ABCD1 p.Arg104Cys
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Komrower Lecture. Adrenoleukodystrophy: natural hi... J Inherit Metab Dis. 1995;18(4):435-47. Moser HW
Komrower Lecture. Adrenoleukodystrophy: natural history, treatment and outcome.
J Inherit Metab Dis. 1995;18(4):435-47., [PMID:7494402]
Abstract [show]
Our laboratory has identified nearly 2000 patients with X-linked adrenoleukodystrophy (ALD) and conducted therapeutic trials in groups of patients who represent the major phenotypes. We report recent results of dietary therapy with a mixture of glyceryl trioleate and glyceryl trierucate oil, also referred to as Lorenzo's Oil, in the asymptomatic and childhood cerebral phenotypes. Fifty-three patients started this therapy at a mean age of 7.5 years at a time when they were free of neurological symptoms. Although analysis of data is hampered by the lack of a concurrent control group, follow-up studies after 39 months of therapy suggest that subsequent neurological involvement was less frequent and less severe than anticipated from historical controls. Retrospective analysis of the effect of the oil in patients with the severe childhood cerebral phenotype indicates that there was a slight but statistically significant slowing of clinical progression and delay of death.
Comments [show]
None has been submitted yet.
No. Sentence Comment
29 Mutation Predicted consequence Phenotype a 1 310 C -4 T R104C AMN 2 420 G -4 A A140T Cer 3 454 C -4 T R152C Cer 4 545 G -4 C R182P Addis 5 692 G -4 C Addis 693-4 del GG Frameshift at AA 231 6 770 G -4 T G277W Cer 7 1166 G -4 A R389H AMN 8 I224 G -4 A Spl mutation at AA 408 AMN 9 1389 G --+ A R464 stop AMN 10 1411 ins A Frameshift at AA 470 AMN 11 1412-3 del AA Frameshift at AA 470 Cer 12 1415-6 del AG Frameshift at AA 472 Cer 13 1415-6 del AG Frarneshift at AA 472 Cer 14 1415-6 del AG Frameshift at AA 472 Addis 15 1415-6 del AG Frameshift at AA 472 AMN 16 t415-6 del AG Frameshift at AA 472 AMN 17 1415-6 del AG Frameshift at AA 472 Cer 18 1534 G -4 A G512S Cer 19 1698 T -4 A M567K AMN 20 t817 C -4 T $604F Addis 1548 G -4 A L516L 21 1850 G -+ A R617H AMN 22 1978 G -4 A R660W AMN ~Cer=childhoodcerebralALD; Addis=Addisondisease the multiple binding sites on bovine albumin for shorter-chain fatty acids, there is only a single binding site for C26:0.
X
ABCD1 p.Arg104Cys 7494402:29:56
status: NEW[hide] Mutational analysis and genotype-phenotype correla... Arch Neurol. 1999 Mar;56(3):295-300. Takano H, Koike R, Onodera O, Sasaki R, Tsuji S
Mutational analysis and genotype-phenotype correlation of 29 unrelated Japanese patients with X-linked adrenoleukodystrophy.
Arch Neurol. 1999 Mar;56(3):295-300., [PMID:10190819]
Abstract [show]
BACKGROUND: X-linked adrenoleukodystrophy (ALD) is an inherited disease characterized by progressive neurologic dysfunction, occasionally associated with adrenal insufficiency. The classic form of ALD usually has onset in childhood (childhood cerebral ALD), with rapid neurologic deterioration leading to a vegetative state. Adult-onset cerebral ALD also presents with rapidly progressive neurologic dysfunction. Milder phenotypes such as adrenomyeloneuropathy and Addison disease only also have been recognized. Despite discovery of the causative gene, a molecular basis for the diverse clinical presentations remains to be elucidated. OBJECTIVES: To conduct mutational analyses in 29 Japanese patients with ALD from 29 unrelated families, to obtain knowledge of the spectrum of mutations in this gene, and to study genotype-phenotype correlations in Japanese patients. METHODS: The 29 patients comprised 13 patients with childhood cerebral ALD, 11 patients with adult-onset cerebral ALD, and 5 patients with adrenomyeloneuropathy. We conducted detailed mutational analyses of 29 unrelated Japanese patients with ALD by genomic Southern blot analysis and direct nucleotide sequence analysis of reverse transcriptase-polymerase chain reaction products derived from total RNA that was extracted from cultured skin fibroblasts, lymphoblastoid cells, or peripheral blood leukocytes. RESULTS: Three patients with adult-onset cerebral ALD were identified as having large genomic rearrangements. The remaining 26 patients were identified as having 21 independent mutations, including 12 novel mutations resulting in small nucleotide alterations in the ALD gene. Eighteen (69%) of 26 mutations were missense mutations. Most missense mutations involved amino acids conserved in homologous gene products, including PMP70, mALDRP, and Pxa1p. The AG dinucleotide deletion at position 1081-1082, which has been reported previously to be the most common mutation in white patients (12%-17%), was also identified as the most common mutation in Japanese patients (12%). All phenotypes were associated with mutations resulting in protein truncation or subtle amino acid changes. There were no differences in phenotypic expressions between missense mutations involving conserved amino acids and those involving nonconserved amino acids. CONCLUSIONS: There are no obvious correlations between the phenotypes of patients with ALD and their genotypes, suggesting that other genetic or environmental factors modify the phenotypic expressions of ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
87 Review of previous publications indicated that 14 missense mutations are associated exclu- sivelywithAMNorAddisondiseaseonly,includingC696T (R104C),33,34 G697A(R104H),42 C700T(T105I),45 G832A (S149N),35 C918G(Q178E),42 T1045C(L220P),35 C1137T (T254M),37 G1266A(A294T),45 C1551G(R389G),37 G1552A (R389H),33,35 C1638T (R418W),37 C1930T (S515F),38 T2084A(M566K),33 andG2211A(E606K).35,37 Analysisof these mutations may provide important insights into the mechanisms involved in variable phenotypic expressions in ALD.
X
ABCD1 p.Arg104Cys 10190819:87:141
status: NEW[hide] Conservation of targeting but divergence in functi... Biochem J. 2011 Jun 15;436(3):547-57. Zhang X, De Marcos Lousa C, Schutte-Lensink N, Ofman R, Wanders RJ, Baldwin SA, Baker A, Kemp S, Theodoulou FL
Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression.
