ABCD1 p.Arg74Trp
Predicted by SNAP2: | A: D (63%), C: D (63%), D: D (75%), E: D (59%), F: D (75%), G: D (66%), H: D (53%), I: D (63%), K: N (72%), L: D (71%), M: D (59%), N: N (53%), P: D (75%), Q: N (93%), S: N (53%), T: D (59%), V: D (66%), W: D (80%), Y: D (75%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: N, F: D, G: D, H: N, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, S: N, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Conservation of targeting but divergence in functi... Biochem J. 2011 Jun 15;436(3):547-57. Zhang X, De Marcos Lousa C, Schutte-Lensink N, Ofman R, Wanders RJ, Baldwin SA, Baker A, Kemp S, Theodoulou FL
Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression.
Biochem J. 2011 Jun 15;436(3):547-57., [PMID:21476988]
Abstract [show]
ABC (ATP-binding cassette) subfamily D transporters are found in all eukaryotic kingdoms and are known to play essential roles in mammals and plants; however, their number, organization and physiological contexts differ. Via cross-kingdom expression experiments, we have explored the conservation of targeting, protein stability and function between mammalian and plant ABCD transporters. When expressed in tobacco epidermal cells, the mammalian ABCD proteins ALDP (adrenoleukodystrophy protein), ALDR (adrenoleukodystrophy-related protein) and PMP70 (70 kDa peroxisomal membrane protein) targeted faithfully to peroxisomes and P70R (PMP70-related protein) targeted to the ER (endoplasmic reticulum), as in the native host. The Arabidopsis thaliana peroxin AtPex19_1 interacted with human peroxisomal ABC transporters both in vivo and in vitro, providing an explanation for the fidelity of targeting. The fate of X-linked adrenoleukodystrophy disease-related mutants differed between fibroblasts and plant cells. In fibroblasts, levels of ALDP in some 'protein-absent' mutants were increased by low-temperature culture, in some cases restoring function. In contrast, all mutant ALDP proteins examined were stable and correctly targeted in plant cells, regardless of their fate in fibroblasts. ALDR complemented the seed germination defect of the Arabidopsis cts-1 mutant which lacks the peroxisomal ABCD transporter CTS (Comatose), but neither ALDR nor ALDP was able to rescue the defect in fatty acid beta-oxidation in establishing seedlings. Taken together, our results indicate that the mechanism for trafficking of peroxisomal membrane proteins is shared between plants and mammals, but suggest differences in the sensing and turnover of mutant ABC transporter proteins and differences in substrate specificity and/or function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
153 Approximately 60% of X-ALD ABCD1 mutations are missense mutations, 65% of which result in no detectable ALDP, based on IF (immunofluorescence), indicating that they affect protein Table 1 Quantification of ALDP levels in X-ALD fibroblasts ALDP Mutation IF Immunoblot (% of control) p.Arg74Trp Absent 7.5 + - 0.6 p.Arg104Cys Reduced 35 + - 3.0 p.Ser149Asn Present 77 + - 3.0 p.Asp194His Present 60 + - 13.6 p.Leu220Pro Reduced 21.8 + - 5.4 p.Arg389His Present 40.6 + - 3.6 p.Arg554His Absent 1.0 + - 0.5 p.Ser606Leu Present 25 + - 1.5 p.Glu609Gly Absent 2.1 + - 1.3 p.Glu609Lys Absent 1.8 + - 0.9 p.Ala616Thr Absent 4.3 + - 1.7 p.Leu654Pro Absent 1.5 + - 1.3 p.Arg660Trp Absent 1.6 + - 0.8 p.His667Asp Absent 2.9 + - 1.0 p.Arg113fs Absent - Figure 3 Interaction of mammalian ABCD proteins with Arabidopsis Pex19 in vivo Tobacco plants stably expressing CFP-SKL were co-transfected with 35S::ABCD-YFP fusions andNLS-Pex19constructs.Leafepidermalcellswereimagedusingconfocalmicroscopy:(A-D) ALDP-YFP plus NLS-HsPex19; (E-H) ALDP-YFP plus NLS-AtPex19_1; (I-L) ALDR-YFP plus NLS-AtPex19_1.
