivity. Finally, genetic screening identified mutations in 19 of the 26 ABCA4 gene alleles. CONCLUSIONS: Foveal sparing occurs mainly in patients with late-onset STGD1 and represents the milder end of the clinical spectrum in STGD1. The anatomy, metabolism, and biochemistry of the retina, as well as genetic variations in genes other than ABCA4, can influence the etiology of foveal sparing. Identifying these fovea-protecting factors will facilitate the future development of strategies designed to treat STGD1.
Comments [show]
None has been submitted yet.
No. Sentence Comment
112 In contrast, in our cohort we defined foveal sparing as profound RPE atrophy that surrounded the fovea by at least 1808 and spared the fovea`s structure and function. This clinical presentation is a rare finding among STGD1 patients, and our strict selection criterion resulted in a small but homogeneous cohort with a consistent phenotype and excluded STGD1 patients with late-onset disease that began with foveal atrophy. Moreover, our definition of foveal sparing is consistent with previously reported cases of foveal sparing in patients with other degenerative diseases.6,8,33,34 Despite the differences between our cohort and the cohort described by Fujinami et al.,26 the visual acuity and electrophysiology findings in their paper are similar to the findings in our study; nevertheless, none of our patients were carriers of the ABCA4 p.Arg2030Gln missense mutation, which was suggested previously to be prevalent among STGD1 patients with foveal sparing.26 The Etiology of Foveal Sparing In our study, screening the ABCA4 gene identified 19 pathogenic mutations that were described previously in STGD1 and/or other ABCA4-associated retinopathies (Table 2)16,23,35-45 ; interestingly, however, foveal sparing was not described in any of the patients who were previously reported to carry these mutations.
X
ABCA4 p.Arg2030Gln 25324290:112:845
status: NEW149 In contrast, in our cohort we defined foveal sparing as profound RPE atrophy that surrounded the fovea by at least 1808 and spared the fovea`s structure and function. This clinical presentation is a rare finding among STGD1 patients, and our strict selection criterion resulted in a small but homogeneous cohort with a consistent phenotype and excluded STGD1 patients with late-onset disease that began with foveal atrophy. Moreover, our definition of foveal sparing is consistent with previously reported cases of foveal sparing in patients with other degenerative diseases.6,8,33,34 Despite the differences between our cohort and the cohort described by Fujinami et al.,26 the visual acuity and electrophysiology findings in their paper are similar to the findings in our study; nevertheless, none of our patients were carriers of the ABCA4 p.Arg2030Gln missense mutation, which was suggested previously to be prevalent among STGD1 patients with foveal sparing.26 The Etiology of Foveal Sparing In our study, screening the ABCA4 gene identified 19 pathogenic mutations that were described previously in STGD1 and/or other ABCA4-associated retinopathies (Table 2)16,23,35-45 ; interestingly, however, foveal sparing was not described in any of the patients who were previously reported to carry these mutations.
X
ABCA4 p.Arg2030Gln 25324290:149:845
status: NEW[hide] Next-generation sequencing applied to a large Fren... Orphanet J Rare Dis. 2015 Jun 24;10:85. doi: 10.1186/s13023-015-0300-3. Boulanger-Scemama E, El Shamieh S, Demontant V, Condroyer C, Antonio A, Michiels C, Boyard F, Saraiva JP, Letexier M, Souied E, Mohand-Said S, Sahel JA, Zeitz C, Audo I
Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation.