Biochem J. 2011 Jun 15;436(3):547-57., [PMID:21476988]
Abstract [show]
ABC (ATP-binding cassette) subfamily D transporters are found in all eukaryotic kingdoms and are known to play essential roles in mammals and plants; however, their number, organization and physiological contexts differ. Via cross-kingdom expression experiments, we have explored the conservation of targeting, protein stability and function between mammalian and plant ABCD transporters. When expressed in tobacco epidermal cells, the mammalian ABCD proteins ALDP (adrenoleukodystrophy protein), ALDR (adrenoleukodystrophy-related protein) and PMP70 (70 kDa peroxisomal membrane protein) targeted faithfully to peroxisomes and P70R (PMP70-related protein) targeted to the ER (endoplasmic reticulum), as in the native host. The Arabidopsis thaliana peroxin AtPex19_1 interacted with human peroxisomal ABC transporters both in vivo and in vitro, providing an explanation for the fidelity of targeting. The fate of X-linked adrenoleukodystrophy disease-related mutants differed between fibroblasts and plant cells. In fibroblasts, levels of ALDP in some 'protein-absent' mutants were increased by low-temperature culture, in some cases restoring function. In contrast, all mutant ALDP proteins examined were stable and correctly targeted in plant cells, regardless of their fate in fibroblasts. ALDR complemented the seed germination defect of the Arabidopsis cts-1 mutant which lacks the peroxisomal ABCD transporter CTS (Comatose), but neither ALDR nor ALDP was able to rescue the defect in fatty acid beta-oxidation in establishing seedlings. Taken together, our results indicate that the mechanism for trafficking of peroxisomal membrane proteins is shared between plants and mammals, but suggest differences in the sensing and turnover of mutant ABC transporter proteins and differences in substrate specificity and/or function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
153 Approximately 60% of X-ALD ABCD1 mutations are missense mutations, 65% of which result in no detectable ALDP, based on IF (immunofluorescence), indicating that they affect protein Table 1 Quantification of ALDP levels in X-ALD fibroblasts ALDP Mutation IF Immunoblot (% of control) p.Arg74Trp Absent 7.5 + - 0.6 p.Arg104Cys Reduced 35 + - 3.0 p.Ser149Asn Present 77 + - 3.0 p.Asp194His Present 60 + - 13.6 p.Leu220Pro Reduced 21.8 + - 5.4 p.Arg389His Present 40.6 + - 3.6 p.Arg554His Absent 1.0 + - 0.5 p.Ser606Leu Present 25 + - 1.5 p.Glu609Gly Absent 2.1 + - 1.3 p.Glu609Lys Absent 1.8 + - 0.9 p.Ala616Thr Absent 4.3 + - 1.7 p.Leu654Pro Absent 1.5 + - 1.3 p.Arg660Trp Absent 1.6 + - 0.8 p.His667Asp Absent 2.9 + - 1.0 p.Arg113fs Absent - Figure 3 Interaction of mammalian ABCD proteins with Arabidopsis Pex19 in vivo Tobacco plants stably expressing CFP-SKL were co-transfected with 35S::ABCD-YFP fusions andNLS-Pex19constructs.Leafepidermalcellswereimagedusingconfocalmicroscopy:(A-D) ALDP-YFP plus NLS-HsPex19; (E-H) ALDP-YFP plus NLS-AtPex19_1; (I-L) ALDR-YFP plus NLS-AtPex19_1.
X
ABCD1 p.Arg104Cys 21476988:153:314
status: NEW169 Results are means + - S.D.; n = 3. significantly in response to low temperature in ten wild-type control lines tested (see Supplementary Figure S3A at http://www.BiochemJ.org/bj/436/bj4360547add.htm); however, increased expression levels of ALDP were found in several of the X-ALD fibroblasts investigated: p.Arg74Cys, p.Arg104Cys, p.Arg554His, p.Glu609Gly, p.Ala616Thr, p.Leu654Pro and p.Arg660Trp (Figures 4A and 4B).
X
ABCD1 p.Arg104Cys 21476988:169:321
status: NEW181 These included relatively common mutants which are unstable in fibroblasts, but which can be rescued by the application of proteasome inhibitors (p.Ser606Leu, p.Arg617His and p.His667Asp), the p.Arg104Cys mutant in which degradation of ALDP cannot be prevented by proteasome inhibitors and the p.Tyr174Cys mutant which is Table 2 X-ALD mutants used for analysis of targeting in tobacco cells The occurrence is the number of documented patients bearing the mutation; source: X-ALD database (http://www.x-ald.nl).
X
ABCD1 p.Arg104Cys 21476988:181:195
status: NEW154 Approximately 60% of X-ALD ABCD1 mutations are missense mutations, 65% of which result in no detectable ALDP, based on IF (immunofluorescence), indicating that they affect protein Table 1 Quantification of ALDP levels in X-ALD fibroblasts ALDP Mutation IF Immunoblot (% of control) p.Arg74Trp Absent 7.5 + - 0.6 p.Arg104Cys Reduced 35 + - 3.0 p.Ser149Asn Present 77 + - 3.0 p.Asp194His Present 60 + - 13.6 p.Leu220Pro Reduced 21.8 + - 5.4 p.Arg389His Present 40.6 + - 3.6 p.Arg554His Absent 1.0 + - 0.5 p.Ser606Leu Present 25 + - 1.5 p.Glu609Gly Absent 2.1 + - 1.3 p.Glu609Lys Absent 1.8 + - 0.9 p.Ala616Thr Absent 4.3 + - 1.7 p.Leu654Pro Absent 1.5 + - 1.3 p.Arg660Trp Absent 1.6 + - 0.8 p.His667Asp Absent 2.9 + - 1.0 p.Arg113fs Absent - Figure 3 Interaction of mammalian ABCD proteins with Arabidopsis Pex19 in vivo Tobacco plants stably expressing CFP-SKL were co-transfected with 35S::ABCD-YFP fusions andNLS-Pex19constructs.Leafepidermalcellswereimagedusingconfocalmicroscopy:(A-D) ALDP-YFP plus NLS-HsPex19; (E-H) ALDP-YFP plus NLS-AtPex19_1; (I-L) ALDR-YFP plus NLS-AtPex19_1.
X
ABCD1 p.Arg104Cys 21476988:154:314
status: NEW170 Results are means + - S.D.; n = 3. significantly in response to low temperature in ten wild-type control lines tested (see Supplementary Figure S3A at http://www.BiochemJ.org/bj/436/bj4360547add.htm); however, increased expression levels of ALDP were found in several of the X-ALD fibroblasts investigated: p.Arg74Cys, p.Arg104Cys, p.Arg554His, p.Glu609Gly, p.Ala616Thr, p.Leu654Pro and p.Arg660Trp (Figures 4A and 4B).
