ABCA4 p.Arg1300*
ClinVar: |
c.3898C>T
,
p.Arg1300*
?
, not provided
c.3899G>A , p.Arg1300Gln ? , not provided |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] ABC A-subfamily transporters: structure, function ... Biochim Biophys Acta. 2006 May;1762(5):510-24. Epub 2006 Feb 28. Kaminski WE, Piehler A, Wenzel JJ
ABC A-subfamily transporters: structure, function and disease.
Biochim Biophys Acta. 2006 May;1762(5):510-24. Epub 2006 Feb 28., [PMID:16540294]
Abstract [show]
ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related "full-size" transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily.
Comments [show]
None has been submitted yet.
No. Sentence Comment
180 For example, the homozygous frameshift mutation 5917delG is associated with a relatively severe STGD phenotype and the truncating mutations Y362X and R1300X, respectively, are associated with milder clinical symptoms [77,81].
X
ABCA4 p.Arg1300* 16540294:180:150
status: NEW[hide] Loss of peripapillary sparing in non-group I Starg... Exp Eye Res. 2010 Nov;91(5):592-600. Epub 2010 Aug 7. Burke TR, Allikmets R, Smith RT, Gouras P, Tsang SH
Loss of peripapillary sparing in non-group I Stargardt disease.
Exp Eye Res. 2010 Nov;91(5):592-600. Epub 2010 Aug 7., [PMID:20696155]
Abstract [show]
The aim of this study was to assess peripapillary sparing in patients with non-group I Stargardt disease. We suggest this as a useful clinical sign for formulating disease severity. Patients with a diagnosis of Stargardt disease were grouped by electroretinogram (ERG). Fundus autofluorescence was used to assess the peripapillary area for involvement in the Stargardt disease process. From a cohort of 32 patients (64 eyes), 17 patients (33 eyes) demonstrated loss of peripapillary sparing. One of 15 patients in Group I, six of 7 patients in group II and 9 of 10 patients in group III demonstrated peripapillary atrophy. One patient in group II had peripapillary flecks. All patients had at least one mutation detected in the ABCA4 gene. Both mutations were detected in 21 patients. Patients in groups II and III had the earliest ages of onset and the poorest visual acuities. Two novel disease causing mutation in the ABCA4 gene were detected. Our data supports the observation that peripapillary sparing is not universal finding for Stargardt disease and peripapillary atrophy is a useful clinical sign for identifying patients with Stargardt disease who fall into the more severe ERG groups, i.e. groups II and III. The presence of atrophy suggests a continuum of disease between groups II and III. Loss of peripapillary sparing is likely associated with the more deleterious mutations of the ABCA4 gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
184 Also, the type of involvement of the peripapillary area Table 1 Summary of clinical and genetic information for patients with ERG Group I Stargardt Disease. Case Mutation Mutation OA Duration Age at AF Visual Acuity Flecks Atrophy GA (mm2 ) PPA # Sex Allele 1 Allele 2 PPA (years) (years) (years) OD OS OD OS OD OS OD OS Pattern RON 1 Male G1961E G1961E e 19 13 32 20/70 20/70 M M M M 1.6 0.2 None 2 Female G1961E *IVS43 þ 1 G > T e 8 21 27 20/200 20/200 M M M M na na None 3.1 Male L541P/A1038V G1961E e 28 3 31 20/50 20/30 M M M M na na None 3.2 Male L541P/A1038V G1961E e 28 5 33 20/60 20/50 M M M M na na None 4.1 Female L541P/A1038V G1961E e 14 3 17 20/30 20/25 None None None None na na None 4.2 Female L541P/A1038V G1961E e 14 10 24 20/150 20/200 M M M M na na None 5 Female G1961E R2077W e 25 5 30 20/60 20/50 None None M M na na None 6.1 Female G1961E L541P/A1038V e 18 3 21 20/150 20/150 None None M M na na None 6.2 Female G1961E L541P/A1038V e 15 3 18 20/150 20/150 None None M M na na None 7 Female R602Q R602Q e 31 5 36 20/20 20/60 M,EM M,EM M M 0.7 0.3 None 8 Male L541P/A1038V ND e 22 24 46 20/200 20/200 M M M M 13.2 4.1 None 9 Femlae A1038V ND e 27 10 37 20/100 20/60 M,EM M,EM M M na na None 10 Female G1961E ND e 27 6 33 20/150 20/150 M M M M na na None 11 Female G1961E ND e 43 24 67 20/40 20/200 M M M M 4.8 na None 12 Male R212C ND OU 5 23 28 20/200 20/200 M,EM M,EM M M 1.6 4.2 Patchy N,T Abbreviations: ERG, electroretinogram; PPA, peripapillary atrophy; OD, right eye; OS, left eye; OU, both eyes; OA, onset age; AF, autofluoresence; M, macula; EM, extramacular retina; GA, geographic atrophy; na, not available; RON, relation to optic nerve; N, nasal; T, temporal; ND, mutation was not detected by the ABCR array e suggesting the presence of a currently unknown mutant allele; and *newly described mutation.
