ABCD1 p.Ser342Pro
Predicted by SNAP2: | A: D (75%), C: D (85%), D: D (95%), E: D (95%), F: D (95%), G: D (91%), H: D (95%), I: D (91%), K: D (95%), L: D (91%), M: D (91%), N: D (91%), P: D (95%), Q: D (95%), R: D (95%), T: D (71%), V: D (91%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: N, C: N, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: N, P: D, Q: D, R: D, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Adrenoleukodystrophy: subcellular localization and... J Neurochem. 2007 Jun;101(6):1632-43. Takahashi N, Morita M, Maeda T, Harayama Y, Shimozawa N, Suzuki Y, Furuya H, Sato R, Kashiwayama Y, Imanaka T
Adrenoleukodystrophy: subcellular localization and degradation of adrenoleukodystrophy protein (ALDP/ABCD1) with naturally occurring missense mutations.
J Neurochem. 2007 Jun;101(6):1632-43., [PMID:17542813]
Abstract [show]
Mutation in the X-chromosomal adrenoleukodystrophy gene (ALD; ABCD1) leads to X-linked adrenoleukodystrophy (X-ALD), a severe neurodegenerative disorder. The encoded adrenoleukodystrophy protein (ALDP/ABCD1) is a half-size peroxisomal ATP-binding cassette protein of 745 amino acids in humans. In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior. When expressed in X-ALD fibroblasts lacking ALDP, the expression level of mutant His-ALDPs (S606L, R617H, and H667D) was lower than that of wild type and other mutant ALDPs. Furthermore, mutant ALDP-green fluorescence proteins (S606L and H667D) stably expressed in CHO cells were not detected due to rapid degradation. Interestingly, the wild type ALDP co-expressed in these cells also disappeared. In the case of X-ALD fibroblasts from an ALD patient (R617H), the mutant ALDP was not detected in the cells, but appeared upon incubation with a proteasome inhibitor. When CHO cells expressing mutant ALDP-green fluorescence protein (H667D) were cultured in the presence of a proteasome inhibitor, both the mutant and wild type ALDP reappeared. In addition, mutant His-ALDP (Y174C), which has a mutation between transmembrane domain 2 and 3, did not exhibit peroxisomal localization by immunofluorescense study. These results suggest that mutant ALDPs, which have a mutation in the COOH-terminal half of ALDP, including S606L, R617H, and H667D, were degraded by proteasomes after dimerization. Further, the region between transmembrane domain 2 and 3 is important for the targeting of ALDP to the peroxisome.
Comments [show]
None has been submitted yet.
No. Sentence Comment
2 In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior.
X
ABCD1 p.Ser342Pro 17542813:2:85
status: NEW35 We found that mutant ALDPs with the missense mutations in the G116R S342P Q544R R617H H667D Y174C NH2 COOH C sequence Cytosol Membrane Matrix Walker A Walker B S606P, S606L R104C Fig. 1 A putative secondary structure of adrenoleukodystrophy protein.
X
ABCD1 p.Ser342Pro 17542813:35:68
status: NEW71 CHO-K1 cells (5 · 105 cells) were cultured in Ham`s F-12 medium with 10% FBS, 70 lg/mL of penicillin, and 140 lg/mL of streptomycin and transfected with 5 lg of pMAM2/ Table 1 Oligonucleotide primer sequences used for the generation of mutant ALDP constructs Construct name Forward primer (5' to 3') (top) R104C GCCTTGGTGAGCTGCACCTTCCTGTCG G116R GCCCGCCTGGACAGAAGGCTGGCC Y174C GCCTACCGCCTCTGCTCCTCCCAG S342P TGGAGCGCCCCGGGCCTGCTCATG Q544R GCATGTTCTACATCCCGCGGAGGCCCTACATGTC S606P AAGGACGTCCTGCCGGGTGGCGAGAAG S606L AAGGACGTCCTGTTGGGTGGCGAGAAG R617H GCAGAGAATCGGCATGGCCCACATGTTCTACCACAGGC H667D TCCCTGTGGAAATACGACACACACTTGCTA The underlined letters indicate the single base mutation leading to an amino acid replacement.
X
ABCD1 p.Ser342Pro 17542813:71:407
status: NEW119 Six mutant His-ALDPs (R104C, G116R, Y174C, S342P, Q544R, and S606P) were expressed in an equal amount to the wild type His-ALDP.
X
ABCD1 p.Ser342Pro 17542813:119:43
status: NEW127 As shown in Fig. 3d, His-ALDPs (R104C, G116R, S342P, Q544R, S606P, and S606L) exhibited a punctate staining pattern in the cells, which was superimposable on the distribution of catalase in the same cells, suggesting that these mutant His-ALDPs were correctly localized to peroxisomes.