X
ABCD1 p.Arg104Cys 21476988:170:321
status: NEW182 These included relatively common mutants which are unstable in fibroblasts, but which can be rescued by the application of proteasome inhibitors (p.Ser606Leu, p.Arg617His and p.His667Asp), the p.Arg104Cys mutant in which degradation of ALDP cannot be prevented by proteasome inhibitors and the p.Tyr174Cys mutant which is c The Authors Journal compilation c Table 2 X-ALD mutants used for analysis of targeting in tobacco cells The occurrence is the number of documented patients bearing the mutation; source: X-ALD database (http://www.x-ald.nl).
X
ABCD1 p.Arg104Cys 21476988:182:195
status: NEW[hide] Adrenoleukodystrophy: subcellular localization and... J Neurochem. 2007 Jun;101(6):1632-43. Takahashi N, Morita M, Maeda T, Harayama Y, Shimozawa N, Suzuki Y, Furuya H, Sato R, Kashiwayama Y, Imanaka T
Adrenoleukodystrophy: subcellular localization and degradation of adrenoleukodystrophy protein (ALDP/ABCD1) with naturally occurring missense mutations.
J Neurochem. 2007 Jun;101(6):1632-43., [PMID:17542813]
Abstract [show]
Mutation in the X-chromosomal adrenoleukodystrophy gene (ALD; ABCD1) leads to X-linked adrenoleukodystrophy (X-ALD), a severe neurodegenerative disorder. The encoded adrenoleukodystrophy protein (ALDP/ABCD1) is a half-size peroxisomal ATP-binding cassette protein of 745 amino acids in humans. In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior. When expressed in X-ALD fibroblasts lacking ALDP, the expression level of mutant His-ALDPs (S606L, R617H, and H667D) was lower than that of wild type and other mutant ALDPs. Furthermore, mutant ALDP-green fluorescence proteins (S606L and H667D) stably expressed in CHO cells were not detected due to rapid degradation. Interestingly, the wild type ALDP co-expressed in these cells also disappeared. In the case of X-ALD fibroblasts from an ALD patient (R617H), the mutant ALDP was not detected in the cells, but appeared upon incubation with a proteasome inhibitor. When CHO cells expressing mutant ALDP-green fluorescence protein (H667D) were cultured in the presence of a proteasome inhibitor, both the mutant and wild type ALDP reappeared. In addition, mutant His-ALDP (Y174C), which has a mutation between transmembrane domain 2 and 3, did not exhibit peroxisomal localization by immunofluorescense study. These results suggest that mutant ALDPs, which have a mutation in the COOH-terminal half of ALDP, including S606L, R617H, and H667D, were degraded by proteasomes after dimerization. Further, the region between transmembrane domain 2 and 3 is important for the targeting of ALDP to the peroxisome.
Comments [show]
None has been submitted yet.
No. Sentence Comment
2 In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior.
X
ABCD1 p.Arg104Cys 17542813:2:64
status: NEW35 We found that mutant ALDPs with the missense mutations in the G116R S342P Q544R R617H H667D Y174C NH2 COOH C sequence Cytosol Membrane Matrix Walker A Walker B S606P, S606L R104C Fig. 1 A putative secondary structure of adrenoleukodystrophy protein.
X
ABCD1 p.Arg104Cys 17542813:35:173
status: NEW71 CHO-K1 cells (5 · 105 cells) were cultured in Ham`s F-12 medium with 10% FBS, 70 lg/mL of penicillin, and 140 lg/mL of streptomycin and transfected with 5 lg of pMAM2/ Table 1 Oligonucleotide primer sequences used for the generation of mutant ALDP constructs Construct name Forward primer (5' to 3') (top) R104C GCCTTGGTGAGCTGCACCTTCCTGTCG G116R GCCCGCCTGGACAGAAGGCTGGCC Y174C GCCTACCGCCTCTGCTCCTCCCAG S342P TGGAGCGCCCCGGGCCTGCTCATG Q544R GCATGTTCTACATCCCGCGGAGGCCCTACATGTC S606P AAGGACGTCCTGCCGGGTGGCGAGAAG S606L AAGGACGTCCTGTTGGGTGGCGAGAAG R617H GCAGAGAATCGGCATGGCCCACATGTTCTACCACAGGC H667D TCCCTGTGGAAATACGACACACACTTGCTA The underlined letters indicate the single base mutation leading to an amino acid replacement.
X
ABCD1 p.Arg104Cys 17542813:71:311
status: NEW119 Six mutant His-ALDPs (R104C, G116R, Y174C, S342P, Q544R, and S606P) were expressed in an equal amount to the wild type His-ALDP.
X
ABCD1 p.Arg104Cys 17542813:119:22
status: NEW127 As shown in Fig. 3d, His-ALDPs (R104C, G116R, S342P, Q544R, S606P, and S606L) exhibited a punctate staining pattern in the cells, which was superimposable on the distribution of catalase in the same cells, suggesting that these mutant His-ALDPs were correctly localized to peroxisomes.
X
ABCD1 p.Arg104Cys 17542813:127:32
status: NEW135 In this experiment, we chose R104C, G116R, and S606P (with normal localization in peroxisomes), Y174C (mislocalization), and S606L and H667D (degradation).
X
ABCD1 p.Arg104Cys 17542813:135:29
status: NEW149 On the other hand, mutant ALDP-GFP (R104C) was recovered in fractions 3 and 4, but some fragmentation of the ALDP-GFP was found in the fractions.
X
ABCD1 p.Arg104Cys 17542813:149:36
status: NEW150 The fragments were not extractable with 0.1 mol/L sodium carbonate, indicating (a) (c) (b) (d) 400 140 120 100 Expressionratio(%) 80 60 40 His-ALDP R104C G116R Y174C S342P Q544R S606P S606L R617H H667D Catalase 20 0 100 Expressionratio(%) 80 60 40 20 0 350 300 250 200 150 pmol/h/mgprotein 100 50 0 Normal (139T) X-ALD (163T) M ock M ock W ild W ild N one S606L His-ALDP GFP Catalase R 617H H 667D R 104CG 116RY174C S342PQ 544RS606PS606LR 617HH 667D M ock W ildR 104CG 116RY174CS342PQ 544RS606PS606LR 617HH 667D Fig. 3 Expression of wild type and mutant His-adrenoleukodystrophy proteins (ALDPs) in X-linked adrenoleukodystrophy (X-ALD) fibroblasts (163T).
X
ABCD1 p.Arg104Cys 17542813:150:148
status: NEW167 It is likely that a part of the mutant ALDP-GFP (R104C) was degraded on the peroxisomal membranes.
