ABCA4 p.Glu1087Asp
ClinVar: |
c.3259G>A
,
p.Glu1087Lys
?
, not provided
c.3261A>C , p.Glu1087Asp ? , not provided |
Predicted by SNAP2: | A: D (53%), C: D (59%), D: D (95%), F: D (63%), G: D (53%), H: D (59%), I: D (53%), K: D (95%), L: D (59%), M: D (59%), N: N (57%), P: N (53%), Q: D (53%), R: D (59%), S: N (57%), T: N (61%), V: N (53%), W: D (75%), Y: D (59%), |
Predicted by PROVEAN: | A: D, C: D, D: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] A subgroup of age-related macular degeneration is ... Invest Ophthalmol Vis Sci. 2012 Apr 30;53(4):2112-8. doi: 10.1167/iovs.11-8785. Print 2012 Apr. Fritsche LG, Fleckenstein M, Fiebig BS, Schmitz-Valckenberg S, Bindewald-Wittich A, Keilhauer CN, Renner AB, Mackensen F, Mossner A, Pauleikhoff D, Adrion C, Mansmann U, Scholl HP, Holz FG, Weber BH
A subgroup of age-related macular degeneration is associated with mono-allelic sequence variants in the ABCA4 gene.
Invest Ophthalmol Vis Sci. 2012 Apr 30;53(4):2112-8. doi: 10.1167/iovs.11-8785. Print 2012 Apr., [PMID:22427542]
Abstract [show]
Purpose. Age-related macular degeneration (AMD) is a heterogeneous condition of high prevalence and complex etiology involving genetic as well as environmental factors. By fundus autofluorescence (FAF) imaging, AMD can be classified into several distinct phenotypes, with one subgroup characterized by fine granular pattern with peripheral punctate spots (GPS[+]). Some features of GPS[+] overlap with Stargardt disease (STGD1), a recessive macular dystrophy caused by biallelic sequence variants in the ATP-binding cassette transporter 4 (ABCA4) gene. The aim of this study was to investigate the role of ABCA4 in GPS[+]. Methods. The ABCA4 gene was sequenced in 25 patients with the GPS[+] phenotype and 29 with geographic atrophy (GA)-AMD but no signs of GPS (GPS[-]). In addition, frequencies of risk-increasing alleles at three known AMD susceptibility loci, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2), and complement component 3 (C3), were evaluated. Results. We demonstrate that GPS[+] is associated significantly with monoallelic ABCA4 sequence variants. Moreover, frequencies of AMD risk-increasing alleles at CFH, ARMS2, and C3 are similar in GPS[+] and STGD1 patients, with risk allele frequencies in both subcategories comparable to population-based control individuals estimated from 3,510 individuals from the NHLBI Exome Sequencing Project. Conclusions. Our data suggest that the GPS[+] phenotype is accounted for by monoallelic variants in ABCA4 and unlikely by the well-established AMD risk-increasing alleles at CFH, ARMS2, and C3. These findings provide support for a complex role of ABCA4 in the etiology of a minor proportion of patients with AMD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
71 The heterozygous change c.3113C>T (p.A1038V) was found in five patients together with c.1622T>C (p.L541P) and in another two patients together with c.3261A>C (p.E1087D, patient L-099-GA) and c.3752delA (p.E1251fs, patient H-144-GA), respectively.
X
ABCA4 p.Glu1087Asp 22427542:71:161
status: NEW89 directly the cis configuration of the c.3113C>T / c.1622T>C alleles in one case by segregation analysis (patient M07-0338- 11,085), these two variants have been shown repeatedly in previous studies to occur as a frequent complex allele on a single chromosome.10,36 Trans-configuration was confirmed for heterozygous changes c.3113C>T (p.A1038V) / c.3261A>C (p.E1087D) in patient L-099-GA.
X
ABCA4 p.Glu1087Asp 22427542:89:360
status: NEW69 The heterozygous change c.3113C>T (p.A1038V) was found in five patients together with c.1622T>C (p.L541P) and in another two patients together with c.3261A>C (p.E1087D, patient L-099-GA) and c.3752delA (p.E1251fs, patient H-144-GA), respectively.
X
ABCA4 p.Glu1087Asp 22427542:69:161
status: NEW87 directly the cis configuration of the c.3113C>T / c.1622T>C alleles in one case by segregation analysis (patient M07-0338- 11,085), these two variants have been shown repeatedly in previous studies to occur as a frequent complex allele on a single chromosome.10,36 Trans-configuration was confirmed for heterozygous changes c.3113C>T (p.A1038V) / c.3261A>C (p.E1087D) in patient L-099-GA.