X
ABCD1 p.Ser342Pro 17542813:127:46
status: NEW150 The fragments were not extractable with 0.1 mol/L sodium carbonate, indicating (a) (c) (b) (d) 400 140 120 100 Expressionratio(%) 80 60 40 His-ALDP R104C G116R Y174C S342P Q544R S606P S606L R617H H667D Catalase 20 0 100 Expressionratio(%) 80 60 40 20 0 350 300 250 200 150 pmol/h/mgprotein 100 50 0 Normal (139T) X-ALD (163T) M ock M ock W ild W ild N one S606L His-ALDP GFP Catalase R 617H H 667D R 104CG 116RY174C S342PQ 544RS606PS606LR 617HH 667D M ock W ildR 104CG 116RY174CS342PQ 544RS606PS606LR 617HH 667D Fig. 3 Expression of wild type and mutant His-adrenoleukodystrophy proteins (ALDPs) in X-linked adrenoleukodystrophy (X-ALD) fibroblasts (163T).
X
ABCD1 p.Ser342Pro 17542813:150:166
status: NEW216 The mutation of R104C and G116R is located in loop1 between TMD1 and 2, Y174 is in loop2 between TMD2 and 3, S342P and Q544R are located in TMD6 and the helical region between Walker A and B, respectively.
X
ABCD1 p.Ser342Pro 17542813:216:109
status: NEW229 Recently Lie et al. investigated the dimerization of the COOH-terminal half of ALDP by a yeast two-hybrid assay and found that it could dimerize Table 2 Expression and localization of missense ALDPs Mutant ALDP Transient Stable Expressiona Localizationb b-Oxidationc Expressiona Localizationb Wild +++ Px + ++ Px R104Cd , G116R, S342P, Q544R, S606P +++ Px ) ++ Px Y174C +++ mis ) + mis S606L ++ Px ) ) ) R617H, H667D + ) ) ) ) Wild and mutant His-ALDPs or ALDP-GFPs were transiently expressed in X-ALD fibroblasts or stably expressed in CHO cells, respectively.
X
ABCD1 p.Ser342Pro 17542813:229:329
status: NEW259 Second, mutant ALDP (G116R, S342P, Q544R, and S606P) expressed similar levels to wild type ALDP in the experiment of transient expression as the corresponding His-ALDP in X-ALD fibroblasts (Fig. 3b and Table 2) and stable expression as ALDP-GFP in CHO cells (Fig. 4 and Table 2).
X
ABCD1 p.Ser342Pro 17542813:259:28
status: NEW262 As G116R and S342P are located to TMDs, substitution of these amino acids seems to affect substrate binding or transport through ALDP.
X
ABCD1 p.Ser342Pro 17542813:262:13
status: NEW[hide] Altered expression of ALDP in X-linked adrenoleuko... Am J Hum Genet. 1995 Aug;57(2):292-301. Watkins PA, Gould SJ, Smith MA, Braiterman LT, Wei HM, Kok F, Moser AB, Moser HW, Smith KD
Altered expression of ALDP in X-linked adrenoleukodystrophy.
Am J Hum Genet. 1995 Aug;57(2):292-301., [PMID:7668254]
Abstract [show]
X-linked adrenoleukodystrophy (ALD) is a neurodegenerative disorder with variable phenotypic expression that is characterized by elevated plasma and tissue levels of very long-chain fatty acids. However, the product of the gene defective in ALD (ALDP) is a membrane transporter of the ATP-binding cassette family of proteins and is not related to enzymes known to activate or oxidize fatty acids. We generated an antibody that specifically recognizes the C-terminal 18 amino acids of ALDP and can detect ALDP by indirect immunofluorescence. To better understand the mechanism by which mutations in ALDP lead to disease, we used this antibody to examine the subcellular distribution and relative abundance of ALDP in skin fibroblasts from normal individuals and ALD patients. Punctate immunoreactive material typical of fibroblast peroxisomes was observed in cells from seven normal controls and eight non-ALD patients. Of 35 ALD patients tested, 17 had the childhood-onset cerebral form of the disease, 13 had the milder adult phenotype adrenomyeloneuropathy, 3 had adrenal insufficiency only, and 2 were affected fetuses. More than two-thirds (69%) of all patients studied showed no punctate immunoreactive material. There was no correlation between the immunofluorescence pattern and clinical phenotype. We determined the mutation in the ALD gene in 15 of these patients. Patients with either a deletion or frameshift mutation lacked ALDP immunoreactivity, as expected. Four of 11 patients with missense mutations were also immunonegative, indicating that these mutations affected the stability or localization of ALDP. In the seven immunopositive patients with missense mutations, correlation of the location and nature of the amino acid substitution may provide new insights into the function of this peroxisomal membrane protein. Furthermore, the study of female relatives of immunonegative ALD probands may aid in the assessment of heterozygote status.
Comments [show]
None has been submitted yet.
No. Sentence Comment
178 In 11 patients, missense mutations that occurred throughout the protein were found: within the transmembrane domains (patients 1, 3, and 4), within the ATP-binding domain (patients 8-12), and on either side of the ATP-binding Table 3 Mutational Analysis of the ALD Gene in IS Unrelated Patients ALDP Patient Phenotype Mutation Consequence Immunoreactivity 1 .................. CALD 825 A-GG K276E + 2 .................. AMN 870-2 AGAG E291,& 3 .................. CALD 872 G-C E291D 4 .................. AMN 1023 T-IC S342P + 5 .................. AMN 1166 G-C R389H + 6 .................. CALD 1201 G-AA R401Q + 7 ........ CALD 1415-6 AAG FS@472 8 ........ AMN 1771 G-AA R591Q + 9 ........ Addison 1817 C-T S606L + 10 ................ AMN 1850 G-AA R617H 11 ................ CALD 1876 G-AA A626T 12 ................ Fetus 1884 G-C D629H + 13 ................ CALD 1932 C-UT Q645X 14 ................ AMN 1978 C-OT R660W 15 ........ AMN AExon7-10 Null Mutations in the ALD gene were determined, as described in Methods, in 15 of the ALD patients reported in table 2.