X
ABCD1 p.Arg104Cys 17542813:167:49
status: NEW169 Effect of proteasome inhibitors on mutant ALDP The transient and stable expression experiments of mutant ALDPs suggest that mutant ALDPs such as S606L, R617H, H667D, and R104C are degraded by proteases.
X
ABCD1 p.Arg104Cys 17542813:169:170
status: NEW180 Degradation of mutant ALDP (S606L) was similarly inhibited by lactacystin, but not by leupeptin, wild R104C G116R ALDP-GFP ALDP PMP70 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 Non specific ALDP-GFP ALDP PMP70 Non specific ALDP-GFP ALDP PMP70 Non specific Y174C H667D S606P S606L Fig. 4 Subcellular localization of wild type and mutant adrenoleukodystrophy protein (ALDP) -green fluorescence proteins (GFP) in CHO cells.
X
ABCD1 p.Arg104Cys 17542813:180:102
status: NEW181 The mitochondrial and light mitochondrial fraction from CHO cells expressing wild type ALDP and ALDP-GFP or each mutant ALDP-GFP (R104C, G116R, Y174C, S606P, S606L, or H667D) was fractionated by equilibrium density centrifugation on sucrose.
X
ABCD1 p.Arg104Cys 17542813:181:130
status: NEW184 Dots in R104C show the band corresponding to the ALDP-GFP fragments.
X
ABCD1 p.Arg104Cys 17542813:184:8
status: NEW186 On the other hand, fragmentation of ALDP-GFP (R104C) was not inhibited by lactacystin, MG132, leupeptin, AEBSF, or E-64d (data not shown).
X
ABCD1 p.Arg104Cys 17542813:186:46
status: NEW[hide] Spectrum of mutations in the gene encoding the adr... Am J Hum Genet. 1995 Jan;56(1):44-50. Ligtenberg MJ, Kemp S, Sarde CO, van Geel BM, Kleijer WJ, Barth PG, Mandel JL, van Oost BA, Bolhuis PA
Spectrum of mutations in the gene encoding the adrenoleukodystrophy protein.
Am J Hum Genet. 1995 Jan;56(1):44-50., [PMID:7825602]
Abstract [show]
X-linked adrenoleukodystrophy (ALD) has been associated with mutations in a gene encoding an ATP-binding transporter, which is located in the peroxisomal membrane. Deficiency of the gene leads to impaired peroxisomal beta-oxidation. Systematic analysis of the open reading frame of the ALD gene, using reverse transcriptase-PCR, followed by direct sequencing, revealed mutations in all 28 unrelated kindreds analyzed. No entire gene deletions or drastic promoter mutations were detected. In only one kindred did the mutation involve multiple exons. The other mutations were small alterations leading to missense (13 of 28) or nonsense mutations, a single amino acid deletion, frameshifts, or splice acceptor-site defects. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative transmembrane domains and in the ATP-binding domain. Mutations were detected in all investigated ALD kindreds, suggesting that this gene is the only gene responsible for X-linked ALD. This overview of mutations is useful in the determination of structurally and functionally important regions and provides an efficient screening strategy for identification of mutations in the ALD gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 The mutation T1045C created a novel HpaII site, which was confirmed Table 2 Mutations in the Putative ALD Gene in Patients Studied Genomic- Kindred Type of Mutation and Amino Acid Genomic-PCR Mutation Reference cDNA Alterationa Alterationb Exonc Primers Detectiond Phenotype' Number Missense: C696Tf ................ R104C (R) 1 303F + 821R 303F, 821R AMN 17 G832A ................ S149N (N) 1 702F + 1145R 702F, 931R AMN 8 G841C ................ R152P (K) 1 702F + 1145R 702F, 931R ChALD 27 G874Af ................ R163H (R) 1 702F + 931R 702F, 931R SympCar 14 G966C ................ D194H (D) 1 685F + 1145R 914F, 1145R ChALD 12 T1045C ................ L220P (L) 1 914F + 1145R HpaII AMN 7 G1182A ................. G266R (G) 1 702F + 1231R 914F,1231R AMN 24 G1552A ................. R389H (R) 3 1479F + 1861R 1479F,1752R AMN 20 (2X): G2211A................. E609K(E) 8 544F*+ 1078R*h 544F*, 876R* AMN 13,18 A2212G ................ E609G (E) 8 544F*+ 1078R*h 544F*, 876R* ChALD 5 C2235Tf................ R617C (R) 8 544F* + 2742R 544F*, 876R* ChALD 23 C2364Tf................ R660W (R) 9 544F* + 2742R 2312F, 1078R* AMN 21 Amino acid deletion: del 2355-2357 ........... del 1657(V) 9 849F* + 2478Rh 2312F,1078R* ChALD 6 Nonsense: C783Tf ................ Q133h 1 702F + 931R 702F, 931R ChALD 26 G797A ................ W137h 1 685F +1145R 702F,931R ChALD 10 C855T ................ Q157h 1 702F + 1145R 702F,931R AMN 9 C929A ................ Y181h 1 702F + 1145R HpaIl ChALD 15 Frameshift: delC442 ................ A19> 1 303F + 821R 303F,593R ChALD 2 del C663 ................ G92> 1 303F + 840R 576F, 821R ChALD 22 dell71-1178 ........... F261> 1 702F + 1231R 914F,1231R ChALD 28 (4X): del 1801-1802 ........... E471> 5 1781F + 1861R Polyacrylamide gel ChALD, AMN 3,4,16,25 alt 1989-2377 ........... P534> 6-9 1890F +2669R 1890F,1078R* AMN 11 Splice defect: de12021-2054 ........... R545> SA 7 1880F +2132R 1880F,2114R ChALD 1 ins 8 bp 2251f ............ R622> SA 9 849F* + 1078R*h 849F*, 1078R* AMN 19 a Nucleotide numbers refer to Mosser et al. (1993), EMBL database Z21876.
X
ABCD1 p.Arg104Cys 7825602:85:320
status: NEW[hide] Decreased expression of ABCD4 and BG1 genes early ... Hum Mol Genet. 2005 May 15;14(10):1293-303. Epub 2005 Mar 30. Asheuer M, Bieche I, Laurendeau I, Moser A, Hainque B, Vidaud M, Aubourg P
Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy.