X
ABCA4 p.Arg1300* 20696155:184:902
status: NEW185 Table 2 Summary of clinical and genetic information for patients with ERG Groups II or III Stargardt Disease. Case Mutation Mutation ERG OA Duration Age at AF Visual Acuity Flecks GA position GA (mm2) PPA # Sex Allele 1 Allele 2 PPA Group (years) (years) (years) OD OS OD OS OD OS OD OS Pattern RON 13 Female P1380L R1640Q OU II 11 24 35 HM HM EM EM M,EM M,EM na na Scalloped - 14 Male IVS38-10 T>C IVS40+5 G>A OU II 7 6 13 20/150 20/150 M,EM M,EM M M na na Flecks N 15 Female M1 V/R2030Q P1380L OU II 8 10 18 20/150 20/150 M,EM M,EM M M 3.52 na Patchy N,T 16 Female P1380L P1380L OU II 18 8 26 20/400 20/400 M,EM M,EM M M 0.25 na Patchy N,T 17 Female L541P/A1038 V L2027F OU II 10 22 32 CF CF M,EM M,EM M M 11.7 5.1 Patchy N,T 18 Male A1773 V ND OU II 35 6 41 CF 20/30 M,EM M,EM M M 4.2 3.7 Patchy N,T 19 Female L2027F ND OU I/II 10 17 27 20/400 20/400 M,EM M,EM M M 1.6 0.1 Patchy N,T 20 Male R602 W R1300X OU III 8 18 26 CF CF None None M,EM M,EM na na Scalloped N,T 21 Female C54Y IVS14+1 G>C OU III 8 55 63 CF HM EM None M,EM M,EM na na Complete - 22.1 Male 4537delC *R107X OU III 5 8 13 20/200 20/200 EM EM M M 2.3 1.7 Patchy N,T 22.2 Female 4537delC *R107X - III 6 2 8 20/200 20/200 M,EM M,EM M M na na - - 23 Male P1380L IVS40+5 G>A OU III 29 26 55 20/400 20/400 EM EM M,EM M,EM na na Complete - 24 Male A1598D A1598D OU III 13 40 53 20/400 20/400 NA NA M,EM M,EM na na Scalloped N,T 25 Male G172S ND OU III 25 7 32 CF CF None None M,EM M,EM na na Complete - 26 Female R1108C ND OU III 9 50 59 20/400 20/400 EM EM M,EM M,EM na na Complete - 27 Male V767D ND OD III 5 10 15 20/400 20/400 EM EM M M na na Patchy T 28 Male P1380L ND OU II/III 9 21 30 20/400 20/400 EM EM M M na na Patchy N,T Abbreviations: ERG, electroretinogram; PPA, peripapillary atrophy; OD, right eye; OS, left eye; OU, both eyes; OA, onset age; AF, autofluoresence; M, macula; EM, extramacular retina; GA, geographic atrophy; na, not available; RON, relation to optic nerve; N, nasal; T, temporal; ND, mutation was not detected by the ABCR array, suggesting the presence of a currently unknown mutant allele; and *newly described mutation.
X
ABCA4 p.Arg1300* 20696155:185:902
status: NEW[hide] ABC transporters in ophthalmic disease. Methods Mol Biol. 2010;637:221-30. Westerfeld C
ABC transporters in ophthalmic disease.