Orphanet J Rare Dis. 2015 Jun 24;10:85. doi: 10.1186/s13023-015-0300-3., [PMID:26103963]
Abstract [show]
BACKGROUND: Cone and cone-rod dystrophies are clinically and genetically heterogeneous inherited retinal disorders with predominant cone impairment. They should be distinguished from the more common group of rod-cone dystrophies (retinitis pigmentosa) due to their more severe visual prognosis with early central vision loss. The purpose of our study was to document mutation spectrum of a large French cohort of cone and cone-rod dystrophies. METHODS: We applied Next-Generation Sequencing targeting a panel of 123 genes implicated in retinal diseases to 96 patients. A systematic filtering approach was used to identify likely disease causing variants, subsequently confirmed by Sanger sequencing and co-segregation analysis when possible. RESULTS: Overall, the likely causative mutations were detected in 62.1 % of cases, revealing 33 known and 35 novel mutations. This rate was higher for autosomal dominant (100 %) than autosomal recessive cases (53.8 %). Mutations in ABCA4 and GUCY2D were responsible for 19.2 % and 29.4 % of resolved cases with recessive and dominant inheritance, respectively. Furthermore, unexpected genotype-phenotype correlations were identified, confirming the complexity of inherited retinal disorders with phenotypic overlap between cone-rod dystrophies and other retinal diseases. CONCLUSIONS: In summary, this time-efficient approach allowed mutation detection in the most important cohort of cone-rod dystrophies investigated so far covering the largest number of genes. Association of known gene defects with novel phenotypes and mode of inheritance were established.
Comments [show]
None has been submitted yet.
No. Sentence Comment
100 Np Highly - - - Novel CIC05853 simplex + ABC4A NM_000350.2 Ho 22 c.3259G>A p.E1087K Np Highly Prd D Dc (Allikmets et al. 1997) (rs61751398) [81] CIC05854 Ar + ABC4A NM_000350.2 Ho 35 c.4919G>A p.(R1640Q) + Highly Prd D Dc (Simonelli et al. 2000) (rs61751403) [82] CIC05989 simplex ABC4A NM_000350.2 Het 34 c.4837G>A p.(D1613N) + Not B D Dc Novel ABC4A NM_000350.2 Het 10 c.1302del p.(Q437Rfs*12) + - - - - Novel ABCA4 NM_000350.2 Het 38 c.5318C>T p.(A1773V) + Moderately Prd D Dc (Stenirri et al. 2008) [83] CIC06170 simplex ABC4A NM_000350.2 Het 44 c.6089G>A p.(R2030Q) + Highly Prd D Dc (Lewis et al. 1999) (rs61750641) ABC4A NM_000350.2 Het IVS 24 c.3607+3A>T r.(spl?)
X
ABCA4 p.Arg2030Gln 26103963:100:563
status: NEW[hide] Recessive Stargardt disease phenocopying hydroxych... Graefes Arch Clin Exp Ophthalmol. 2015 Aug 28. Noupuu K, Lee W, Zernant J, Greenstein VC, Tsang S, Allikmets R
Recessive Stargardt disease phenocopying hydroxychloroquine retinopathy.
Graefes Arch Clin Exp Ophthalmol. 2015 Aug 28., [PMID:26311262]
Abstract [show]
PURPOSE: To describe a series of patients with Stargardt disease (STGD1) exhibiting a phenotype usually associated with hydroxychloroquine (HCQ) retinopathy on spectral domain-optical coherence tomography (SD-OCT). METHODS: Observational case series from Columbia University Medical Center involving eight patients with genetically-confirmed STGD1. Patients selected for the study presented no history of HCQ use. Horizontal macular SD-OCT scans and accompanying 488-nm autofluorescence (AF) images, color fundus photographs, and full-field electroretinograms were analyzed. RESULTS: All study patients exhibited an abrupt thinning of the parafoveal region or disruption of the outer retinal layers on SD-OCT resembling the transient HCQ retinopathy phenotype. Funduscopy and AF imaging revealed variations of bull's eye maculopathy (BEM). Five patients exhibited local fleck-like deposits around the lesion. Genetic screening confirmed two disease-causing ABCA4 mutations in five patients and one mutation in three patients. CONCLUSIONS: A transient SD-OCT phenotype ascribed to patients with HCQ retinopathy is associated with an early subtype of STGD1. This finding may also present with HCQ retinopathy-like BEM lesions on AF imaging and funduscopy. A possible phenotypic overlap is unsurprising, given certain shared mechanistic disease processes between the two conditions. A thorough work-up, including screening of genes that are causal in retinal dystrophies associated with foveal sparing, may prevent misdiagnosis of more ambiguous cases.