X
ABCA4 p.Glu1087Asp 22427542:87:360
status: NEW[hide] ABCA4 disease progression and a proposed strategy ... Hum Mol Genet. 2009 Mar 1;18(5):931-41. Epub 2008 Dec 12. Cideciyan AV, Swider M, Aleman TS, Tsybovsky Y, Schwartz SB, Windsor EA, Roman AJ, Sumaroka A, Steinberg JD, Jacobson SG, Stone EM, Palczewski K
ABCA4 disease progression and a proposed strategy for gene therapy.
Hum Mol Genet. 2009 Mar 1;18(5):931-41. Epub 2008 Dec 12., [PMID:19074458]
Abstract [show]
Autosomal recessive retinal diseases caused by mutations in the ABCA4 gene are being considered for gene replacement therapy. All individuals with ABCA4-disease show macular degeneration, but only some are thought to progress to retina-wide blindness. It is currently not predictable if or when specific ABCA4 genotypes will show extramacular disease, and how fast it will progress thereafter. Early clinical trials of focal subretinal gene therapy will aim to arrest disease progression in the extramacular retina. In 66 individuals with known disease-causing ABCA4 alleles, we defined retina-wide disease expression by measuring rod- and cone-photoreceptor-mediated vision. Serial measurements over a mean period of 8.7 years were consistent with a model wherein a normal plateau phase of variable length was followed by initiation of retina-wide disease that progressed exponentially. Once initiated, the mean rate of disease progression was 1.1 log/decade for rods and 0.45 log/decade for cones. Spatio-temporal progression of disease could be described as the sum of two components, one with a central-to-peripheral gradient and the other with a uniform retina-wide pattern. Estimates of the age of disease initiation were used as a severity metric and contributions made by each ABCA4 allele were predicted. One-third of the non-truncating alleles were found to cause more severe disease than premature truncations supporting the existence of a pathogenic component beyond simple loss of function. Genotype-based inclusion/exclusion criteria and prediction of the age of retina-wide disease initiation will be invaluable for selecting appropriate candidates for clinical trials in ABCA4 disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
127 And for an additional eight mutations (G818E, A1038V;L541P, E1087D, R1108C, E1122K, IVS40þ5G.A, L1940P and K2172R), we performed severity estimates recursively by using estimates established above.
X
ABCA4 p.Glu1087Asp 19074458:127:60
status: NEW151 Estimated severity of ABCA4 alleles and their properties ABCA4 allele Delay of retina-wide disease initiation (years)a In vitro or in vivo studiesb Molecular structural localizationc C2150Y 225.8 NBD-2 A1038V;L541P 214.0 35, 38 ECD-1/NBD-1 IVS38-10 T.C 211.1 L244P 25.7 ECD-1 E1122K 23.5 NBD-1 C54Y 22.1 35 ECD-1 IVS35þ2 T.C 22.1 R602W 21.8 38 ECD-1 V1896D 21.8 TM12 L1940P 21.4 NBD-2 Truncation mutationsd 0.0 E1087D 2.8 NBD-1 R220C 3.9 ECD-1 A1598D 3.9 ECD-2 R1640Q 3.9 ECD-2 R1098C 4.9 NBD-1 P1380L 7.4 35 TM7 N965S 7.6 35 NBD-1 V1433I 8.6 ECD-2 R1108C 10.4 35 NBD-1 T1526M 14.5 35 ECD-2 R2030Q 14.5 NBD-2 L2027F 15.1 35,37 NBD-2 G818E 17.3 35 TM5/TM6 S100P 18.2 ECD-1 L1201R 18.2 NBD-1 R18W 18.5 Nt D600E 18.5 ECD-1 L11P 21.7 Nt D654N 25.3 36 ECD-1 K2172R 27.9 NBD-2 IVS40þ5 G.A 28.1 G1961E 37.9 35 NBD-2 G1961R 44.0 NBD-2 a Delay of retina-wide disease initiation relative to the standard of age 10.6 years.
X
ABCA4 p.Glu1087Asp 19074458:151:415
status: NEW[hide] A comprehensive survey of sequence variation in th... Am J Hum Genet. 2000 Oct;67(4):800-13. Epub 2000 Aug 24. Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH
A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration.
Am J Hum Genet. 2000 Oct;67(4):800-13. Epub 2000 Aug 24., [PMID:10958763]
Abstract [show]
Stargardt disease (STGD) is a common autosomal recessive maculopathy of early and young-adult onset and is caused by alterations in the gene encoding the photoreceptor-specific ATP-binding cassette (ABC) transporter (ABCA4). We have studied 144 patients with STGD and 220 unaffected individuals ascertained from the German population, to complete a comprehensive, population-specific survey of the sequence variation in the ABCA4 gene. In addition, we have assessed the proposed role for ABCA4 in age-related macular degeneration (AMD), a common cause of late-onset blindness, by studying 200 affected individuals with late-stage disease. Using a screening strategy based primarily on denaturing gradient gel electrophoresis, we have identified in the three study groups a total of 127 unique alterations, of which 90 have not been previously reported, and have classified 72 as probable pathogenic mutations. Of the 288 STGD chromosomes studied, mutations were identified in 166, resulting in a detection rate of approximately 58%. Eight different alleles account for 61% of the identified disease alleles, and at least one of these, the L541P-A1038V complex allele, appears to be a founder mutation in the German population. When the group with AMD and the control group were analyzed with the same methodology, 18 patients with AMD and 12 controls were found to harbor possible disease-associated alterations. This represents no significant difference between the two groups; however, for detection of modest effects of rare alleles in complex diseases, the analysis of larger cohorts of patients may be required.
Comments [show]
None has been submitted yet.
No. Sentence Comment
82 Table 3 Rare Sequence Variants in the ABCA4 Gene EXON AND NUCLEOTIDE CHANGE EFFECT NO. OF ALLELES REFERENCE(S) STGD (288) AMD (400) Control (440) 5: 455GrA R152Q 3 1 3 This study 8: IVS8ϩ38ArT Unknown 0 1 0 This study 12: 1654GrA V552I 0 0 2 This study IVS11-6CrG Unknown 0 4 2 This study 13: 1932CrT D644D 2 0 0 This study 17: IVS16-12CrG Unknown 0 0 8 This study 18: IVS17-56CrG Unknown 3 0 0 This study IVS17-36CrT Unknown 0 2 1 This study 22: 3261ArC E1087D 1 0 0 This study 3264CrT P1088P 0 0 1 This study IVS21-20CrT Unknown 1 0 0 This study 23: IVS23ϩ10TrG Unknown 1 0 0 This study IVS23ϩ17GrC Unknown 1 0 0 This study 24: IVS23-28TrC Unknown 2 4 1 This study 25: 3759GrA T1253T 1 0 0 This study 28: 4140GrA P1380P 2 0 0 This study IVS28ϩ43GrA Unknown 4 3 1 This study 29: IVS29ϩ13GrA Unknown 0 1 0 This study IVS29ϩ32ArG Unknown 1 0 0 This study 31: 4578GrA T1526T 0 1 0 This study 32: IVS32ϩ45TrC Unknown 1 0 0 This study 33: IVS32-57TrG Unknown 0 0 1 This study 4685TrC I1562T 0 0 6 Allikmets et al. (1997b) 36: IVS36ϩ20GrA Unknown 1 0 0 This study 39: 5487GrT L1829L 0 0 1 This study IVS38-10TrC Unknown 9 0 0 Maugeri et al. (1999) 41: 5761GrA V1921M 1 1 1 This study 43: 5908CrT L1970F 1 0 1 Allikmets et al. (1997b), Rozet et al. (1998), Lewis et al. (1999) IVS43ϩ7ArC Unknown 1 0 0 This study 44: 6027CrT I2023I 1 0 0 Allikmets et al. (1997a), Nasonkin et al. (1998) 45: 6176GrC G2059A 0 0 1 This study 46: IVS46ϩ27GrA Unknown 0 0 1 This study 47: IVS46-46TrA Unknown 1 0 0 This study 48: IVS48ϩ21CrT Unknown 18a 2a 0 Allikmets et al. (1997b), Nasonkin et al. (1998), Papaioannou et al. (2000) 6529GrA D2177N 2 3 4 Allikmets et al. (1997b) 6721CrG L2241V 1 0 0 This study a Occurs together with G1961E in 17/18 and 2/2 instances.
X
ABCA4 p.Glu1087Asp 10958763:82:461
status: NEW[hide] Inner and outer retinal changes in retinal degener... Invest Ophthalmol Vis Sci. 2014 Mar 20;55(3):1810-22. doi: 10.1167/iovs.13-13768. Huang WC, Cideciyan AV, Roman AJ, Sumaroka A, Sheplock R, Schwartz SB, Stone EM, Jacobson SG
Inner and outer retinal changes in retinal degenerations associated with ABCA4 mutations.