Methods Mol Biol. 2010;637:221-30., [PMID:20419437]
Abstract [show]
ABC transporters have been implicated in a variety of human diseases. The ABCR gene and its protein have been linked to Stargardt's disease, fundus flavimaculatus, cone-rod dystrophy, retinitis pigmentosa, and age-related macular degeneration. The genetic and molecular pathways involved in the pathogenesis of ABCR-related ophthalmic conditions will be explored. Future diagnostic and therapeutic objectives for these diseases will also be discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
108 Alternatively, the truncating mutations Y362X and R1300X are associated with milder clinical symptoms (26, 37).
X
ABCA4 p.Arg1300* 20419437:108:50
status: NEW[hide] Stargardt's disease and the ABCR gene. Semin Ophthalmol. 2008 Jan-Feb;23(1):59-65. Westerfeld C, Mukai S
Stargardt's disease and the ABCR gene.
Semin Ophthalmol. 2008 Jan-Feb;23(1):59-65., [PMID:18214793]
Abstract [show]
Stargardt's disease is an autosomal recessive form of juvenile macular degeneration. The clinical presentation, relevant ancillary tests, and classic histologic features will be reviewed. The role of genetic mutations in the pathophysiology of Stargardt's disease will also be explored. Stargardt's disease is caused by mutations in the ABCR (ABCA4) gene on chromosome 1. Mutations in this gene have also been attributed to some cases of cone-rod dystrophy, retinitis pigmentosa, and age-related macular degeneration. The genetic and molecular pathways that produce Stargardt's disease will be discussed. Future diagnostic and therapeutic objectives for this visually disabling condition will also be presented.
Comments [show]
None has been submitted yet.
No. Sentence Comment
122 Alternatively, the truncating mutations Y362X and R1300X are associated with milder clinical symptoms (Cremers et al., 1998; Dryja et al., 1998).
X
ABCA4 p.Arg1300* 18214793:122:50
status: NEW[hide] Denaturing HPLC profiling of the ABCA4 gene for re... Clin Chem. 2004 Aug;50(8):1336-43. Epub 2004 Jun 10. Stenirri S, Fermo I, Battistella S, Galbiati S, Soriani N, Paroni R, Manitto MP, Martina E, Brancato R, Allikmets R, Ferrari M, Cremonesi L
Denaturing HPLC profiling of the ABCA4 gene for reliable detection of allelic variations.
Clin Chem. 2004 Aug;50(8):1336-43. Epub 2004 Jun 10., [PMID:15192030]
Abstract [show]
BACKGROUND: Mutations in the retina-specific ABC transporter (ABCA4) gene have been associated with several forms of macular degenerations. Because the high complexity of the molecular genotype makes scanning of the ABCA4 gene cumbersome, we describe here the first use of denaturing HPLC (DHPLC) to screen for ABCA4 mutations. METHODS: Temperature conditions were designed for all 50 exons based on effective separation of 83 samples carrying 86 sequence variations and 19 mutagenized controls. For validation, samples from 23 previously characterized Stargardt patients were subjected to DHPLC profiling. Subsequently, samples from a cohort of 30 patients affected by various forms of macular degeneration were subjected to DHPLC scanning under the same conditions. RESULTS: DHPLC profiling not only identified all 132 sequence alterations previously detected by double-gradient denaturing gradient gel electrophoresis but also identified 5 sequence alterations that this approach