ABCD3 p.Gly116Arg
Predicted by SNAP2: | A: N (93%), C: N (61%), D: N (93%), E: N (87%), F: D (59%), H: N (87%), I: N (82%), K: N (82%), L: N (72%), M: N (57%), N: N (97%), P: N (78%), Q: N (93%), R: N (78%), S: N (97%), T: N (97%), V: N (82%), W: D (71%), Y: D (63%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, H: N, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, R: N, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Adrenoleukodystrophy: subcellular localization and... J Neurochem. 2007 Jun;101(6):1632-43. Takahashi N, Morita M, Maeda T, Harayama Y, Shimozawa N, Suzuki Y, Furuya H, Sato R, Kashiwayama Y, Imanaka T
Adrenoleukodystrophy: subcellular localization and degradation of adrenoleukodystrophy protein (ALDP/ABCD1) with naturally occurring missense mutations.
J Neurochem. 2007 Jun;101(6):1632-43., [PMID:17542813]
Abstract [show]
Mutation in the X-chromosomal adrenoleukodystrophy gene (ALD; ABCD1) leads to X-linked adrenoleukodystrophy (X-ALD), a severe neurodegenerative disorder. The encoded adrenoleukodystrophy protein (ALDP/ABCD1) is a half-size peroxisomal ATP-binding cassette protein of 745 amino acids in humans. In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior. When expressed in X-ALD fibroblasts lacking ALDP, the expression level of mutant His-ALDPs (S606L, R617H, and H667D) was lower than that of wild type and other mutant ALDPs. Furthermore, mutant ALDP-green fluorescence proteins (S606L and H667D) stably expressed in CHO cells were not detected due to rapid degradation. Interestingly, the wild type ALDP co-expressed in these cells also disappeared. In the case of X-ALD fibroblasts from an ALD patient (R617H), the mutant ALDP was not detected in the cells, but appeared upon incubation with a proteasome inhibitor. When CHO cells expressing mutant ALDP-green fluorescence protein (H667D) were cultured in the presence of a proteasome inhibitor, both the mutant and wild type ALDP reappeared. In addition, mutant His-ALDP (Y174C), which has a mutation between transmembrane domain 2 and 3, did not exhibit peroxisomal localization by immunofluorescense study. These results suggest that mutant ALDPs, which have a mutation in the COOH-terminal half of ALDP, including S606L, R617H, and H667D, were degraded by proteasomes after dimerization. Further, the region between transmembrane domain 2 and 3 is important for the targeting of ALDP to the peroxisome.
Comments [show]
None has been submitted yet.
No. Sentence Comment
139 Wild type ALDP-GFP and mutant ALDP-GFP (G116R and S606P) were recovered mainly in the fractions 3 and 4 and the distribution was similar to those of PMP70 and catalase, suggesting that these ALDP-GFPs had located to peroxisomes as had the corresponding His-ALDPs in 163T cells.
X
ABCD3 p.Gly116Arg 17542813:139:40
status: NEW150 The fragments were not extractable with 0.1 mol/L sodium carbonate, indicating (a) (c) (b) (d) 400 140 120 100 Expressionratio(%) 80 60 40 His-ALDP R104C G116R Y174C S342P Q544R S606P S606L R617H H667D Catalase 20 0 100 Expressionratio(%) 80 60 40 20 0 350 300 250 200 150 pmol/h/mgprotein 100 50 0 Normal (139T) X-ALD (163T) M ock M ock W ild W ild N one S606L His-ALDP GFP Catalase R 617H H 667D R 104CG 116RY174C S342PQ 544RS606PS606LR 617HH 667D M ock W ildR 104CG 116RY174CS342PQ 544RS606PS606LR 617HH 667D Fig. 3 Expression of wild type and mutant His-adrenoleukodystrophy proteins (ALDPs) in X-linked adrenoleukodystrophy (X-ALD) fibroblasts (163T).
X
ABCD3 p.Gly116Arg 17542813:150:154
status: NEW180 Degradation of mutant ALDP (S606L) was similarly inhibited by lactacystin, but not by leupeptin, wild R104C G116R ALDP-GFP ALDP PMP70 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 Non specific ALDP-GFP ALDP PMP70 Non specific ALDP-GFP ALDP PMP70 Non specific Y174C H667D S606P S606L Fig. 4 Subcellular localization of wild type and mutant adrenoleukodystrophy protein (ALDP) -green fluorescence proteins (GFP) in CHO cells.