Invest Ophthalmol Vis Sci. 2014 Mar 20;55(3):1810-22. doi: 10.1167/iovs.13-13768., [PMID:24550365]
Abstract [show]
PURPOSE: To investigate in vivo inner and outer retinal microstructure and effects of structural abnormalities on visual function in patients with retinal degeneration caused by ABCA4 mutations (ABCA4-RD). METHODS: Patients with ABCA4-RD (n = 45; age range, 9-71 years) were studied by spectral-domain optical coherence tomography (OCT) scans extending from the fovea to 30 degrees eccentricity along horizontal and vertical meridians. Thicknesses of outer and inner retinal laminae were analyzed. Serial OCT measurements available over a mean period of 4 years (range, 2-8 years) allowed examination of the progression of outer and inner retinal changes. A subset of patients had dark-adapted chromatic static threshold perimetry. RESULTS: There was a spectrum of photoreceptor layer thickness changes from localized central retinal abnormalities to extensive thinning across central and near midperipheral retina. The inner retina also showed changes. There was thickening of the inner nuclear layer (INL) that was mainly associated with regions of photoreceptor loss. Serial data documented only limited change in some patients while others showed an increase in outer nuclear layer (ONL) thinning accompanied by increased INL thickening in some regions imaged. Visual function in regions both with and without INL thickening was describable with a previously defined model based on photoreceptor quantum catch. CONCLUSIONS: Inner retinal laminar abnormalities, as in other human photoreceptor diseases, can be a feature of ABCA4-RD. These changes are likely due to the retinal remodeling that accompanies photoreceptor loss. Rod photoreceptor-mediated visual loss in retinal regionswith inner laminopathy at the stages studied did not exceed the prediction from photoreceptor loss alone.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 Characteristics of the ABCA4-Related Retinal Disease Patients Patient Age at Visits, y Sex Allele 1 Allele 2 Previous Report*ߤ P1 9, 12 M E341G F608I P2 9, 15 M R681X C2150Y P28* P3ߥ 12 M N965S W821R P1ߤ P4 13, 16 M V256V T1526M P21*, P15ߤ P5 14, 20 F W1408R IVS40&#fe;5 G>A P49* P6ߥ 16 F V989A IVS28&#fe;5 G>T P17ߤ P7ߥ 16 M N965S W821R P18ߤ P8 18, 20 F Y362X IVS38-10 T>C P9ߥ 18 F V989A IVS28&#fe;5 G>T P10 18, 22 M G1961E R1129L P3ߤ P11 20 M R1640Q c.5174_5175insG P12ߥ 20 M G1961E G1961E/P68L P13 22, 25 M G863A IVS35&#fe;2 T>C P20ߤ P14 22, 24 F G1961E R152X P12*, P21ߤ P15ߥ 23 M G1961E G1961E/P68L P16 25, 27 M G1961E R152X P11* P17 26, 32 F L1940P R1129L P64* P18 27, 34 F R1925G A1038V/L541P P19 27, 29 M c.4530_4531insC R1705Q P52*, P5ߤ P20 28, 30 F G1961E A1038V/L541P P23ߤ P21 31, 35 M T1019M G1961E P34* P22ߥ 32, 37 M P1486L Deletion of exon 7 P25ߤ P23 33, 35 M G863A R1108C P29*, P6ߤ P24 34, 37 F IVS40&#fe;5 G>A V935A P32*, P7ߤ P25 34 M G1961E &#a7; P8ߤ P26 37, 43 F C54Y G863A P4* P27 39, 44 F G863A C1490Y P30*, P26ߤ P28 40 M G1961E C54Y P7*, P10ߤ P29 41 F IVS38-10 T>C E1087D P59* P30ߥ 43, 47 F G1961E V256V P23*, P11ߤ P31ߥ 47, 51 F P1486L Deletion of exon 7 P32 47 M Y245X Y245X P20* P33ߥ 48, 51 F G1961E V256V P22*, P12ߤ P34 48, 50 F c.3208_3209insTG IVS40&#fe;5 G>A P35 50, 54 M V1433I L2027F P50* P36ߥ 52, 55 F T1526M R2030Q P55*, P28ߤ P37 53, 59 F G1961E P1380L P47*, P13ߤ P38ߥ 53, 61 M L1940P IVS40&#fe;5 G>A P61* P39 58 M D600E R18W P2*, P14ߤ P40 59, 62 M E1122K G1961E P44* P41 59, 62 F R1640Q G1961E P58* P42ߥ 62 F T1526M R2030Q P54* P43ߥ 64, 68 M L1940P IVS40&#fe;5 G>A P62* P44 68 F R1108C IVS40&#fe;5 G>A P42* P45 71 F IVS38-10 T>C &#a7; Novel variants are bold and italicized.
X
ABCA4 p.Glu1087Asp 24550365:74:1222
status: NEW