had missed. Moreover, DHPLC scanning of an additional panel of 30 previously untested patients led to the identification of 26 different mutations and 29 polymorphisms, accounting for 203 sequence variations on 29 of the 30 patients screened. In total, the DHPLC approach allowed us to identify 16 mutations that had never been reported before. CONCLUSIONS: These results provide strong support for the use of DHPLC for molecular characterization of the ABCA4 gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
35 Exon Genotypesa Exon Genotypesa 1b M1V (1A>G) (11) 24 3523-28TϾC (12) R18W (52C>T) (11) 25 G1203D (3608G>A)b 3 250_251insCAAA (7) 27 R1300X (3898C>T) (12) N96K (288C>A) R1300Q (3899G>A) (11) 302 ϩ 26 GϾA (13) 28 P1380L (4139CϾT) (14) 4 P143L (428C>T) (10) P1401P (4203CϾA) (15) 5 R152Q (455G>A) (4) 4253 ϩ 43GϾA (12) 6 571-1GϾT (4) 29 4253 ϩ 13GϾA (12) R212H (635G>A) (16) 4354-38GϾA (4) C230S (688T>A) (12) 30a 4466 ϩ 3GϾA (4) 641delG (9) 30b C1490Y (4469G>A) (17) 10 1240-14CϾT (13) P1512R (4535C>G) (4) H423R (1268ϾG) (13) 31 T1526M (4577C>T) (14) 1357 ϩ 11delG (16) 33/34 A1598D (4793C>A) (4) H423H (1269CϾT) (13) 35 4947delC (14) 11 1387delTT (4) 5018 ؉ 2T>C (7) R500R (1500GϾA) (4) 39 H1838Y (5512C>T) (14) 12 L541P (1622T>C) (14) 40 N1868I (5603AϾT) (13) R572Q (1715G>A) (17) L1894L (5682GϾC) (15) 13 Y639X (1917C>G) (17) 5714 ؉ 5G>A C641S (1922G>C) (4) 41 L1938L (5814AϾG) (12) 14 R653C (1957C>T) (12) 42 5836-43CϾA W700X (2099G>A) (4) 5836-11GϾA (15) 3607 ϩ 49TϾC P1948I (5843CϾT) (15) 15 V767D (2300T>A) (7) P1948P (5844AϾG) (15) 16 W821R (2461T>A) (14) G1961E (5882G>A) (14) 17 2588-33CϾTb 43 L1970F (5908C>T) (11) G863A (2588G>C) (17) 44 6006-16AϾG (16) 18 2654-36CϾT (4) I2023I (6069CϾT) (14) T897I (2690C>T) (7) L2027F (6079C>T) (14) 19 R943Q (2828GϾA) (13) 45 V2050L (6148G>C) (14) Y954D (2860T>G) (4) 46 R2107H (6320G>A) (18) N965S (2894A>G) (14) 6386 ؉ 2G>C (10) 20 G978D (2933G>A) (4) 47 R2139W (6415C>T) (14) L988L (2964CϾT) (4) R2149L (6446G>T) (4) 21 E1022K (3064G>A) (4) C2150Y (6449G>A) (19) A1038V (3113C>T) (14) 48 D2177N (6529G>A) (17) G1050D (3149G>A) (4) L2241V (6721C>G) (12) 3211_3212insGT (14) 6729 ϩ 21CϾT (15) 22 E1087K (3259G>A) (14) 49 6730-3TϾC (15) R1098C (3292C>T) (12) S2255I (6764GϾT) (13) S1099P (3295T>C) (4) 6816 ϩ 28GϾC (4) R1108C (3322C>T) (14) R1129L (3386G>T) (17) a Bold indicates disease-causing mutations.
X
ABCA4 p.Arg1300* 15192030:35:139
status: NEW34 Exon Genotypesa Exon Genotypesa 1b M1V (1A>G) (11) 24 3523-28Tb0e;C (12) R18W (52C>T) (11) 25 G1203D (3608G>A)b 3 250_251insCAAA (7) 27 R1300X (3898C>T) (12) N96K (288C>A) R1300Q (3899G>A) (11) 302 af9; 26 Gb0e;A (13) 28 P1380L (4139Cb0e;T) (14) 4 P143L (428C>T) (10) P1401P (4203Cb0e;A) (15) 5 R152Q (455G>A) (4) 4253 af9; 43Gb0e;A (12) 6 571-1Gb0e;T (4) 29 4253 af9; 13Gb0e;A (12) R212H (635G>A) (16) 4354-38Gb0e;A (4) C230S (688T>A) (12) 30a 4466 af9; 3Gb0e;A (4) 641delG (9) 30b C1490Y (4469G>A) (17) 10 1240-14Cb0e;T (13) P1512R (4535C>G) (4) H423R (1268b0e;G) (13) 31 T1526M (4577C>T) (14) 1357 af9; 11delG (16) 33/34 A1598D (4793C>A) (4) H423H (1269Cb0e;T) (13) 35 4947delC (14) 11 1387delTT (4) 5018 d19; 2T>C (7) R500R (1500Gb0e;A) (4) 39 H1838Y (5512C>T) (14) 12 L541P (1622T>C) (14) 40 N1868I (5603Ab0e;T) (13) R572Q (1715G>A) (17) L1894L (5682Gb0e;C) (15) 13 Y639X (1917C>G) (17) 5714 d19; 5G>A C641S (1922G>C) (4) 41 L1938L (5814Ab0e;G) (12) 14 R653C (1957C>T) (12) 42 5836-43Cb0e;A W700X (2099G>A) (4) 5836-11Gb0e;A (15) 3607 af9; 49Tb0e;C P1948I (5843Cb0e;T) (15) 15 V767D (2300T>A) (7) P1948P (5844Ab0e;G) (15) 16 W821R (2461T>A) (14) G1961E (5882G>A) (14) 17 2588-33Cb0e;Tb 43 L1970F (5908C>T) (11) G863A (2588G>C) (17) 44 6006-16Ab0e;G (16) 18 2654-36Cb0e;T (4) I2023I (6069Cb0e;T) (14) T897I (2690C>T) (7) L2027F (6079C>T) (14) 19 R943Q (2828Gb0e;A) (13) 45 V2050L (6148G>C) (14) Y954D (2860T>G) (4) 46 R2107H (6320G>A) (18) N965S (2894A>G) (14) 6386 d19; 2G>C (10) 20 G978D (2933G>A) (4) 47 R2139W (6415C>T) (14) L988L (2964Cb0e;T) (4) R2149L (6446G>T) (4) 21 E1022K (3064G>A) (4) C2150Y (6449G>A) (19) A1038V (3113C>T) (14) 48 D2177N (6529G>A) (17) G1050D (3149G>A) (4) L2241V (6721C>G) (12) 3211_3212insGT (14) 6729 af9; 21Cb0e;T (15) 22 E1087K (3259G>A) (14) 49 6730-3Tb0e;C (15) R1098C (3292C>T) (12) S2255I (6764Gb0e;T) (13) S1099P (3295T>C) (4) 6816 af9; 28Gb0e;C (4) R1108C (3322C>T) (14) R1129L (3386G>T) (17) a Bold indicates disease-causing mutations.
X
ABCA4 p.Arg1300* 15192030:34:139
status: NEW[hide] A comprehensive survey of sequence variation in th... Am J Hum Genet. 2000 Oct;67(4):800-13. Epub 2000 Aug 24. Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH
A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration.
Am J Hum Genet. 2000 Oct;67(4):800-13. Epub 2000 Aug 24., [PMID:10958763]
Abstract [show]
Stargardt disease (STGD) is a common autosomal recessive maculopathy of early and young-adult onset and is caused by alterations in the gene encoding the photoreceptor-specific ATP-binding cassette (ABC) transporter (ABCA4). We have studied 144 patients with STGD and 220 unaffected individuals ascertained from the German population, to complete a comprehensive, population-specific survey of the sequence variation in the ABCA4 gene. In addition, we have assessed the proposed role for ABCA4 in age-related macular degeneration (AMD), a common cause of late-onset blindness, by studying 200 affected individuals with late-stage disease. Using a screening strategy based primarily on denaturing gradient gel electrophoresis, we have identified in the three study groups a total of 127 unique alterations, of which 90 have not been previously reported, and have classified 72 as probable pathogenic mutations. Of the 288 STGD chromosomes studied, mutations were identified in 166, resulting in a detection rate of approximately 58%. Eight different alleles account for 61% of the identified disease alleles, and at least one of these, the L541P-A1038V complex allele, appears to be a founder mutation in the German population. When the group with AMD and the control group were analyzed with the same methodology, 18 patients with AMD and 12 controls were found to harbor possible disease-associated alterations. This represents no significant difference between the two groups; however, for detection of modest effects of rare alleles in complex diseases, the analysis of larger cohorts of patients may be required.