X
ABCD3 p.Gly116Arg 17542813:180:108
status: NEW181 The mitochondrial and light mitochondrial fraction from CHO cells expressing wild type ALDP and ALDP-GFP or each mutant ALDP-GFP (R104C, G116R, Y174C, S606P, S606L, or H667D) was fractionated by equilibrium density centrifugation on sucrose.
X
ABCD3 p.Gly116Arg 17542813:181:137
status: NEW216 The mutation of R104C and G116R is located in loop1 between TMD1 and 2, Y174 is in loop2 between TMD2 and 3, S342P and Q544R are located in TMD6 and the helical region between Walker A and B, respectively.
X
ABCD3 p.Gly116Arg 17542813:216:26
status: NEW229 Recently Lie et al. investigated the dimerization of the COOH-terminal half of ALDP by a yeast two-hybrid assay and found that it could dimerize Table 2 Expression and localization of missense ALDPs Mutant ALDP Transient Stable Expressiona Localizationb b-Oxidationc Expressiona Localizationb Wild +++ Px + ++ Px R104Cd , G116R, S342P, Q544R, S606P +++ Px ) ++ Px Y174C +++ mis ) + mis S606L ++ Px ) ) ) R617H, H667D + ) ) ) ) Wild and mutant His-ALDPs or ALDP-GFPs were transiently expressed in X-ALD fibroblasts or stably expressed in CHO cells, respectively.
X
ABCD3 p.Gly116Arg 17542813:229:322
status: NEW259 Second, mutant ALDP (G116R, S342P, Q544R, and S606P) expressed similar levels to wild type ALDP in the experiment of transient expression as the corresponding His-ALDP in X-ALD fibroblasts (Fig. 3b and Table 2) and stable expression as ALDP-GFP in CHO cells (Fig. 4 and Table 2).
X
ABCD3 p.Gly116Arg 17542813:259:21
status: NEW262 As G116R and S342P are located to TMDs, substitution of these amino acids seems to affect substrate binding or transport through ALDP.
X
ABCD3 p.Gly116Arg 17542813:262:3
status: NEW[hide] [Adrenoleukodystrophy: structure and function of A... Yakugaku Zasshi. 2007 Jan;127(1):163-72. Takahashi N, Morita M, Imanaka T
[Adrenoleukodystrophy: structure and function of ALDP, and intracellular behavior of mutant ALDP with naturally occurring missense mutations].
Yakugaku Zasshi. 2007 Jan;127(1):163-72., [PMID:17202797]
Abstract [show]
Adrenoleukodystrophy (ALD) is an inherited disorder characterized by progressive demyelination of the central nervous system and adrenal dysfunction. The biochemical characterization is based on the accumulation of pathgnomonic amounts of saturated very long-chain fatty acid (VLCFA; C>22) in all tissues, including the brain white matter, adrenal glands, and skin fibroblasts, of the patients. The accumulation of VLCFA in ALD is linked to a mutation in the ALD (ABCD1) gene, an ABC subfamily D member. The ALD gene product, so-called ALDP (ABCD1), is thought to be involved in the transport of VLCFA or VLCFA-CoA into the peroxisomes. ALDP is a half-sized peroxisomal ABC protein and it has 745 amino acids in humans. ALDP is thought to be