X
ABCD1 p.Arg74Trp 21476988:153:284
status: NEW154 Approximately 60% of X-ALD ABCD1 mutations are missense mutations, 65% of which result in no detectable ALDP, based on IF (immunofluorescence), indicating that they affect protein Table 1 Quantification of ALDP levels in X-ALD fibroblasts ALDP Mutation IF Immunoblot (% of control) p.Arg74Trp Absent 7.5 + - 0.6 p.Arg104Cys Reduced 35 + - 3.0 p.Ser149Asn Present 77 + - 3.0 p.Asp194His Present 60 + - 13.6 p.Leu220Pro Reduced 21.8 + - 5.4 p.Arg389His Present 40.6 + - 3.6 p.Arg554His Absent 1.0 + - 0.5 p.Ser606Leu Present 25 + - 1.5 p.Glu609Gly Absent 2.1 + - 1.3 p.Glu609Lys Absent 1.8 + - 0.9 p.Ala616Thr Absent 4.3 + - 1.7 p.Leu654Pro Absent 1.5 + - 1.3 p.Arg660Trp Absent 1.6 + - 0.8 p.His667Asp Absent 2.9 + - 1.0 p.Arg113fs Absent - Figure 3 Interaction of mammalian ABCD proteins with Arabidopsis Pex19 in vivo Tobacco plants stably expressing CFP-SKL were co-transfected with 35S::ABCD-YFP fusions andNLS-Pex19constructs.Leafepidermalcellswereimagedusingconfocalmicroscopy:(A-D) ALDP-YFP plus NLS-HsPex19; (E-H) ALDP-YFP plus NLS-AtPex19_1; (I-L) ALDR-YFP plus NLS-AtPex19_1.
X
ABCD1 p.Arg74Trp 21476988:154:284
status: NEW[hide] Targeting of the human adrenoleukodystrophy protei... Eur J Cell Biol. 2003 Aug;82(8):401-10. Landgraf P, Mayerhofer PU, Polanetz R, Roscher AA, Holzinger A
Targeting of the human adrenoleukodystrophy protein to the peroxisomal membrane by an internal region containing a highly conserved motif.
Eur J Cell Biol. 2003 Aug;82(8):401-10., [PMID:14533738]
Abstract [show]
In this study we addressed the targeting requirements of peroxisomal ABC transporters, in particular the human adrenoleukodystrophy protein. This membrane protein is defective or missing in X-linked adrenoleukodystrophy, a neurodegenerative disorder predominantly presenting in childhood. Using adrenoleukodystrophy protein deletion constructs and green fluorescent protein fusion constructs we identified the amino acid regions 1-110 and 67-164 to be sufficient for peroxisomal targeting. However, the minimal region shared by these constructs (amino acids 67-110) is not sufficient for peroxisomal targeting by itself. Additionally, the NH2-terminal 66 amino acids enhance targeting efficiency. Green fluorescent protein-labeled fragments of human peroxisomal membrane protein 69 and Saccharomyces cerevisiae Pxa1 corresponding to the amino acid 67-164 adrenoleukodystrophy protein region were also directed to the mammalian peroxisome. The required region contains a 14-amino-acid motif (71-84) conserved between the adrenoleukodystrophy protein and human peroxisomal membrane protein 69 and yeast Pxa1. Omission or truncation of this motif in the adrenoleukodystrophy protein abolished peroxisomal targeting. The single amino acid substitution L78F resulted in a significant reduction of targeting efficiency. The in-frame deletion of three amino acids (del78-80LLR) within the proposed targeting motif in two patients suffering from X-linked adrenoleukodystrophy resulted in the mislocalization of a green fluorescent protein fusion protein to nucleus, cytosol and mitochondria. Our data define the targeting region of human adrenoleukodystrophy protein containing a highly conserved 14-amino-acid motif.
Comments [show]
None has been submitted yet.