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 Nucleotide alterations occurring in sim- Table 2 ABCA4 Mutations Found in Patients with STGD and AMD and in Controls EXON AND NUCLEOTIDE CHANGE EFFECT NO. OF ALLELES REFERENCE(S) STGD (288) AMD (400) Control (440) 3: 178GrA A60T 1 0 0 This study 179CrT A60E 1 0 0 This study 194GrA G65E 1 0 0 Fishman et al. (1999) 203CrT P68L 1 0 0 This study 214GrA G72R 1 0 0 This study 296insA Frameshift 2 0 0 This study 5: 454CrT R152X 1 0 0 This study 6: 634CrT R212C 1 0 0 Lewis et al. (1999) 688TrA C230S 1 0 0 This study 730delCT Frameshift 1 0 0 This study 740ArG N247S 1 0 0 This study 768GrT Splice 2 0 0 Maugeri et al. (1999) 8: 983ArT E328V 1a 0 0 This study 1086TrA Y362X 1 0 0 This study 10: 1317GrA W438X 1 0 0 This study 11: 1411GrA E471K 1 0 0 Lewis et al. (1999) 12: 1622TrC L541P 21a 1a 0 Rozet et al. (1998), Fishman et al. (1999), Lewis et al. (1999), Maugeri et al. (1999) 1715GrA R572Q 1a 0 0 Lewis et al. (1999) 13: 1819GrA G607R 1 0 0 This study 1903CrA Q635K 2a 0 0 This study 1903CrT Q635X 1 0 0 This study IVS13ϩ1GrA Splice 2 0 0 This study 14: 1957CrT R653C 1 0 0 This study 1988GrA W663X 1 0 0 This study 2041CrT R681X 4 0 0 Maugeri et al. (1999) 15: 2291GrA C764Y 1 0 0 This study 2292delT Frameshift 1a 0 0 This study 2295TrG S765R 1a 0 0 This study 16: 2564GrA W855X 1 0 0 Nasonkin et al. (1998) 17: 2588GrC Spliceb 17a 6 5 Allikmets et al. (1997a), Cremers et al. (1998), Lewis et al. (1999), Maugeri et al. (1999), Papaioannou et al. (2000) 18: 2701ArG T901A 0 2 0 This study 2741ArG H914A 0 0 1 This study 19: 2876CrT T959I 1 0 0 This study 20: IVS20ϩ5GrA Splice 1 0 0 This study 21: 3106GrA E1036K 1a 0 0 Nasonkin et al. (1998) 3113CrT A1038V 26a 4a 1 Allikmets et al. (1997a), Cremers et al. (1998), Rozet et al. (1998), Fishman et al. (1999), Lewis et al. (1999), Maugeri et al. (1999) T3187TrC S1063P 1 0 0 This study (Continued) 805 Table 2 Continued EXON AND NUCLEOTIDE CHANGE EFFECT NO. OF ALLELES REFERENCE(S) STGD (288) AMD (400) Control (440) 22: 3292CrT R1097C 1 0 0 This study 3322CrT R1108C 4 0 0 Rozet et al. (1998), Fishman et al. (1999), Lewis et al. (1999) 24: 3528insTGCA Frameshift 1 0 0 This study 25: 3808GrT E1270X 1 0 0 This study 27: 3898CrT R1300X 1 0 0 This study 28: IVS28ϩ5GrA Splice 1 0 0 This study 4139CrT P1380L 1 0 0 Lewis et al. (1999) 4195GrA E1399K 2 0 0 This study 4234CrT Q1412X 4 0 0 Maugeri et al. (1999) 29: 4289TrC L1430P 2 0 0 This study 4318TrG F1440V 1 0 0 This study 4328GrA R1443H 1 0 0 This study 30: 4457CrT P1486L 1 0 0 Lewis et al. (1999) 4463GrA C1488Y 1 0 0 This study 31: 4610CrT T1537M 1 0 0 This study 35: IVS35ϩ2TrA Splice 1 0 0 This study 36: 5065TrC S1689P 1 0 0 This study 5114GrT R1705L 1 0 0 This study IVS36ϩ1GrA Splice 1 0 0 This study 37: 5198TrC M1733T 0 0 1 This study 5242GrA G1748R 1 0 0 This study 5248CrT Q1750X 1 0 0 This study 5288TrC L1763P 1 0 0 This study 38: IVS38ϩ1GrA Splice 1 0 0 This study 40: 5653GrA E1885K 1 0 0 This study 5693GrA R1898H 5 2 1 Allikmets et al. (1997b), Lewis et al. (1999) IVS40ϩ5GrA Splice 8a 0 0 Cremers et al. (1998), Lewis et al. (1999), Maugeri et al. (1999) 42: 5882GrA G1961E 34 4 2 Allikmets et al. (1997b), Fishman et al. (1999), Lewis et al. (1999), Maugeri et al. (1999) 43: 5917delG Frameshift 3 0 0 This study 5923GrC G1975R 1 0 0 This study 5929GrA G1977S 1 0 0 Rozet et al. (1998), Lewis et al. (1999) 45: 6229CrG R2077G 1 0 0 This study 6229CrT R2077W 1 0 0 Allikmets et al. (1997a), Fishman et al. (1999), Lewis et al. (1999) 48: 6609CrA Y2203X 2 0 0 This study 6647GrT A2216V 0 0 1 This study a Mutation pairs occurring on a single haplotype.