Hum Mol Genet. 2005 May 15;14(10):1293-303. Epub 2005 Mar 30., [PMID:15800013]
Abstract [show]
Childhood cerebral adrenoleukodystrophy (CCER), adrenomyeloneuropathy (AMN) and AMN with cerebral demyelination (AMN-C) are the main phenotypic variants of X-linked adrenoleukodystrophy (ALD). It is caused by mutations in the ABCD1 gene encoding a half-size peroxisomal transporter that has to dimerize to become functional. The biochemical hallmark of ALD is the accumulation of very-long-chain fatty acids (VLCFA) in plasma and tissues. However, there is no correlation between the ALD phenotype and the ABCD1 gene mutations or the accumulation of VLCFA in plasma and fibroblast from ALD patients. The absence of genotype-phenotype correlation suggests the existence of modifier genes. To elucidate the mechanisms underlying the phenotypic variability of ALD, we studied the expression of ABCD1, three other peroxisomal transporter genes of the same family (ABCD2, ABCD3 and ABCD4) and two VLCFA synthetase genes (VLCS and BG1) involved in VLCFA metabolism, as well as the VLCFA concentrations in the normal white matter (WM) from ALD patients with CCER, AMN-C and AMN phenotypes. This study shows that: (1) ABCD1 gene mutations leading to truncated ALD protein are unlikely to cause variation in the ALD phenotype; (2) accumulation of saturated VLCFA in normal-appearing WM correlates with ALD phenotype and (3) expression of the ABCD4 and BG1, but not of the ABCD2, ABCD3 and VLCS genes, tends to be correlated with the severity of the disease, acting early in the pathogenesis of ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 Mutation Amino acid alteration Type of mutation at the protein level Tissue sample CCER1 521A.G Y174C Missense CCER2 1414insC fsE471 Frame shift CCER3 Unknown Unknown Unknown Fibroblast CCER4 411G.A W137X Nonsense CCER5 1961T.C L654P Missense CCER6 529C.T Q177X Nonsense CCER7 901-1G.A fsE300 Frame shift CCER8 796G.A G266R Missense CCER9 1822G.A G608S Missense Brain CCER10 1390C.A R464X Nonsense CCER11 253-254insC fsP84 Frame shift CCER12 619_627del S207_A209del Deletion AMN-C1 1414-1415insC fsE471 Frame shift AMN-C2 1661G.A R554H Missense AMN-C3 1585delG fsG528 Frame shift Fibroblast AMN-C4 1661G.A R554H Missense AMN-C5 1825G.A E609K Missense AMN-C6 919C.T Q307X Nonsense AMN-C7 1850G.A R617H Missense AMN-C8 887A.G Y296C Missense AMN-C9 965T.C L322P Missense Brain AMN-C10 1390C.T R464X Nonsense AMN-C11 [1165C.T;1224 þ 1GT.TG] [R389C;fSE408] Missense; frame shift AMN-C12 1661G.A R554H Missense AMN-C13 [1997A.C;2007C.G] [Y666S;H669Q] Missense AMN-C14 1755delG fsH586 Frame shift AMN1 529C.T Q177X Nonsense AMN2 1999C.G H667D Missense AMN3 1415delAG fsE471 Frame shift Fibroblast AMN4 337delC fsA112 Frame shift AMN5 310C.T R104C Missense AMN6 919C.T Q307X Nonsense AMN7 323C.T S108L Missense Brain All mutation designations conform to the nomenclature described by Antonarakis and den Dunnen (30,31).
X
ABCD1 p.Arg104Cys 15800013:76:1138
status: NEW[hide] Mutational analysis of patients with X-linked adre... Hum Mutat. 1995;6(2):104-15. Kok F, Neumann S, Sarde CO, Zheng S, Wu KH, Wei HM, Bergin J, Watkins PA, Gould S, Sack G, et al.
Mutational analysis of patients with X-linked adrenoleukodystrophy.
Hum Mutat. 1995;6(2):104-15., [PMID:7581394]
Abstract [show]
Adrenoleukodystrophy (ALD) is an X-linked neurodegenerative disorder characterized by elevated very long chain fatty acid (VLCFA) levels, reduced activity of peroxisomal VLCFA-CoA ligase, and variable phenotypic expression. A putative gene for ALD was recently identified and surprisingly encodes a protein (ALDP) that belongs to a family of transmembrane transporters regulated or activated by ATP (the ABC proteins). We have examined genomic DNA from ALD probands for mutations in the putative ALD gene. We detected large deletions of the carboxyl-terminal portion of the gene in 4 of 112 probands. Twenty-five of the ALD probands whose ALD genes appeared normal by Southern blot analysis were surveyed for mutations by Single Strand Conformation Polymorphism (SSCP) procedures and DNA sequence analysis. SSCP variants were detected in 22 probands and none in 60 X-chromosomes from normal individuals. Mutations were detected in all of the ALD probands. The mutations were distributed throughout the gene and did not correlate with phenotype. Approximately half were non-recurrent missense mutations of which 64% occurred in CpG dinucleotides. There was a cluster of frameshift mutations in a small region of exon 5, including an identical AG deletion in 7 unrelated probands. These data strongly support the supposition that mutations in the putative ALD gene result in ALD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
131 3' deletion 3' deletion 3' deletion 3' deletion R104C A141T R152C R182P Frameshift at AA 231 G277W R389H Spl mutation at AA 408 Q466 stop Frameshift at AA 470 Frameshift at AA 470 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 Frameshift at AA 472 G512S M566K S606L L516L R617H R660W - - Exons 3-10 Exons 7-10 Exons 8-10 Exons 7-10 33 Anglos 5 Scott 8 Anglos 7 Anglos 11 Jewish 36 Irish 51 Italian 37 Filipino 28 Anglos 23 Anglos 11 Anglos 8 Anglos 40 Italian 22 German 4 Anglos 5 black 8 Anglos 31 Anglos 10 Anglos 28 Anglos 22 Italian 8 German 35 German 7 Hispanic 28 German 24 Anglos 18 Jewish 9 Hispanic AMNa C E R ~ Cer Add' Cer AMN AMN AMN AMN Cer Cer Cer Add AMN AMN Cer Cer Cer AMN Add AMN AMN Cer AMN Cer AMN AMN AMN 5 Cer,AMN,Add 4 Cer,AMN 1 Cer 5 Cer,AMN,Add 1 4 2 1 2 2 5 Adopted 5 2 15 1 13 2 2 1 Cer AMN AMN,Add AMN Cer,AMN Cer,AMN Cer,AMN,Add ?
X
ABCD1 p.Arg104Cys 7581394:131:48
status: NEW[hide] [Adrenoleukodystrophy: structure and function of A... Yakugaku Zasshi. 2007 Jan;127(1):163-72. Takahashi N, Morita M, Imanaka T
[Adrenoleukodystrophy: structure and function of ALDP, and intracellular behavior of mutant ALDP with naturally occurring missense mutations].