X
ABCD1 p.Ser342Pro 7668254:178:520
status: NEW[hide] [Adrenoleukodystrophy: structure and function of A... Yakugaku Zasshi. 2007 Jan;127(1):163-72. Takahashi N, Morita M, Imanaka T
[Adrenoleukodystrophy: structure and function of ALDP, and intracellular behavior of mutant ALDP with naturally occurring missense mutations].
Yakugaku Zasshi. 2007 Jan;127(1):163-72., [PMID:17202797]
Abstract [show]
Adrenoleukodystrophy (ALD) is an inherited disorder characterized by progressive demyelination of the central nervous system and adrenal dysfunction. The biochemical characterization is based on the accumulation of pathgnomonic amounts of saturated very long-chain fatty acid (VLCFA; C>22) in all tissues, including the brain white matter, adrenal glands, and skin fibroblasts, of the patients. The accumulation of VLCFA in ALD is linked to a mutation in the ALD (ABCD1) gene, an ABC subfamily D member. The ALD gene product, so-called ALDP (ABCD1), is thought to be involved in the transport of VLCFA or VLCFA-CoA into the peroxisomes. ALDP is a half-sized peroxisomal ABC protein and it has 745 amino acids in humans. ALDP is thought to be synthesized on free polysomes, posttranslationally transported to peroxisomes, and inserted into the membranes. During this process, ALDP interacts with Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane protein (PMP), the complex targets Pex3p on the peroxisomal membranes, and ALDP is inserted into the membranes. After integration into the membranes, ALDP is thought to form mainly homodimers. Here, we chose nine arbitrary mutations of human ALDP with naturally occurring missense mutations and examined the intracellular behavior of their ALDPs. We found that mutant ALDP (S606L, R617H, and H667D) was degraded together with wild-type ALDP by proteasomes. These results suggest that the complex of mutant and wild-type ALDP is recognized as misfolded proteins and degraded by the protein quality control system associated with proteasomes. Further, we found fragmentation of mutant ALDP (R104C) on peroxisomes and it was not inhibited by proteasomes inhibitors, suggesting that an additional protease(s) is also involved in the quality control of mutant ALDP. In addition, mutation of ALDP (Y174C) suggests that a loop between transmembrane domains 2 and 3 is important for the targeting of ALDP to peroxisomes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
18 S342P and Q544R are located in TMD6 and helical region between Walker A and B, respectively.
X
ABCD1 p.Ser342Pro 17202797:18:0
status: NEW28 ミスセンス変異を持つ ALDP の細胞内動態 ―一過性;67a;現による解析 ALD 患者の持つ変異 ALDP の機能,細胞内局在 性,細胞内における安定性を解析することは, ALDP の各ドメインの機能を知る上で有用な情報 を提供すると思われる.特にミスセンス変異は,た った 1 つのアミノ酸変異による異常であるので特に 興味深い.われわれは ALD 患者で報告されている ミスセンス変異の中から,TMD から 4 つ(R104C, G116R, Y174C, S342P),NBD から 4 つ(Q544R, S606P, S606L, R617H),C 末端部位から 1 つ (H667D)を任意に選び(Fig. 1),その機能と細胞 内動態を解析した.これらの実験は,大学院シンポ ジウムで報告したので,詳しく述べたいと思う. ALDP はペルオキシソームにおける極長鎖脂肪 酸の b 酸化に関与していることが知られている. 実際に ALD 患者由来の繊維芽細胞では極長鎖脂肪 酸の b 酸化活性が正常な線維芽細胞と比べて約 50 ―70%程度減少している.そこで野生型及び変異型 ALDP の機能を確認するため,ALDP を発現して いない ALD 患者由来線維芽細胞に,N 末端に His タグを付加した野生型と変異型 ALDP を一過性に 発現し,[1-14 C]lignoceric acid を基質として極長鎖 脂肪酸 b 酸化活性の測定を行った.その結果, ALDP 欠損線維芽細胞の極長鎖脂肪酸 b 酸化活性 は,正常細胞の約 50%まで減少していたが,野生 型 His-ALDP を発現させると正常と同程度にまで 活性が回復した.このことから発現させた野生型 His-ALDP は ALDP と同等の機能を持つことが確 認された.一方,9 種類のミスセンス変異 ALDP を発現した線維芽細胞では極長鎖脂肪酸 b 酸化活 性の増加は認められなかった.よって,これらのミ スセンス変異 ALDP は機能を欠くことが確認され た. ついで,野生型及び変異型 His-ALDP を発現し た ALD 患者線維芽細胞を回収し,変異型 ALDP の発現量を immunoblotting により定量化し解析し た(Table 1).なお ALDP の発現量は,ペルオキ シソームの指標酵素であるカタラーゼの発現量で補 正した.その結果,変異型 ALDP(R104C, G116R, Y174C, S342P, Q544R, S606P)は,野生型とほぼ 同程度の発現量を示した.一方,変異型 ALDP (S606L, R617H, H667D)では発現量が野生型の発 167 Table 1.