synthesized on free polysomes, posttranslationally transported to peroxisomes, and inserted into the membranes. During this process, ALDP interacts with Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane protein (PMP), the complex targets Pex3p on the peroxisomal membranes, and ALDP is inserted into the membranes. After integration into the membranes, ALDP is thought to form mainly homodimers. Here, we chose nine arbitrary mutations of human ALDP with naturally occurring missense mutations and examined the intracellular behavior of their ALDPs. We found that mutant ALDP (S606L, R617H, and H667D) was degraded together with wild-type ALDP by proteasomes. These results suggest that the complex of mutant and wild-type ALDP is recognized as misfolded proteins and degraded by the protein quality control system associated with proteasomes. Further, we found fragmentation of mutant ALDP (R104C) on peroxisomes and it was not inhibited by proteasomes inhibitors, suggesting that an additional protease(s) is also involved in the quality control of mutant ALDP. In addition, mutation of ALDP (Y174C) suggests that a loop between transmembrane domains 2 and 3 is important for the targeting of ALDP to peroxisomes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
43 168 Vol. 127 (2007) ALDP については ALDP の C 末端に GFP(green ‰uorescent protein)を融合させた変異 ALDP-GFP を発現させるとともに,野生型ヒト ALDP を CHO 細胞に共 発現させた(CHO 細胞にも 内在性の ALDP が発現しているが,本実験に用いた抗体が 交差しないため,ヒト ALDP を発現させた).GFP 融合タンパク質は内在性のタンパク質との区別が容 易であること,安定発現細胞の取得が容易にできる ことなどの利点がある.この実験では,ペルオキシ ソームに正常に輸送される変異型 ALDP(R104C, G116R, S606P),ペルオキシソームに局在しない変 異型 ALDP(Y174C),発現量が低下している変異 型 ALDP(H667D)を選んだ.これら安定過剰発 現細胞における ALDP-GFP の細胞内局在性をみる と,その分布は一過性発現させた His-ALDP と同 様であった. 得られた安定発現細胞よりオルガネラ粗分画を調 製し,ショ糖密度勾配遠心分離法により各フラクシ ョンに分けたのち,SDS-PAGE 及び immunoblotting により変異 ALDP の局在について解析を行っ た(Fig. 3).ペルオキシソームマーカーとしてペ ルオキシソーム膜タンパク質である PMP70 とペル オキシソームの主要なマトリックスタンパク質であ るカタラーゼを用いた.野生型 ALDP を安定過剰 発現している細胞において,カタラーゼ活性並びに PMP70 が主としてフラクション 3 及び 4 に存在す ることより,この分画にペルオキシソームが回収さ れたことが示唆された.また約 110 kDa の分子サ イズを持つ ALDP-GFP 並びに 83 kDa の野生型 ALDP は,ペルオキシソームマーカーとほぼ同じ 分布を示していたことからペルオキシソームに局在 していることが示唆された.また変異型 ALDP-GFP(G116R, S606P)も同様の分布を示した. 一方,変異型 ALDP-GFP(H667D)を安定過剰 発現している細胞の場合は,ALDP-GFP のバンド は検出されなかった(Fig. 3).興味深いことに, PMP70 は 検 出 さ れ た が , 共 発 現 さ せ た 野 生 型 ALDP のバンドも検出されなかった.また変異型 ALDP(S606L)についても同様であった.これら の 結 果 は , 変 異 型 ALDP ( H667D, S606L ) は PMP70 とではなく,野生型 ALDP と複合体を形成 し,両者が分解される可能性を示唆している. ABC タンパク質の機能発現に重要である TMD や NBD 以外の C 末端部位での変異がタンパク質の安 定性に影響を及ぼすことは興味深い.ALDP の C 末端部位である 600―700 アミノ酸での変異が X-ALD を引き起こす頻度が高いことから,ALDP の C 末端部位はタンパク質の安定性に重要な役割を担 っている可能性がある.Liu らは ALDP のダイ マー化には C 末端部位(AA.631―745)が重要で あると報告している.13) H667D や S606L のような 変異は,それ自身あるいは野生型 ALDP とミスフ ォールドしたダイマーを形成し,異常タンパク質と して認識され分解されると考えられる.一方,変異 型 ALDP-GFP(R104C)はペルオキシソーム分画 に回収されるものの,フラグメント化していること 169 Fig. 4.