Comments [show]
None has been submitted yet.
No. Sentence Comment
94 Researchers exploring the role of genetic etiology in foveal sparing have reported that the ABCA4 variant p.R2030Q is more prevalent in these patients [9], although this rare variant was not found in our cohort.
X
ABCA4 p.Arg2030Gln 26311262:94:108
status: NEW[hide] Quantitative Fundus Autofluorescence and Optical C... Invest Ophthalmol Vis Sci. 2015 Nov 1;56(12):7274-85. doi: 10.1167/iovs.15-17371. Duncker T, Stein GE, Lee W, Tsang SH, Zernant J, Bearelly S, Hood DC, Greenstein VC, Delori FC, Allikmets R, Sparrow JR
Quantitative Fundus Autofluorescence and Optical Coherence Tomography in ABCA4 Carriers.
Invest Ophthalmol Vis Sci. 2015 Nov 1;56(12):7274-85. doi: 10.1167/iovs.15-17371., [PMID:26551331]
Abstract [show]
PURPOSE: To assess whether carriers of ABCA4 mutations have increased RPE lipofuscin levels based on quantitative fundus autofluorescence (qAF) and whether spectral-domain optical coherence tomography (SD-OCT) reveals structural abnormalities in this cohort. METHODS: Seventy-five individuals who are heterozygous for ABCA4 mutations (mean age, 47.3 years; range, 9-82 years) were recruited as family members of affected patients from 46 unrelated families. For comparison, 57 affected family members with biallelic ABCA4 mutations (mean age, 23.4 years; range, 6-67 years) and two noncarrier siblings were also enrolled. Autofluorescence images (30 degrees , 488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Horizontal SD-OCT scans through the fovea were obtained and the thicknesses of the outer retinal layers were measured. RESULTS: In 60 of 65 carriers of ABCA4 mutations (age range, 9-60), qAF levels were within normal limits (95% confidence level) observed for healthy noncarrier subjects, while qAF levels of affected family members were significantly increased. Perifoveal fleck-like abnormalities were observed in fundus AF images in four carriers, and corresponding changes were detected in the outer retinal layers in SD-OCT scans. Thicknesses of the outer retinal layers were within the normal range. CONCLUSIONS: With few exceptions, individuals heterozygous for ABCA4 mutations and between the ages of 9 and 60 years do not present with elevated qAF. In a small number of carriers, perifoveal fleck-like changes were visible.
Comments [show]
None has been submitted yet.
No. Sentence Comment
34 [W1408R;R1640W] 0.00 0.00 n/a n/a 336 S33.2 F 46.5 White Mother p.G1961E 0.00 0.00 OD 422 n/a S33.3 M 48.0 White Father p.R2030Q 0.00 0.00 OD 298 n/a S34.2 M 50.3 White Brother p.G1961E 0.00 0.48 n/a 394 368 S35.2 F 55.7 White Mother p.G1961E 0.00 0.00 OS 328 362 S35.3 M 57.4 White Father c.3050&#fe;5G>A 0.00 0.00 OD n/a 265 S36.2 F 59.4 Hispanic Mother p.G1961E 0.00 0.00 OS 380 374 S37.2 F 55.1 White Mother p.G1961E 0.00 0.00 n/a n/a 352 S38.2 F 48.9 White Mother p.W821R 0.00 0.00 OD 252 279 tion in psychophysical and electrophysiological tests,21 and may demonstrate moderate to severe fundus changes.17,22 The increased accumulation of lipofuscin in the RPE of patients with biallelic mutations in ABCA4 has been documented by histology,9 by spectrofluorometry,23 and more recently by quantitative autofluorescence (qAF).24 It is still unknown, however, whether individuals heterozygous for ABCA4 mutations also have elevated lipofuscin levels due to reduced ABCA4 activity.