X
ABCD1 p.Ser342Pro 17202797:28:166
status: NEWX
ABCD1 p.Ser342Pro 17202797:28:1335
status: NEWX
ABCD1 p.Ser342Pro 17202797:28:5728
status: NEW29 Expression and Localization of Missense ALDPs Mutant Transient Stable Expression Localization b-Oxidation Expression Localization Wild Z Px + Z Px R104C, G116R S342P, Q544R S606P Z Px - Z Px Y174C Z mis - Z mis S606L + Px - - - R617H ± - - na na H667D + - - - - Wild and Mutant His-ALDPs or ALDP-GFPs were transiently expressed in X-ALD ˆbroblasts and stably expressed in CHO cells, respectively.
X
ABCD1 p.Ser342Pro 17202797:29:167
status: NEW36 1 現量と比べて約 50%程度減少していた.なお,各 ALDP ポジティブの細胞は約 30%程度であり,各 細胞間での発現効率に有意な差は認められなかっ た.このことから,ALDP の発現量が減少してい た 3 つの変異 ALDP は細胞内での安定性が低下し ていると推察された.また興味深いことに S606P と S606L は同じ部位の変異にも係わらず,置換し たアミノ酸によって発現量には差が認められた. ついで,変異型 His-ALDP の細胞内局在を蛍光 抗体法で確認した.変異型 ALDP(R104C, G116R, S342P, Q544R, S606P, S606L)では ALDP がカタ ラーゼの局在と一致したことから,正常にペルオキ シソームへ局在していることが確認された.一方, 変異型 ALDP(Y174C, H667D)では局在が一致せ ず,ALDP が他の細胞内小器官へ間違って輸送さ れていると考えられた.変異型 ALDP(R617H) では ALDP の発現が認められなかった.変異型 ALDP(R104C, G116R, S342P, Q544R, S606P)で は野生型とほぼ同程度のタンパク量が発現し,ペル オキシソームへの局在も確認されたので,これらの 変異型 ALDP は合成されたのちに正常にペルオキ シソームに運ばれるが,ペルオキシソーム膜におい てその機能(ATP 結合・加水分解若しくは基質輸 送)に異常を持つことが推察された.特に R104C, G116R, S342P は TMD に存在することから ALDP の基質輸送能が変化していると考えられる.一方, NBD に存在する Q544R, S606P は ATP 結合・加水 分解に影響を与えている可能性が考えられる.また S606P, S606L は変異が同じ部位でも構造的に安定 性が異なっていた.Roerig らは S606L の変異型 ALDP は,ATP との親和性が低下している一方で ATP 加水分解は正常に行われていると報告してい る.29) このことは ALDP と ATP の親和性が ALDP の安定性にも影響を及ぼしている可能性を示してい る.S606L と S606P の安定性の違いと機能の関係 は ALDP の機能を知る上でも興味深い点であり, 今後さらに検討を行う必要がある.一方,Y174C の変異型 ALDP は正常に発現するにも係わらず, ペルオキシソームへ局在せず他の細胞内小器官へミ スターゲッティングした.これまでにペルオキシ ソームへの局在化シグナルを欠くペルオキシソーム 膜タンパク質は,非特異的にミトコンドリアや小胞 体に移行することが知られている.30,31) よって, ALDP の TMD2―3 の間のループは,ペルオキシ ソームへの局在化に重要な役割を果たしている可能 性が推察される.Pex19p 存在化での in vitro タン パク質翻訳系において,ALDP(Y174C)は Pex19p に結合できるので,ALDP の N 末端 67―164 に存在するペルオキシソーム移行に係わる領域が ALDP の何らかの構造変化によってマスクされる のかもしれない. 5.