X
ABCD3 p.Gly116Arg 17202797:43:4713
status: NEW41 168 Vol. 127 (2007) ALDP IJb;௸௺IJf; ALDP IJe; C ʠb;aef;IJb; GFP(green ߮uorescent protein)ఔͮd;ᔠ௯ıb;ıf;᜕ᶒ ALDP-GFP ఔ˿a;Ife;௯ıb;Ĵb;ఊIJb;,[ce;˯f;ɂb;d2;c8; ALDP ఔ CHO d30;Pde;IJb;ᐳ ˿a;Ife;௯ıb;ıf;(CHO d30;Pde;IJb;ఊ ᑁᙠឋIJe; ALDP İc;˿a;Ife;௱௺Ĵb;İc;,ʠc;b9f; a13;IJb;ᵨıf;ᢙf53;İc; ea4;dee;௱IJa;ıf;ఉ,d2;c8; ALDP ఔ˿a;Ife;௯ıb;ıf;) &#ff0e;GFP ͮd;ᔠbf;f3;d1;af;cea;IJf;ᑁᙠឋIJe;bf;f3;d1;af;cea;IJe;ȕa;ᑩİc;bb9; ᧕Ĵb;௭,b89;b9a;˿a;Ife;d30;Pde;IJe;5d6;f97;İc;bb9;᧕IJb;İd;Ĵb; ௭IJa;IJe;ᑭFb9;İc;Ĵb;&#ff0e;௭IJe;b9f; a13;IJf;,da;eb;aa;ad;b7; bd;fc;e0;IJb;b63;e38;IJb;f38;〈௯Ĵc;Ĵb;᜕ᶒɂb; ALDP(R104C, G116R, S606P) ,da;eb;aa;ad;b7;bd;fc;e0;IJb;c40;ᙠ௱IJa;᜕ ᶒɂb; ALDP(Y174C) ,˿a;Ife;[cf;İc;f4e;e0b;௱௺Ĵb;᜕ᶒ ɂb; ALDP(H667D)ఔ⍶క௴&#ff0e;௭Ĵc;b89;b9a;Έe;ᒖ˿a; Ife;d30;Pde;IJb;İa;௫Ĵb; ALDP-GFP IJe;d30;Pde;ᑁc40;ᙠឋఔijf;Ĵb; ,ıd;IJe;ᑖe03;IJf;e00;Έe;ឋ˿a;Ife;௯ıb;ıf; His-ALDP Ȝc; Ed8;௷ıf;&#ff0e; f97;Ĵc;ıf;b89;b9a;˿a;Ife;d30;Pde;ఐĴa;aa;eb;ac;cd;e9;c97;ᑖ˱b;ఔabf; Xfd;௱,b7;e7;cd6;bc6;ea6;4fe;Βd;⍤fc3;ᑖ`e2;cd5;IJb;ఐĴa;ᔜd5;e9;af;b7; e7;f3;IJb;ᑖ௫ıf;IJe;௵,SDS-PAGE 5ca;ఁ immunoblotting IJb;ఐĴa;᜕ᶒ ALDP IJe;c40;ᙠIJb;௸௺Ye3;᪆ఔʹc;௷ ıf;(Fig. 3) &#ff0e;da;eb;aa;ad;b7;bd;fc;e0;de;fc;ab;fc;௱௺da; eb;aa;ad;b7;bd;fc;e0;̳c;bf;f3;d1;af;cea;Ĵb; PMP70 da;eb; aa;ad;b7;bd;fc;e0;IJe;e3b;⌕IJa;de;c8;ea;c3;af;b9;bf;f3;d1;af;cea; Ĵb;ab;bf;e9;fc;bc;ఔᵨıf;&#ff0e;[ce;˯f;ɂb; ALDP ఔb89;b9a;Έe;ᒖ ˿a;Ife;௱௺Ĵb;d30;Pde;IJb;İa;௺,ab;bf;e9;fc;bc;d3b;ឋe26;ఁIJb; PMP70 İc;e3b;௱௺d5;e9;af;b7;e7;f3; 3 5ca;ఁ 4 IJb;b58;ᙠ௳ Ĵb;௭ఐĴa;,௭IJe;ᑖ˱b;IJb;da;eb;aa;ad;b7;bd;fc;e0;İc;8de;5ce;௯ Ĵc;ıf;௭İc;̙a;ᖂ௯Ĵc;ıf;&#ff0e;ije;ıf;d04; 110 kDa IJe;ᑖb50;b5; a4;ba;ఔᢝ௸ ALDP-GFP e26;ఁIJb; 83 kDa IJe;[ce;˯f;ɂb; ALDP IJf;,da;eb;aa;ad;b7;bd;fc;e0;de;fc;ab;fc;ijb;ijc;Ȝc;௲ ᑖe03;ఔ̙a;௱௺ıf;௭İb;da;eb;aa;ad;b7;bd;fc;e0;IJb;c40;ᙠ ௱௺Ĵb;௭İc;̙a;ᖂ௯Ĵc;ıf;&#ff0e;ije;ıf;᜕ᶒɂb; ALDP-GFP(G116R, S606P)ఊȜc;Ed8;IJe;ᑖe03;ఔ̙a;௱ıf;&#ff0e; e00;Ab9;,᜕ᶒɂb; ALDP-GFP(H667D)ఔb89;b9a;Έe;ᒖ ˿a;Ife;௱௺Ĵb;d30;Pde;IJe;ᛊᔠIJf;,ALDP-GFP IJe;d0;f3;c9; IJf;ʳc;3fa;௯Ĵc;IJa;İb;௷ıf;(Fig. 3) &#ff0e;‐ᕡdf1;௭IJb;, PMP70 IJf; ʳc; 3fa; ௯ Ĵc; ıf; İc; , ᐳ ˿a; Ife; ௯ ıb; ıf; [ce; ˯f; ɂb; ALDP IJe;d0;f3;c9;ఊʳc;3fa;௯Ĵc;IJa;İb;௷ıf;&#ff0e;ije;ıf;᜕ᶒɂb; ALDP(S606L)IJb;௸௺ఊȜc;Ed8;௷ıf;&#ff0e;௭Ĵc; IJe; d50; ʧc; IJf; , ᜕ ᶒ ɂb; ALDP ( H667D, S606L ) IJf; PMP70 IJf;IJa;İf;,[ce;˯f;ɂb; ALDP ⋋ᔠf53;ఔf62;ᡂ ௱,e21;ὅİc;ᑖYe3;௯Ĵc;Ĵb;5ef;Pfd;ឋఔ̙a;ᖂ௱௺Ĵb;&#ff0e; ABC bf;f3;d1;af;cea;IJe;a5f;Pfd;˿a;Ife;IJb;[cd;⌕Ĵb; TMD ఌ NBD ee5;IJe; C ʠb;aef;Ze8;f4d;IJe;᜕ᶒİc;bf;f3;d1;af;cea;IJe;b89; b9a;ឋIJb;f71;aff;ఔ5ca;ijc;௳௭IJf;‐ᕡdf1;&#ff0e;ALDP IJe; C ʠb;aef;Ze8;f4d;Ĵb; 600ߟ700 a2;df;ce;⏚IJe;᜕ᶒİc; X-ALD ఔf15;İd;d77;௭௳ϗb;ea6;İc; ad8;௭İb;,ALDP IJe; C ʠb;aef;Ze8;f4d;IJf;bf;f3;d1;af;cea;IJe;b89;b9a;ឋIJb;[cd;⌕IJa;f79;ᒘఔ>c5; ௷௺Ĵb;5ef;Pfd;ឋİc;Ĵb;&#ff0e;Liu IJf; ALDP IJe;c0;a4; de;fc;ᓄIJb;IJf; C ʠb;aef;Ze8;f4d;(AA.631ߟ745)İc;[cd;⌕ Ĵb;ᛇȠa;௱௺Ĵb;&#ff0e; 13) H667D ఌ S606L IJe;ఐ௦IJa; ᜕ᶒIJf;,ıd;Ĵc;Qea;eab;Ĵb;IJf;[ce;˯f;ɂb; ALDP df;b9;d5; a9;fc;eb;c9;௱ıf;c0;a4;de;fc;ఔf62;ᡂ௱,ᶒe38;bf;f3;d1;af;cea; ௱௺a8d;b58;௯Ĵc;ᑖYe3;௯Ĵc;Ĵb;ὃ௨Ĵc;Ĵb;&#ff0e;e00;Ab9;,᜕ᶒ ɂb; ALDP-GFP(R104C)IJf;da;eb;aa;ad;b7;bd;fc;e0;ᑖ˱b; IJb;8de;5ce;௯Ĵc;Ĵb;ఊIJe;IJe;,d5;e9;b0;e1;f3;c8;ᓄ௱௺Ĵb;௭ 169 Fig. 4.
X
ABCD3 p.Gly116Arg 17202797:41:4168
status: NEW[hide] X-linked adrenoleukodystrophy: genes, mutations, a... Neurochem Res. 1999 Apr;24(4):521-35. Smith KD, Kemp S, Braiterman LT, Lu JF, Wei HM, Geraghty M, Stetten G, Bergin JS, Pevsner J, Watkins PA
X-linked adrenoleukodystrophy: genes, mutations, and phenotypes.