X
ABCA4 p.Arg2030Gln 26551331:34:122
status: NEW62 Continued Subject Sex Age Race/ Ethnicity Relationship to Proband ABCA4 Mutation BCVA, logMAR Eye Segmented qAF8 OD OS OD OS S38.3 M 50.9 White Father p.C2150Y 0.00 0.00 OS 336 380 S39.3 F 42.5 White Mother c.5714&#fe;5G>A 0.00 0.00 n/a 462 393 S39.4 F 18.4 White Sister c.5714&#fe;5G>A 0.00 0.00 n/a 222 212 S40.2 F 50.1 White Mother p.R2030Q 0.00 0.00 OD 433 n/a S40.3 M 48.8 White Father p.K1547* 0.00 0.00 OS n/a 477 S41.2 F 60.3 White Mother p.C54Y 0.00 0.00 OS n/a n/a S42.2 F 44.5 White Mother p.Q1412* 0.10 0.00 OS 264 291 S42.3 M 44.2 White Father p.R1108C 0.30 0.18 OD 264 232 S43.2 F 44.9 White Mother p.G1961E 0.00 0.00 OS 404 n/a S44.3 M 37.1 Asian Father c.4248_4250del 0.00 0.00 OD 307 317 S45.2 F 66.3 White Mother p.N965Y 0.18 0.40 n/a n/a n/a S45.3 M 68.0 White Father p.P1486L 0.00 0.00 n/a n/a n/a S46 M 32.3 White Spouseߤ p.T897I 0.12 0.12 OD 194 200 BCVA, best-corrected visual acuity; logMAR, logarithm of the minimum angle of resolution; OD, right eye; OS, left eye; qAF8, average quantitative autofluorescence of the 8 measurement sites from all available images per eye; n/a, not available.
X
ABCA4 p.Arg2030Gln 26551331:62:337
status: NEW75 [W1408R;R1640W] 1.00 1.00 n/a n/a P 33.1&#a7; M 23.0 White p.R2030Q p.G1961E 1.00 1.00 334 347 P 34.1 M 46.9 White p.C1490Y p.G1961E 0.40 0.30 376 384 P 35.1ߥ M 24.8 White c.3050&#fe;5G>A p.G1961E 0.00 0.00 381 451 P 36.1ߥ F 29.3 Hispanic p.L541P p.G1961E 0.40 0.40 479 487 P 37.1ߤ F 24.7 White p.G1961E p.C2150R 0.88 0.88 405 396 P 38.1&#a7; M 11.7 White p.W821R p.C2150Y 0.40 0.40 306 n/a P 39.1 F 12.8 White p.P1380L c.5714&#fe;5G>A 0.60 0.40 558 573 P 39.2 M 14.1 White p.P1380L c.5714&#fe;5G>A 0.88 0.88 395 462 P 40.1ߤ F 16.2 White p.K1547* p.R2030Q 0.70 0.40 481 513 P 41.1 F 19.0 White p.C54Y 0.88 0.88 n/a n/a P 42.1ߤ F 13.0 White p.R1108C p.Q1412* 1.30 1.00 511 528 P 43.1ߤ M 17.4 White p.A1773V p.G1961E 0.88 0.88 340 366 P 44.1 M 14.0 Asian p.R408* c.4248_4250del 1.30 1.30 n/a n/a P 44.2 F 7.0 Asian p.R408* c.4248_4250del 1.30 1.30 n/a n/a P 45.1 F 42.4 White p.N965Y p.P1486L 0.10 0.40 n/a n/a BCVA, best-corrected visual acuity; logMAR, logarithm of the minimum angle of resolution; OD, right eye; OS, left eye; qAF8, average quantitative autofluorescence of the 8 measurement sites from all available images per eye; n/a, not available.
X
ABCA4 p.Arg2030Gln 26551331:75:61
status: NEWX
ABCA4 p.Arg2030Gln 26551331:75:573
status: NEW