No. Sentence Comment
127 Construct name n Strictly peroxisomal targeting (%) 1 ± 281 ALDP-GFP1 361 313 (86.7) * 1 ± 164 ALDP-GFP1 331 277 (83.7) * 1 ± 110 ALDP-GFP1 132 108 (81.8) * 282 ± 745 ALDP-GFP 218 0 (0) * 67 ± 164 ALDP-GFP 176 90 (51.1) 67 ± 134 ALDP-GFP 275 0 (0) * 78 ± 164 ALDP-GFP2 247 2 (0.8) * 87 ± 164 ALDP-GFP2 206 1 (0.5) * 67 ± 164 ALDP(F71S)-GFP3 363 143 (39.4) 67 ± 164 ALDP(F71V)-GFP3 203 90 (44.3) 67 ±; 164 ALDP(R74W)-GFP3 218 89 (40.8) 67 ± 164 ALDP(R74G)-GFP3 277 123 (44.4) 67 ± 164 ALDP(L78F)-GFP3 315 103 (32.7) * 67 ± 164 ALDP(L81V)-GFP3 363 199 (54.8) 67 ± 164 ALDP(P84A)-GFP3 413 196 (47.5) 67 ± 164 ALDP-delLLR-GFP4 224 0 (0) * Total number of cells (n) analysed that were transfected with various ALDP-GFP fusion constructs.
X
ABCD1 p.Arg74Trp 14533738:127:453
status: NEWX
ABCD1 p.Arg74Trp 14533738:127:464
status: NEW[hide] X-linked adrenoleukodystrophy in women: a cross-se... Brain. 2014 Mar;137(Pt 3):693-706. doi: 10.1093/brain/awt361. Epub 2014 Jan 29. Engelen M, Barbier M, Dijkstra IM, Schur R, de Bie RM, Verhamme C, Dijkgraaf MG, Aubourg PA, Wanders RJ, van Geel BM, de Visser M, Poll-The BT, Kemp S
X-linked adrenoleukodystrophy in women: a cross-sectional cohort study.
Brain. 2014 Mar;137(Pt 3):693-706. doi: 10.1093/brain/awt361. Epub 2014 Jan 29., [PMID:24480483]
Abstract [show]
X-linked adrenoleukodystrophy is the most common peroxisomal disorder. The disease is caused by mutations in the ABCD1 gene that encodes the peroxisomal transporter of very long-chain fatty acids. A defect in the ABCD1 protein results in elevated levels of very long-chain fatty acids in plasma and tissues. The clinical spectrum in males with X-linked adrenoleukodystrophy has been well described and ranges from isolated adrenocortical insufficiency and slowly progressive myelopathy to devastating cerebral demyelination. As in many X-linked diseases, it was assumed that female carriers remain asymptomatic and only a few studies addressed the phenotype of X-linked adrenoleukodystrophy carriers. These studies, however, provided no information on the prevalence of neurological symptoms in the entire population of X-linked adrenoleukodystrophy carriers, since data were acquired in small groups and may be biased towards women with symptoms. Our primary goal was to investigate the symptoms and their frequency in X-linked adrenoleukodystrophy carriers. The secondary goal was to determine if the X-inactivation pattern of the ABCD1 gene was associated with symptomatic status. We included 46 X-linked adrenoleukodystrophy carriers in a prospective cross-sectional cohort study. Our data show that X-linked adrenoleukodystrophy carriers develop signs and symptoms of myelopathy (29/46, 63%) and/or peripheral neuropathy (26/46, 57%). Especially striking was the occurrence of faecal incontinence (13/46, 28%). The frequency of symptomatic women increased sharply with age (from 18% in women <40 years to 88% in women >60 years of age). Virtually all (44/45, 98%) X-linked adrenoleukodystrophy carriers had increased very long-chain fatty acids in plasma and/or fibroblasts, and/or decreased very long-chain fatty acids beta-oxidation in fibroblasts. We did not find an association