X
ABCD1 p.Ser342Pro 17202797:36:1518
status: NEWX
ABCD1 p.Ser342Pro 17202797:36:2502
status: NEWX
ABCD1 p.Ser342Pro 17202797:36:3542
status: NEW49 変異型 ALDP の分解過程の解析 新生タンパク質が正しいフォールディングを受け ることは,そのタンパク質の正常な機能発現のため に必須である.遺伝子変異などが存在すると,タン パク質がミスフォールディングされる.このミスフ ォールドタンパクが細胞外へ分泌されたり,細胞内 に蓄積したりすると生体にとって極めて有害になる ため,このようなタンパクはプロテアソーム,リソ ソーム等によって迅速に分解される.ちなみに,嚢 胞性線維症の原因タンパク質 CFTR は細胞膜イオ ンチャネルとして機能する ABC タンパク質である が,変異 CFTR は小胞体膜からプロテアソームに リクルートされ分解されることが報告されてい る.32,33) しかしながら,変異型 ALDP を始めとし て,ペルオキシソーム膜タンパク質についての解析 はほとんど行われていない. 変異型 ALDP の一過性発現と安定過剰発現実験 より,ALDP(S606L, R617H, H667D, R104C)は, プロテアーゼにより分解されていると推定された. そこで,ALDP-GFP(H667D)を発現している CHO 細胞に各種プロテアーゼ阻害剤を処理し,解 析を行った.その結果,プロテアソーム阻害剤であ る lactacystin を処理した細胞では ALDP-GFP 及び ALDP の バ ン ド が 出 現 し た ( Fig. 4 ). 一 方 , leupeptin, AEBSF, E64d には効果がなかった.ま た他のプロテアソーム阻害剤である MG132 も有効 であった.さらにプロテアソーム阻害剤により分解 を逃れた変異型 ALDP-GFP(H667D)の細胞内局 在を蛍光抗体法で観察すると,ペルオキシソームに 局在していることが確認された.一方,変異型 ALDP(R104C)のフラグメント化は上記プロテアー ゼ処理では阻害されなかった. さらに ALD 患者由来細胞の内因性変異 ALDP の分解とプロテアソーム分解系の関与について確認 するため,変異型 ALDP(R617H)を持つ患者由 来線維芽細胞を用いてタンパク分解の阻害実験を行 った.その結果,lactacystin と MG132 処理により, ALDP のバンドが出現した.以上の結果より,ペ ルオキシソーム膜上にはミスフォールドしたタンパ ク質を認識する仕組みが存在し,プロテアソーム及 び他のプロテアーゼを介して排除していることが示 唆された. 一方,山田らは ALD 患者線維芽細胞を[35 S]メチ オニンでパルスチェイスすることにより,変異型 ALDP(G512S, R660W)の分解が E-64 と leupepu- tin により抑制されることを報告している.34) 彼ら の実験ではプロテアソーム阻害剤については実験し ていないので,プロテアソームの関与は不明である が,変異型 ALDP の分解には,複数のプロテアー ゼが関与している可能性がある. 7.
X
ABCD1 p.Ser342Pro 17202797:49:33
status: NEW52 Some mutant ALDPs (R104C, G116R, S342P, Q544R and S606P) are normally inserted into the peroxisomal membrane, and others were mislocalized (Y174C) or degraded by proteasome (S606L, R617H and H667D).
X
ABCD1 p.Ser342Pro 17202797:52:33
status: NEW53 170 Vol. 127 (2007) その結果より,ミスセンス変異 ALDP は以下に 示すように 4 種類の細胞内動態を持つことが示され た(Fig. 5).1) 野生型と同様にペルオキシソーム に 局 在 す る が そ の 機 能 が 阻 害 さ れ て い る 変 異 (R104C, G116R, S342P, Q544R, S606P),2) ペル オキシソームへの局在化に障害がある変異(Y174C), 3) 変異によりタンパク質の安定性が低下しプロテ アソームでの分解を受けるが,一部ペルオキシソー ムに局在する変異(S606L),4) 変異によりタンパ ク質の安定性が低下しプロテアソームで選択的に分 解を受け,細胞内でほとんど確認できない変異 (R617H, H667D)の 4 種類のパターンである. 発現量も局在化も正常な変異では,ABC タンパ ク質としての機能に直接関与している機能ドメイン の障害が起こっていると推察される.この中で G116R, S342P は TMD に位置しており,基質の認 識や輸送に障害があると推察される.また Q544R, S606P は ATP と の 結 合 ・ 加 水 分 解 に 関 与 す る NBD に位置している.このような変異は,ALDP の ABC タンパク質としての機能を解析するために 有益と考えられる. 発現量は正常だが局在化に異常が認められた Y174C は,TMD2 と 3 の間のループ 2 に位置して おり,この領域が ALDP のペルオキシソームへの ターゲッティングに必要であることを示している. ALDP のターゲッティングに必要な領域は 67―164 番目のアミノ酸に存在することが報告されてい る.20) このことから,Y174C の変異による構造変化 のため,ターゲッティングシグナルがマスクされて いるのかもしれない.このタイプの変異は ALDP のペルオキシソームへの局在化を調べる上で重要と 考えられる. ALDP の変異で最も多いミスセンス変異ではそ の多くが細胞内で分解を受けている.R617H 及び H667D では発現量の著しい低下が認められる.特 に安定発現した CHO では immunoblot で検出でき なかった.ミスフォールドタンパク質の分解システ ムの 1 つにプロテアソームによる分解系がある.こ のタンパク質分解は,生物の様々な高次機能の制御 や環境ストレスに応答した恒常性の維持(ストレス 応答,タンパク質の品質管理など)に必須な役割を 担っている.しかし,小胞体を経由して合成される 分泌タンパク質や膜タンパク質に比べて,小胞体を 経由しない細胞内タンパク質の品質管理機構はあま り報告されていない.ALDP は遊離のポリソーム から直接ペルオキシソームに輸送されるが,この過 程でどのように R617H, H667D などの変異が認識 され,プロテアソーム系が働いているか興味深い. 171171No.