Neurochem Res. 1999 Apr;24(4):521-35., [PMID:10227685]
Abstract [show]
X-linked adrenoleukodystrophy (X-ALD) is a complex and perplexing neurodegenerative disorder. The metabolic abnormality, elevated levels of very long-chain fatty acids in tissues and plasma, and the biochemical defect, reduced peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity, are ubiquitous features of the disease. However, clinical manifestations are highly variable with regard to time of onset, site of initial pathology and rate of progression. In addition, the abnormal gene in X-ALD is not the gene for VLCS. Rather, it encodes a peroxisomal membrane protein with homology to the ATP-binding cassette (ABC) transmembrane transporter superfamily of proteins. The X-ALD protein (ALDP) is closely related to three other peroxisomal membrane ABC proteins. In this report we summarize all known X-ALD mutations and establish the lack of an X-ALD genotype/phenotype correlation. We compare the evolutionary relationships among peroxisomal ABC proteins, demonstrate that ALDP forms homodimers with itself and heterodimers with other peroxisomal ABC proteins and present cDNA complementation studies suggesting that the peroxisomal ABC proteins have overlapping functions. We also establish that there are at least two peroxisomal VLCS activities, one that is ALDP dependent and one that is ALDP independent. Finally, we discuss variable expression of the peroxisomal ABC proteins and ALDP independent VLCS in relation to the variable clinical presentations of X-ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
103 As suggested by the obser- al. Table I. X-linked Adrenoleukodystrophy World Wide Mutations (9/98) Exon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 4 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 Allele S98L R104C R104H T105I L107P S108W G116R A141T N148S S149N R152C R152P R163H Y174D Y174S Q178E Y181C R182P D194H D200N D200V L211P N214D L220P D221G T254M P263L G266R E271K K276E G277R G277W E291K E291D A294T Y296C E302K L322P S342P R389G R389H R401W R401Q R418W P484R G507V G512S S515F R518W R518Q G522W P534L F540S Q544R S552P R554H P560L P560R M566K R591W R591Q S606P S606L E609K Mutation 293C>T 310C>T 311G>A 3 HOT 320T>C 323C>G 346G>A 421G>A 443A>G 446G>A 454OT 455G>C 488G>A 520T>G 521A>C 5320G 542A>G 545G>C 580G>C 598OA 599A>T 632T>C 640A>G 659T>C 662A>G 761OT 788OT 796G>A 811G>A 826A>G 829G>A 829G>T 871G>A 873OC 880G>A 887A>G 904G>A 965T>C 1024T>C 11650G 1166G>A 1201OT 1202G>A 1252OT 1452OG 1520G>T 1534G>A 1544OT 1552OT 1553G>A 1564G>A 1601OT 1619T>C 1631A>G 1654T>C 1661G>A 16790T 1679OG 1697T>A 1771OT 1772G>A 1816T>C 1817OT 1825G>A Missense muta ATG(387) 679OT 696OT 697G>A 700OT 706T>C 709OG 732G>A 807G>A 829A>G 832G>A 840OT 841G>C 874G>A 906T>G 907A>C 918OG 928A>G 931G>C 966G>C 984G>A 985A>T 1018T>C 1026A>G 1045T>C 1048A>G 1147C>T 1174C>T 1182C>A 1197G>A 1212A>G 1215G>A 1215G>T 1257G>A 1259G>C 1266G>A 1273A>G 1290G>A 1351T>C 1410T>C 1551C>G 1552G>A 1587OT 1588G>A 1638OT 1838OG 1906G>T 1920G>A 1930OT 1938OT 1939G>A 1950G>A 1987OT 2005T>C 2017A>G 2040T>C 2047G>A 20650T 20650C>G 2083T>A 2157C>T 2158G>A 2202T>C 2203OT 2211G>A ions N 2 2 1 1 1 1 1 1 3 1 2 1 1 2 1 1 1 I 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 3 1 1 3 