between the X-inactivation pattern and symptomatic status. We conclude that X-linked adrenoleukodystrophy carriers develop an adrenomyeloneuropathy-like phenotype and there is a strong association between symptomatic status and age. X-linked adrenoleukodystrophy should be considered in the differential diagnosis in women with chronic myelopathy and/or peripheral neuropathy (especially with early faecal incontinence). ABCD1 mutation analysis deserves a place in diagnostic protocols for chronic non-compressive myelopathy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
141 Table 1 Summary of symptoms and signs of all the female participating in the study Family Age (years) Urinary incontinence Faecal incontinence Gait disorder Sensory complaints Sensory disturbance Spasticity Weakness Pathological reflexes EDSS Mutation ABCD1 protein A 44 No No Yes No No No No Yes 1.0 p.Pro480Thr Absent A 56 Yes Yes No No No No No Yes 1.5 p.Pro480Thr Absent AA 45 No No No No No No No No 0 p.Arg660Trp Absent AA 59 Yes No Yes No No No Yes Yes 3.5 p.Arg660Trp Absent AA 75 Yes No Yes No Yes Yes Yes Yes 6.0 p.Arg660Trp Absent B 42 Yes Yes Yes No Yes Yes Yes Yes 4.0 p.Leu220Pro Reduced B 44 No No No No No No No No 0 p.Leu220Pro Reduced B 44 No No No No No No No No 0 p.Leu220Pro Reduced B 51 No No No Yes Yes No No No 1.0 p.Leu220Pro Reduced B 59 No No No Yes Yes No Yes No 2.0 p.Leu220Pro Reduced C 44 No No No No No No No No 0 p.Gln133* Absent D 38 Yes Yes Yes No Yes Yes Yes Yes 6.0 p.Leu654Pro Absent D 57 Yes No Yes Yes Yes No No Yes 5.5 p.Leu654Pro Absent E 31 No No No No No No No No 0 p.Arg74Trp Absent E 37 No No No No No No No No 0 p.Arg74Trp Absent E 60 No No Yes No Yes Yes Yes Yes 5.5 p.Arg74Trp Absent F 35 No No No No No No No No 0 p.Met1Val Absent G 42 No Yes No No No No No No 1.0 p.Ala245Asp Present H 61 Yes Yes Yes Yes Yes No No Yes 3.5 exon8-10del Absent I 71 No No No No Yes No No Yes 2.0 p.Glu609Lys Absent J 42 No No No No Yes No No Yes 1.5 p.Glu90* Absent K 31 No No No No No No No No 0 p.Pro543Leu Absent K 48 Yes No No No Yes No No Yes 2.5 p.Pro543Leu Absent K 57 No No Yes Yes Yes No Yes Yes 3.5 p.Pro543Leu Absent K 60 Yes No No No Yes No No Yes 3.5 p.Pro543Leu Absent L 51 Yes No Yes No Yes Yes Yes Yes 6.5 p.Ile657del Absent M 22 No No No No No No No No 0 p.Ser149Asn Reduced M 40 No No No No No No No No 0 p.Ser149Asn Reduced N 29 No No No No No No No No 0 p.Arg389His Reduced N 45 Yes No No Yes No No No No 2.0 p.Arg389His Reduced N 57 Yes Yes Yes Yes Yes No No No 3.5 p.Arg389His Reduced N 70 No No Yes No Yes No Yes Yes 3.5 p.Arg389His Reduced O 40 Yes Yes Yes Yes Yes No No Yes 3.5 p.Glu609Lys Absent P 59 Yes Yes Yes Yes Yes Yes Yes Yes 6.0 p.Leu215* Absent Q 39 No Yes Yes No Yes No No No 3.0 p.Val208Trpfs Absent R 28 No No No No No No No No 0 p.Pro480Thr Absent S 35 No No No No No No No No 0 p.His283Tyr Reduced (continued) Correlation studies of X-inactivation with asymptomatic or symptomatic status The distribution of ABCD1 allele-specific expression (which will be referred to as the pattern of X-inactivation) is shown in Fig. 5A.
X
ABCD1 p.Arg74Trp 24480483:141:1012
status: NEWX
ABCD1 p.Arg74Trp 24480483:141:1061
status: NEWX
ABCD1 p.Arg74Trp 24480483:141:1117
status: NEW