Yakugaku Zasshi. 2007 Jan;127(1):163-72., [PMID:17202797]
Abstract [show]
Adrenoleukodystrophy (ALD) is an inherited disorder characterized by progressive demyelination of the central nervous system and adrenal dysfunction. The biochemical characterization is based on the accumulation of pathgnomonic amounts of saturated very long-chain fatty acid (VLCFA; C>22) in all tissues, including the brain white matter, adrenal glands, and skin fibroblasts, of the patients. The accumulation of VLCFA in ALD is linked to a mutation in the ALD (ABCD1) gene, an ABC subfamily D member. The ALD gene product, so-called ALDP (ABCD1), is thought to be involved in the transport of VLCFA or VLCFA-CoA into the peroxisomes. ALDP is a half-sized peroxisomal ABC protein and it has 745 amino acids in humans. ALDP is thought to be synthesized on free polysomes, posttranslationally transported to peroxisomes, and inserted into the membranes. During this process, ALDP interacts with Pex19p, a chaperone-like protein for intracellular trafficking of peroxisomal membrane protein (PMP), the complex targets Pex3p on the peroxisomal membranes, and ALDP is inserted into the membranes. After integration into the membranes, ALDP is thought to form mainly homodimers. Here, we chose nine arbitrary mutations of human ALDP with naturally occurring missense mutations and examined the intracellular behavior of their ALDPs. We found that mutant ALDP (S606L, R617H, and H667D) was degraded together with wild-type ALDP by proteasomes. These results suggest that the complex of mutant and wild-type ALDP is recognized as misfolded proteins and degraded by the protein quality control system associated with proteasomes. Further, we found fragmentation of mutant ALDP (R104C) on peroxisomes and it was not inhibited by proteasomes inhibitors, suggesting that an additional protease(s) is also involved in the quality control of mutant ALDP. In addition, mutation of ALDP (Y174C) suggests that a loop between transmembrane domains 2 and 3 is important for the targeting of ALDP to peroxisomes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
10 Further, we found fragmentation of mutant ALDP (R104C) on peroxisomes and it was not inhibited by proteasomes inhibitors, suggesting that an additional protease(s) is also involved in the quality control of mutant ALDP.
X
ABCD1 p.Arg104Cys 17202797:10:48
status: NEW16 Mutation of R104C and G116R is located in loop 1 between TMD1 and 2.
X
ABCD1 p.Arg104Cys 17202797:16:12
status: NEW28 ミスセンス変異を持つ ALDP の細胞内動態 ―一過性発現による解析 ALD 患者の持つ変異 ALDP の機能,細胞内局在 性,細胞内における安定性を解析することは, ALDP の各ドメインの機能を知る上で有用な情報 を提供すると思われる.特にミスセンス変異は,た った 1 つのアミノ酸変異による異常であるので特に 興味深い.われわれは ALD 患者で報告されている ミスセンス変異の中から,TMD から 4 つ(R104C, G116R, Y174C, S342P),NBD から 4 つ(Q544R, S606P, S606L, R617H),C 末端部位から 1 つ (H667D)を任意に選び(Fig. 1),その機能と細胞 内動態を解析した.これらの実験は,大学院シンポ ジウムで報告したので,詳しく述べたいと思う. ALDP はペルオキシソームにおける極長鎖脂肪 酸の b 酸化に関与していることが知られている. 実際に ALD 患者由来の繊維芽細胞では極長鎖脂肪 酸の b 酸化活性が正常な線維芽細胞と比べて約 50 ―70%程度減少している.そこで野生型及び変異型 ALDP の機能を確認するため,ALDP を発現して いない ALD 患者由来線維芽細胞に,N 末端に His タグを付加した野生型と変異型 ALDP を一過性に 発現し,[1-14 C]lignoceric acid を基質として極長鎖 脂肪酸 b 酸化活性の測定を行った.その結果, ALDP 欠損線維芽細胞の極長鎖脂肪酸 b 酸化活性 は,正常細胞の約 50%まで減少していたが,野生 型 His-ALDP を発現させると正常と同程度にまで 活性が回復した.このことから発現させた野生型 His-ALDP は ALDP と同等の機能を持つことが確 認された.一方,9 種類のミスセンス変異 ALDP を発現した線維芽細胞では極長鎖脂肪酸 b 酸化活 性の増加は認められなかった.よって,これらのミ スセンス変異 ALDP は機能を欠くことが確認され た. ついで,野生型及び変異型 His-ALDP を発現し た ALD 患者線維芽細胞を回収し,変異型 ALDP の発現量を immunoblotting により定量化し解析し た(Table 1).なお ALDP の発現量は,ペルオキ シソームの指標酵素であるカタラーゼの発現量で補 正した.その結果,変異型 ALDP(R104C, G116R, Y174C, S342P, Q544R, S606P)は,野生型とほぼ 同程度の発現量を示した.一方,変異型 ALDP (S606L, R617H, H667D)では発現量が野生型の発 167 Table 1.
X
ABCD1 p.Arg104Cys 17202797:28:153
status: NEWX
ABCD1 p.Arg104Cys 17202797:28:1314
status: NEWX
ABCD1 p.Arg104Cys 17202797:28:5707
status: NEW29 Expression and Localization of Missense ALDPs Mutant Transient Stable Expression Localization b-Oxidation Expression Localization Wild Z Px + Z Px R104C, G116R S342P, Q544R S606P Z Px - Z Px Y174C Z mis - Z mis S606L + Px - - - R617H ± - - na na H667D + - - - - Wild and Mutant His-ALDPs or ALDP-GFPs were transiently expressed in X-ALD ˆbroblasts and stably expressed in CHO cells, respectively.