X
ABCA4 p.Arg1300* 10958763:80:2203
status: NEW111 Likewise, for the intron 28 alteration, a spliced product Table 5 Patients with STGD Who Have Two Identified Disease Alleles AGE AT ONSET AND PATIENT MUTATION SEGREGATION IN FAMILY a Allele 1 Allele 2 5-9 years: STGD17 Q1412X R2077W Yes STGD88 G65E G1961E NA STGD93 G1961E G1961E Yes STGD99 L541P-A1038V G1961E Yes STGD100 L541P-A1038V IVS40ϩ5GrA Yes STGD108 Y362X IVS40ϩ5GrA Yes STGD109 L541P-A1038V W855X Yes STGD139b 5917delG 5917delG Yes STGD167 C1488Y IVS40ϩ5GrA Yes 10-14 years: STGD21 R681X R1898H NA STGD37 L541P-A1038V L541P-A1038V Yes STGD47/164 IVS13ϩ1GrA 2588GrC Yes STGD50 2588GrC A1038V NA STGD70 2588GrC IVS40ϩ5GrA NA STGD82 L541P-A1038V S1063P Yes STGD87 2588GrC Q1750X Yes STGD98 R212C T959I Yes STGD102 R572Q-2588GrC IVS35ϩ2TrA Yes STGD107 C764Y 3528ins4 Yes STGD120 L1430P L1430P NA STGD121 R1300X IVS40ϩ5GrA Yes STGD156 R1108C G1961E NA STGD159 R1108C Q1412X Yes STGD171 L541P-A1038V G1961E NA 15-19 years: STGD34 G768T G1961E Yes STGD39 L541P-A1038V R1443H NA STGD40/163 2588GrC E1885K Yes STGD45 E1399K G1977S Yes STGD59 R1898H G1975R NA STGD67 P68L S1689P Yes STGD75 Q635K IVS40ϩ5GrA Yes STGD111 2292delT-S765R G1961E Yes STGD114 Y2203X G1961E Yes STGD138 IVS13ϩ1GA 2588GrC Yes 20-24 years: STGD41 R681X G1961E Yes STGD63 A60T R1898H NA STGD86 296insA G1961E Yes STGD91 L541P-A1038V A1038V NA STGD113 L541P-A1038V 2588GrC Yes STGD118b IVS20ϩ5GrA G1961E Yes STGD119 L541P-A1038V G1961E Yes STGD122 L541P-A1038V G1961E Yes STGD135 W663X G1961E NA STGD147 IVS36ϩ1GrA G1961E Yes STGD168 L541P-A1038V G1961E NA 25-29 years: STGD62 G607R G1961E NA STGD71 296insA A1038V Yes STGD78 2588GrC Q1412X Yes STGD103 2588GrC IVS20ϩ5GrA Yes STGD116 L541P-A1038V G1961E Yes STGD139bb G1961E 5917delG Yes у30 years: STGD38 E471K G1961E Yes STGD68 E1399K G1961E Yes STGD69 L541P-A1038V 2588GrC NA STGD95 F1440V G1748R Yes STGD134 C230S G1961E NA STGD144 2588GrC R1705L NA STGD148 R1097C Y2203X NA STGD170 L541P-A1038V 2588GrC NA a NA p not applicable.
X
ABCA4 p.Arg1300* 10958763:111:849
status: NEW125 Two patients, STGD108 and STGD121, are heterozygous for both an alteration in the donor splice site of intron 40 (IVS40ϩ5GrA) and a nonsense mutation (STGD108, Y362X and STGD121, R1300X).
X
ABCA4 p.Arg1300* 10958763:125:185
status: NEW176 Two additional patients, STGD108 and STGD121, each have a truncating mutation (Y362X and R1300X) in combination with the splice-site mutation IVS40ϩ5GrA.
X
ABCA4 p.Arg1300* 10958763:176:89
status: NEW