X
ABCD1 p.Ser342Pro 17202797:53:687
status: NEWX
ABCD1 p.Ser342Pro 17202797:53:2351
status: NEW27 df;b9;bb;f3;b9;᜕ᶒఔᢝ௸ ALDP IJe;d30;Pde;ᑁ4d5;ɦb; ߟe00;Έe;ឋ˿a;Ife;IJb;ఐĴb;Ye3;᪆ ALD <a3;ὅIJe;ᢝ௸᜕ᶒ ALDP IJe;a5f;Pfd;,d30;Pde;ᑁc40;ᙠ ឋ,d30;Pde;ᑁIJb;İa;௫Ĵb;b89;b9a;ឋఔYe3;᪆௳Ĵb;௭IJf;, ALDP IJe;ᔜc9;e1;a4;f3;IJe;a5f;Pfd;ఔMe5;Ĵb;e0a;ᨵᵨIJa;<c5;ᛇ ఔ?d0;f9b;௳Ĵb;əd;Ĵf;Ĵc;Ĵb;&#ff0e;ᱯIJb;df;b9;bb;f3;b9;᜕ᶒIJf;,ıf; ௷ıf; 1 ௸IJe;a2;df;ce;⏚᜕ᶒIJb;ఐĴb;ᶒe38;Ĵb;IJe;ᱯIJb; ‐ᕡdf1;&#ff0e;Ĵf;Ĵc;Ĵf;Ĵc;IJf; ALD <a3;ὅᛇȠa;௯Ĵc;௺Ĵb; df;b9;bb;f3;b9;᜕ᶒIJe;e2d;İb;,TMD İb; 4 ௸(R104C, G116R, Y174C, S342P) ,NBD İb; 4 ௸(Q544R, S606P, S606L, R617H) ,C ʠb;aef;Ze8;f4d;İb; 1 ௸ (H667D)ఔefb;ɢf;IJb;⍶ఁ(Fig. 1) ,ıd;IJe;a5f;Pfd;d30;Pde; ᑁ4d5;ɦb;ఔYe3;᪆௱ıf;&#ff0e;௭Ĵc;IJe;b9f; a13;IJf;,ᜧb66;▾b7;f3;dd; b8;a6;e0;ᛇȠa;௱ıf;IJe;,a73;௱İf;ff0;ఇıf;əd;௦&#ff0e; ALDP IJf;da;eb;aa;ad;b7;bd;fc;e0;IJb;İa;௫Ĵb;ᬿ╩⒴ᾦPaa; ⏚IJe; b ⏚ᓄIJb;_a2;e0e;௱௺Ĵb;௭İc;Me5;Ĵc;௺Ĵb;&#ff0e; b9f;ωb;IJb; ALD <a3;ὅᵫᩭIJe;e4a;dad;Rbd;d30;Pde;IJf;ᬿ╩⒴ᾦPaa; ⏚IJe; b ⏚ᓄd3b;ឋİc;b63;e38;IJa;dda;dad;Rbd;d30;Pde;bd4;ఇ௺d04; 50 ߟ70%a0b;ea6;e1b;c11;௱௺Ĵb;&#ff0e;ıd;௭[ce;˯f;ɂb;5ca;ఁ᜕ᶒɂb; ALDP IJe;a5f;Pfd;ఔNba;a8d;௳Ĵb;ıf;ఉ,ALDP ఔ˿a;Ife;௱௺ IJa; ALD <a3;ὅᵫᩭdda;dad;Rbd;d30;Pde;IJb;,N ʠb;aef;IJb; His bf;b0;ఔed8;4a0;௱ıf;[ce;˯f;ɂb;᜕ᶒɂb; ALDP ఔe00;Έe;ឋIJb; ˿a;Ife;௱, &#ff3b;1-14 C]lignoceric acid ఔ9fa;cea;௱௺ᬿ╩⒴ ᾦPaa;⏚ b ⏚ᓄd3b;ឋIJe;e2c;b9a;ఔʹc;௷ıf;&#ff0e;ıd;IJe;d50;ʧc;, ALDP b20;ʀd;dda;dad;Rbd;d30;Pde;IJe;ᬿ╩⒴ᾦPaa;⏚ b ⏚ᓄd3b;ឋ IJf;,b63;e38;d30;Pde;IJe;d04; 50%ije;e1b;c11;௱௺ıf;İc;,[ce;˯f; ɂb; His-ALDP ఔ˿a;Ife;௯ıb;Ĵb;b63;e38;Ȝc;a0b;ea6;IJb;ije; d3b;ឋİc;8de;fa9;௱ıf;&#ff0e;௭IJe;௭İb;˿a;Ife;௯ıb;ıf;[ce;˯f;ɂb; His-ALDP IJf; ALDP Ȝc;b49;IJe;a5f;Pfd;ఔᢝ௸௭İc;Nba; a8d;௯Ĵc;ıf;&#ff0e;e00;Ab9;,9 a2e;ϙe;IJe;df;b9;bb;f3;b9;᜕ᶒ ALDP ఔ˿a;Ife;௱ıf;dda;dad;Rbd;d30;Pde;IJf;ᬿ╩⒴ᾦPaa;⏚ b ⏚ᓄd3b; ឋIJe;ᜉ4a0;IJf;a8d;ఉĴc;IJa;İb;௷ıf;&#ff0e;ఐ௷௺,௭Ĵc;IJe;df; b9;bb;f3;b9;᜕ᶒ ALDP IJf;a5f;Pfd;ఔb20;İf;௭İc;Nba;a8d;௯Ĵc; ıf;&#ff0e; ௸,[ce;˯f;ɂb;5ca;ఁ᜕ᶒɂb; His-ALDP ఔ˿a;Ife;௱ ıf; ALD <a3;ὅdda;dad;Rbd;d30;Pde;ఔ8de;5ce;௱,᜕ᶒɂb; ALDP IJe;˿a;Ife;[cf;ఔ immunoblotting IJb;ఐĴa;b9a;[cf;ᓄ௱Ye3;᪆௱ ıf;(Table 1) &#ff0e;IJa;İa; ALDP IJe;˿a;Ife;[cf;IJf;,da;eb;aa;ad; b7;bd;fc;e0;IJe;ᢣa19;⏗d20;Ĵb;ab;bf;e9;fc;bc;IJe;˿a;Ife;[cf;Xdc; b63;௱ıf;&#ff0e;ıd;IJe;d50;ʧc;,᜕ᶒɂb; ALDP(R104C, G116R, Y174C, S342P, Q544R, S606P)IJf;,[ce;˯f;ɂb;ijb;ijc; Ȝc;a0b;ea6;IJe;˿a;Ife;[cf;ఔ̙a;௱ıf;&#ff0e;e00;Ab9;,᜕ᶒɂb; ALDP (S606L, R617H, H667D)IJf;˿a;Ife;[cf;İc;[ce;˯f;ɂb;IJe;˿a; 167 Table 1.
X
ABCD1 p.Ser342Pro 17202797:27:1177
status: NEWX
ABCD1 p.Ser342Pro 17202797:27:5065
status: NEW34 167 No. 1 Ife;[cf;bd4;ఇ௺d04; 50%a0b;ea6;e1b;c11;௱௺ıf;&#ff0e;IJa;İa;,ᔜ ALDP dd;b8;c6;a3;d6;IJe;d30;Pde;IJf;d04; 30%a0b;ea6;Ĵa;,ᔜ d30;Pde;╹IJe;˿a;Ife;4b9;᳛IJb;ᨵɢf;IJa;dee;IJf;a8d;ఉĴc;IJa;İb;௷ ıf;&#ff0e;௭IJe;௭İb;,ALDP IJe;˿a;Ife;[cf;İc;e1b;c11;௱௺ ıf; 3 ௸IJe;᜕ᶒ ALDP IJf;d30;Pde;ᑁIJe;b89;b9a;ឋİc;f4e;e0b;௱ ௺Ĵb;?a8;bdf;௯Ĵc;ıf;&#ff0e;ije;ıf;‐ᕡdf1;௭IJb; S606P S606L IJf;Ȝc;௲Ze8;f4d;IJe;᜕ᶒIJb;ఊfc2;Ĵf;ıa;,f6e;?db;௱ ıf;a2;df;ce;⏚IJb;ఐ௷௺˿a;Ife;[cf;IJb;IJf;dee;İc;a8d;ఉĴc;ıf;&#ff0e; ௸,᜕ᶒɂb; His-ALDP IJe;d30;Pde;ᑁc40;ᙠఔVcd;ᐝ ᢙf53;cd5;Nba;a8d;௱ıf;&#ff0e;᜕ᶒɂb; ALDP(R104C, G116R, S342P, Q544R, S606P, S606L)IJf; ALDP İc;ab;bf; e9;fc;bc;IJe;c40;ᙠe00;Qf4;௱ıf;௭İb;,b63;e38;IJb;da;eb;aa;ad; b7;bd;fc;e0;ఆc40;ᙠ௱௺Ĵb;௭İc;Nba;a8d;௯Ĵc;ıf;&#ff0e;e00;Ab9;, ᜕ᶒɂb; ALDP(Y174C, H667D)IJf;c40;ᙠİc;e00;Qf4;ıb; ıa;,ALDP İc;ed6;IJe;d30;Pde;ᑁc0f;ᘤb98;ఆ╹⍟௷௺f38;〈௯ Ĵc;௺Ĵb;ὃ௨Ĵc;ıf;&#ff0e;᜕ᶒɂb; ALDP(R617H) IJf; ALDP IJe;˿a;Ife;İc;a8d;ఉĴc;IJa;İb;௷ıf;&#ff0e;᜕ᶒɂb; ALDP(R104C, G116R, S342P, Q544R, S606P) IJf;[ce;˯f;ɂb;ijb;ijc;Ȝc;a0b;ea6;IJe;bf;f3;d1;af;[cf;İc;˿a;Ife;௱,da;eb; aa;ad;b7;bd;fc;e0;ఆIJe;c40;ᙠఊNba;a8d;௯Ĵc;ıf;IJe;,௭Ĵc;IJe; ᜕ᶒɂb; ALDP