X
ABCD1 p.Arg104Cys 17202797:29:154
status: NEW36 1 現量と比べて約 50%程度減少していた.なお,各 ALDP ポジティブの細胞は約 30%程度であり,各 細胞間での発現効率に有意な差は認められなかっ た.このことから,ALDP の発現量が減少してい た 3 つの変異 ALDP は細胞内での安定性が低下し ていると推察された.また興味深いことに S606P と S606L は同じ部位の変異にも係わらず,置換し たアミノ酸によって発現量には差が認められた. ついで,変異型 His-ALDP の細胞内局在を蛍光 抗体法で確認した.変異型 ALDP(R104C, G116R, S342P, Q544R, S606P, S606L)では ALDP がカタ ラーゼの局在と一致したことから,正常にペルオキ シソームへ局在していることが確認された.一方, 変異型 ALDP(Y174C, H667D)では局在が一致せ ず,ALDP が他の細胞内小器官へ間違って輸送さ れていると考えられた.変異型 ALDP(R617H) では ALDP の発現が認められなかった.変異型 ALDP(R104C, G116R, S342P, Q544R, S606P)で は野生型とほぼ同程度のタンパク量が発現し,ペル オキシソームへの局在も確認されたので,これらの 変異型 ALDP は合成されたのちに正常にペルオキ シソームに運ばれるが,ペルオキシソーム膜におい てその機能(ATP 結合・加水分解若しくは基質輸 送)に異常を持つことが推察された.特に R104C, G116R, S342P は TMD に存在することから ALDP の基質輸送能が変化していると考えられる.一方, NBD に存在する Q544R, S606P は ATP 結合・加水 分解に影響を与えている可能性が考えられる.また S606P, S606L は変異が同じ部位でも構造的に安定 性が異なっていた.Roerig らは S606L の変異型 ALDP は,ATP との親和性が低下している一方で ATP 加水分解は正常に行われていると報告してい る.29) このことは ALDP と ATP の親和性が ALDP の安定性にも影響を及ぼしている可能性を示してい る.S606L と S606P の安定性の違いと機能の関係 は ALDP の機能を知る上でも興味深い点であり, 今後さらに検討を行う必要がある.一方,Y174C の変異型 ALDP は正常に発現するにも係わらず, ペルオキシソームへ局在せず他の細胞内小器官へミ スターゲッティングした.これまでにペルオキシ ソームへの局在化シグナルを欠くペルオキシソーム 膜タンパク質は,非特異的にミトコンドリアや小胞 体に移行することが知られている.30,31) よって, ALDP の TMD2―3 の間のループは,ペルオキシ ソームへの局在化に重要な役割を果たしている可能 性が推察される.Pex19p 存在化での in vitro タン パク質翻訳系において,ALDP(Y174C)は Pex19p に結合できるので,ALDP の N 末端 67―164 に存在するペルオキシソーム移行に係わる領域が ALDP の何らかの構造変化によってマスクされる のかもしれない. 5.
X
ABCD1 p.Arg104Cys 17202797:36:192
status: NEWX
ABCD1 p.Arg104Cys 17202797:36:1504
status: NEWX
ABCD1 p.Arg104Cys 17202797:36:2488
status: NEWX
ABCD1 p.Arg104Cys 17202797:36:3528
status: NEW38 Subcellular Localization of Wild Type and Mutant ALDP-GFP in CHO ML fraction (mitochondria and light mitochondrial fraction) from CHO cells expressing wild type ALDP and each mutant ALDP-GFP (R104C, G116R, H667D) were fractionated by equilibrium density centrifugation on sucrose.
X
ABCD1 p.Arg104Cys 17202797:38:192
status: NEW42 Dots in the electrophoretogram in R104C shows the band corresponding to ALDP-GFP fragments.
X
ABCD1 p.Arg104Cys 17202797:42:34
status: NEW43 168 Vol. 127 (2007) ALDP については ALDP の C 末端に GFP(green ‰uorescent protein)を融合させた変異 ALDP-GFP を発現させるとともに,野生型ヒト ALDP を CHO 細胞に共 発現させた(CHO 細胞にも 内在性の ALDP が発現しているが,本実験に用いた抗体が 交差しないため,ヒト ALDP を発現させた).GFP 融合タンパク質は内在性のタンパク質との区別が容 易であること,安定発現細胞の取得が容易にできる ことなどの利点がある.この実験では,ペルオキシ ソームに正常に輸送される変異型 ALDP(R104C, G116R, S606P),ペルオキシソームに局在しない変 異型 ALDP(Y174C),発現量が低下している変異 型 ALDP(H667D)を選んだ.これら安定過剰発 現細胞における ALDP-GFP の細胞内局在性をみる と,その分布は一過性発現させた His-ALDP と同 様であった. 得られた安定発現細胞よりオルガネラ粗分画を調 製し,ショ糖密度勾配遠心分離法により各フラクシ ョンに分けたのち,SDS-PAGE 及び immunoblotting により変異 ALDP の局在について解析を行っ た(Fig. 3).ペルオキシソームマーカーとしてペ ルオキシソーム膜タンパク質である PMP70 とペル オキシソームの主要なマトリックスタンパク質であ るカタラーゼを用いた.野生型 ALDP を安定過剰 発現している細胞において,カタラーゼ活性並びに PMP70 が主としてフラクション 3 及び 4 に存在す ることより,この分画にペルオキシソームが回収さ れたことが示唆された.また約 110 kDa の分子サ イズを持つ ALDP-GFP 並びに 83 kDa の野生型 ALDP は,ペルオキシソームマーカーとほぼ同じ 分布を示していたことからペルオキシソームに局在 していることが示唆された.また変異型 ALDP-GFP(G116R, S606P)も同様の分布を示した. 一方,変異型 ALDP-GFP(H667D)を安定過剰 発現している細胞の場合は,ALDP-GFP のバンド は検出されなかった(Fig. 3).興味深いことに, PMP70 は 検 出 さ れ た が , 共 発 現 さ せ た 野 生 型 ALDP のバンドも検出されなかった.また変異型 ALDP(S606L)についても同様であった.これら の 結 果 は , 変 異 型 ALDP ( H667D, S606L ) は PMP70 とではなく,野生型 ALDP と複合体を形成 し,両者が分解される可能性を示唆している. ABC タンパク質の機能発現に重要である TMD や NBD 以外の C 末端部位での変異がタンパク質の安 定性に影響を及ぼすことは興味深い.ALDP の C 末端部位である 600―700 アミノ酸での変異が X-ALD を引き起こす頻度が高いことから,ALDP の C 末端部位はタンパク質の安定性に重要な役割を担 っている可能性がある.Liu らは ALDP のダイ マー化には C 末端部位(AA.631―745)が重要で あると報告している.13) H667D や S606L のような 変異は,それ自身あるいは野生型 ALDP とミスフ ォールドしたダイマーを形成し,異常タンパク質と して認識され分解されると考えられる.一方,変異 型 ALDP-GFP(R104C)はペルオキシソーム分画 に回収されるものの,フラグメント化していること 169 Fig. 4.