1 3 2 1 1 1 2 1 1 6 1 1 1 1 1 3 2 ALDP + +/- nd - nd +/- - nd + + + nd nd nd nd nd nd nd + nd nd nd nd +/- - nd +/- nd nd + nd nd nd - nd nd nd nd + nd + nd + - nd nd - nd +/- - - - nd + - - +/- - - nd + - + - Reference 36 31,32 29 36 37 36 36 31 24,36,73 32 31,36 32 32 24,37 72 29 36 31 32 73 36 37 73 32 36 37 36 24,32,73 73 13 37 31 14 13 36 73 38 41 13 37 31,32 73 24,37,73 24,37,* 28 73 31,35,36 24 23,36 39,73 36 35 73 39,73 * * 29,36,73 36 31 73 31 36 23,31,73 32,37 Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 525X-ALD: Genes, Mutations, and Phenotypes Table I. Continued. Exon 8 8 8 8 9 9 9 10 Exon 1 1 1 1 1 1 1 2 2 4 4 5 7 8 9 10 Exon 1 1 1 1 5 6 7 9 Exon 3 6 7 7 9 Exon 1 1 1 1 1 1 1 1 1 1 1 1 1 3 Allele E609G R617C R617G R617H A626T D629H R660W W679R Allele W10X Q133X W137X Q157X Y181X Y212X W242X Q311X W326X R464X Q466X E477X Q590X W595X Q645X Q672X Allele 80-81insLRL 138-141del 277-278insN E291del 491-500insV G528del 587-590del I657del Allele Fs E408 Fs R545 Fs R545 Fs G593 Fs R622 Allele Fs A19 FsP34 FsL46 FsT91 FsG92 Fs A99 Fs Q133 Fs Y180 Fs L197 Fs S207 FsR231 Fs F261 Fs G266 Fs V378 Mutation 1826A>G 1849C>T 1849C>G 1850G>A 1876G>A 1885G>C 1978C>T 2035T>C Mutation 30G>A 397C>T 411G>A 469C>T 543C>A 636C>G 726G>A 931C>T 977G>A 1390C>T 1396C>T 1429G>T 1768C>T 1785G>A 1933C>T 2014C>T In frame 871delGAG 1582delGGT 1759-70del 1969delATC Mutation 1224A>G ivs1634+1G>A ivs1635-2A>G ivs1780+1G>A ivs1866-10G>A Mutation 56delC 102C>AT 138insT 274del34 277delC 298delG 401TGCTG>AGCATT 541delTA 591insT 618dell3 693delGG 785del7 796delG 1135insC Missense mutations ATG(387) 2212A>G 2235C>T 2235C>G 2236G>A 2262G>A 2271G>C 2364C>T 2421T>C Nonsense mutations 416G>A 783C>T 797G>A 855C>T 929C>A 1022C>G 1112G>A 1317C>T 1363G>A 1776C>T 1782C>T 1815G>T 2154C>T 2171G>A 2319C>T 2400C>T amino acid insertions & deletions 1257delGAG 1968delGGT 2145-56del 2355detATC Splice defects 1610A>G ivs2020+1G>A ivs2021-2A>G ivs2166+1G>A ivs2252-10G>A Frame shifts 442delC 488C>AT 524insT 660del34 663delC 684delG 787TGCTG>AGCATT 927delTA 977insT 1004del13 1079delGG 1171del7 1182delG 1521insC N 1 3 1 2 1 1 6 1 N 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 N 3 1 N 1 1 1 1 1 N 1 1 1 1 1 1 1 1 1 1 2 1 1 1 ALDP _ nd nd - - + - nd ALDP - - - - - nd nd nd nd nd nd nd nd nd - - ALDP nd nd nd - - nd nd nd ALDP nd nd - nd nd ALDP - nd nd nd nd nd nd - nd nd - nd nd - Reference 32 23,32,37 37 31,33 13 13 31,32,35,36,73 40 Reference 36 32 32 32 32 29 37 22 22 23 31 24,37 27 73 13 * Reference * 37 37 13,37,73 36 29 73 32 Reference 31 23 30 36 30 Reference 32 73 36 29 32 * 34 36 73 37 31,36 32 37 36 Total 1 1 1 1 1 1 1 1 Total 1 1 Total 1 1 1 1 1 1 1 1 Total 1 1 1 1 1 Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 al. Table I. Continued. Exon 4 5 5 5 6 6 6 8 8 9 start 1 2 2 3 3 3 6 7 7 7 8 8 9 Exon 6 10 Allele Fs A417 Fs V470 Fs V470 Fs E471 Fs F517 Fs G529 Fs P534 Fs A597 Fs S606 Fs D649 Allele 0.5 kb in exon 1 exon2del exon2-7del exon3-5del exon3-10del exon3-10del exon6-10del exon7-9del exon7-10del exon7-10del exon8-9del exon8-10del multiple exons Allele L516L Mutation 1250delC 1411insA 1412delAA 1415delAG 1551delC 1585delG alt1603-1991 1791delTA 1818delG 1949delGC 7 kb deletion Nucl.
X
ABCD3 p.Gly116Arg 10227685:103:251
status: NEW