IJf;ᔠᡂ௯Ĵc;ıf;IJe;௵IJb;b63;e38;IJb;da;eb;aa;ad; b7;bd;fc;e0;IJb;Έb;Ĵc;Ĵb;İc;,da;eb;aa;ad;b7;bd;fc;e0;̳c;IJb;İa; ௺ıd;IJe;a5f;Pfd;(ATP d50;ᔠfb;4a0;c34;ᑖYe3;Re5;௱İf;IJf;9fa;cea;f38; 〈)IJb;ᶒe38;ఔᢝ௸௭İc;?a8;bdf;௯Ĵc;ıf;&#ff0e;ᱯIJb; R104C, G116R, S342P IJf; TMD IJb;b58;ᙠ௳Ĵb;௭İb; ALDP IJe;9fa;cea;f38;〈Pfd;İc;᜕ᓄ௱௺Ĵb;ὃ௨Ĵc;Ĵb;&#ff0e;e00;Ab9;, NBD IJb;b58;ᙠ௳Ĵb; Q544R, S606P IJf; ATP d50;ᔠfb;4a0;c34; ᑖYe3;IJb;f71;aff;ఔe0e;௨௺Ĵb;5ef;Pfd;ឋİc;ὃ௨Ĵc;Ĵb;&#ff0e;ije;ıf; S606P, S606L IJf;᜕ᶒİc;Ȝc;௲Ze8;f4d;ఊEcb;⌼ḄIJb;b89;b9a; ឋİc;ᶒIJa;௷௺ıf;&#ff0e;Roerig IJf; S606L IJe;᜕ᶒɂb; ALDP IJf;,ATP IJe;Yaa;Ȥc;ឋİc;f4e;e0b;௱௺Ĵb;e00;Ab9; ATP 4a0;c34;ᑖYe3;IJf;b63;e38;IJb;ʹc;Ĵf;Ĵc;௺Ĵb;ᛇȠa;௱௺ Ĵb;&#ff0e; 29) ௭IJe;௭IJf; ALDP ATP IJe;Yaa;Ȥc;ឋİc; ALDP IJe;b89;b9a;ឋIJb;ఊf71;aff;ఔ5ca;ijc;௱௺Ĵb;5ef;Pfd;ឋఔ̙a;௱௺ Ĵb;&#ff0e;S606L S606P IJe;b89;b9a;ឋIJe;⍟a5f;Pfd;IJe;_a2;fc2; IJf; ALDP IJe;a5f;Pfd;ఔMe5;Ĵb;e0a;ఊ‐ᕡdf1;Fb9;Ĵa;, eca;f8c;௯IJb;ʳc;a0e;ఔʹc;௦fc5;⌕İc;Ĵb;&#ff0e;e00;Ab9;,Y174C IJe;᜕ᶒɂb; ALDP IJf;b63;e38;IJb;˿a;Ife;௳Ĵb;IJb;ఊfc2;Ĵf;ıa;, da;eb;aa;ad;b7;bd;fc;e0;ఆc40;ᙠıb;ıa;ed6;IJe;d30;Pde;ᑁc0f;ᘤb98;ఆdf; b9;bf;fc;b2;c3;c6;a3;f3;b0;௱ıf;&#ff0e;௭Ĵc;ije;IJb;da;eb;aa;ad;b7; bd;fc;e0;ఆIJe;c40;ᙠᓄb7;b0;ca;eb;ఔb20;İf;da;eb;aa;ad;b7;bd;fc;e0; ̳c;bf;f3;d1;af;cea;IJf;,Ϗe;ᱯᶒḄIJb;df;c8;b3;f3;c9;ea;a2;ఌc0f;Pde; f53;IJb;Ofb;ʹc;௳Ĵb;௭İc;Me5;Ĵc;௺Ĵb;&#ff0e; 30,31) ఐ௷௺, ALDP IJe; TMD2ߟ3 IJe;╹IJe;eb;fc;d7;IJf;,da;eb;aa;ad;b7; bd;fc;e0;ఆIJe;c40;ᙠᓄIJb;[cd;⌕IJa;f79;ᒘఔʧc;ıf;௱௺Ĵb;5ef;Pfd; ឋİc;?a8;bdf;௯Ĵc;Ĵb;&#ff0e;Pex19p b58;ᙠᓄIJe; in vitro bf;f3; d1;af;cea;ffb;a33;cfb;IJb;İa;௺,ALDP(Y174C)IJf; Pex19p IJb;d50;ᔠİd;Ĵb;IJe;,ALDP IJe; N ʠb;aef; 67ߟ164 IJb;b58;ᙠ௳Ĵb;da;eb;aa;ad;b7;bd;fc;e0;Ofb;ʹc;IJb;fc2;Ĵf;Ĵb;♚9df;İc; ALDP IJe;f55;İb;IJe;Ecb;⌼᜕ᓄIJb;ఐ௷௺de;b9;af;௯Ĵc;Ĵb; IJe;İb;ఊ௱Ĵc;IJa;&#ff0e; 5.
X
ABCD1 p.Ser342Pro 17202797:34:1347
status: NEWX
ABCD1 p.Ser342Pro 17202797:34:2221
status: NEWX
ABCD1 p.Ser342Pro 17202797:34:3138
status: NEW