X
ABCD1 p.Arg104Cys 17202797:43:1459
status: NEWX
ABCD1 p.Arg104Cys 17202797:43:7885
status: NEW49 変異型 ALDP の分解過程の解析 新生タンパク質が正しいフォールディングを受け ることは,そのタンパク質の正常な機能発現のため に必須である.遺伝子変異などが存在すると,タン パク質がミスフォールディングされる.このミスフ ォールドタンパクが細胞外へ分泌されたり,細胞内 に蓄積したりすると生体にとって極めて有害になる ため,このようなタンパクはプロテアソーム,リソ ソーム等によって迅速に分解される.ちなみに,嚢 胞性線維症の原因タンパク質 CFTR は細胞膜イオ ンチャネルとして機能する ABC タンパク質である が,変異 CFTR は小胞体膜からプロテアソームに リクルートされ分解されることが報告されてい る.32,33) しかしながら,変異型 ALDP を始めとし て,ペルオキシソーム膜タンパク質についての解析 はほとんど行われていない. 変異型 ALDP の一過性発現と安定過剰発現実験 より,ALDP(S606L, R617H, H667D, R104C)は, プロテアーゼにより分解されていると推定された. そこで,ALDP-GFP(H667D)を発現している CHO 細胞に各種プロテアーゼ阻害剤を処理し,解 析を行った.その結果,プロテアソーム阻害剤であ る lactacystin を処理した細胞では ALDP-GFP 及び ALDP の バ ン ド が 出 現 し た ( Fig. 4 ). 一 方 , leupeptin, AEBSF, E64d には効果がなかった.ま た他のプロテアソーム阻害剤である MG132 も有効 であった.さらにプロテアソーム阻害剤により分解 を逃れた変異型 ALDP-GFP(H667D)の細胞内局 在を蛍光抗体法で観察すると,ペルオキシソームに 局在していることが確認された.一方,変異型 ALDP(R104C)のフラグメント化は上記プロテアー ゼ処理では阻害されなかった. さらに ALD 患者由来細胞の内因性変異 ALDP の分解とプロテアソーム分解系の関与について確認 するため,変異型 ALDP(R617H)を持つ患者由 来線維芽細胞を用いてタンパク分解の阻害実験を行 った.その結果,lactacystin と MG132 処理により, ALDP のバンドが出現した.以上の結果より,ペ ルオキシソーム膜上にはミスフォールドしたタンパ ク質を認識する仕組みが存在し,プロテアソーム及 び他のプロテアーゼを介して排除していることが示 唆された. 一方,山田らは ALD 患者線維芽細胞を[35 S]メチ オニンでパルスチェイスすることにより,変異型 ALDP(G512S, R660W)の分解が E-64 と leupepu- tin により抑制されることを報告している.34) 彼ら の実験ではプロテアソーム阻害剤については実験し ていないので,プロテアソームの関与は不明である が,変異型 ALDP の分解には,複数のプロテアー ゼが関与している可能性がある. 7.
X
ABCD1 p.Arg104Cys 17202797:49:19
status: NEW52 Some mutant ALDPs (R104C, G116R, S342P, Q544R and S606P) are normally inserted into the peroxisomal membrane, and others were mislocalized (Y174C) or degraded by proteasome (S606L, R617H and H667D).
X
ABCD1 p.Arg104Cys 17202797:52:19
status: NEW53 170 Vol. 127 (2007) その結果より,ミスセンス変異 ALDP は以下に 示すように 4 種類の細胞内動態を持つことが示され た(Fig. 5).1) 野生型と同様にペルオキシソーム に 局 在 す る が そ の 機 能 が 阻 害 さ れ て い る 変 異 (R104C, G116R, S342P, Q544R, S606P),2) ペル オキシソームへの局在化に障害がある変異(Y174C), 3) 変異によりタンパク質の安定性が低下しプロテ アソームでの分解を受けるが,一部ペルオキシソー ムに局在する変異(S606L),4) 変異によりタンパ ク質の安定性が低下しプロテアソームで選択的に分 解を受け,細胞内でほとんど確認できない変異 (R617H, H667D)の 4 種類のパターンである. 発現量も局在化も正常な変異では,ABC タンパ ク質としての機能に直接関与している機能ドメイン の障害が起こっていると推察される.この中で G116R, S342P は TMD に位置しており,基質の認 識や輸送に障害があると推察される.また Q544R, S606P は ATP と の 結 合 ・ 加 水 分 解 に 関 与 す る NBD に位置している.このような変異は,ALDP の ABC タンパク質としての機能を解析するために 有益と考えられる. 発現量は正常だが局在化に異常が認められた Y174C は,TMD2 と 3 の間のループ 2 に位置して おり,この領域が ALDP のペルオキシソームへの ターゲッティングに必要であることを示している. ALDP のターゲッティングに必要な領域は 67―164 番目のアミノ酸に存在することが報告されてい る.20) このことから,Y174C の変異による構造変化 のため,ターゲッティングシグナルがマスクされて いるのかもしれない.このタイプの変異は ALDP のペルオキシソームへの局在化を調べる上で重要と 考えられる. ALDP の変異で最も多いミスセンス変異ではそ の多くが細胞内で分解を受けている.R617H 及び H667D では発現量の著しい低下が認められる.特 に安定発現した CHO では immunoblot で検出でき なかった.ミスフォールドタンパク質の分解システ ムの 1 つにプロテアソームによる分解系がある.こ のタンパク質分解は,生物の様々な高次機能の制御 や環境ストレスに応答した恒常性の維持(ストレス 応答,タンパク質の品質管理など)に必須な役割を 担っている.しかし,小胞体を経由して合成される 分泌タンパク質や膜タンパク質に比べて,小胞体を 経由しない細胞内タンパク質の品質管理機構はあま り報告されていない.ALDP は遊離のポリソーム から直接ペルオキシソームに輸送されるが,この過 程でどのように R617H, H667D などの変異が認識 され,プロテアソーム系が働いているか興味深い. 171171No.
X
ABCD1 p.Arg104Cys 17202797:53:673
status: NEW27 df;b9;bb;f3;b9;᜕ᶒఔᢝ௸ ALDP IJe;d30;Pde;ᑁ4d5;ɦb; ߟe00;Έe;ឋ˿a;Ife;IJb;ఐĴb;Ye3;᪆ ALD <a3;ὅIJe;ᢝ௸᜕ᶒ ALDP IJe;a5f;Pfd;,d30;Pde;ᑁc40;ᙠ ឋ,d30;Pde;ᑁIJb;İa;௫Ĵb;b89;b9a;ឋఔYe3;᪆௳Ĵb;௭IJf;, ALDP IJe;ᔜc9;e1;a4;f3;IJe;a5f;Pfd;ఔMe5;Ĵb;e0a;ᨵᵨIJa;<c5;ᛇ ఔ?d0;f9b;௳Ĵb;əd;Ĵf;Ĵc;Ĵb;&#ff0e;ᱯIJb;df;b9;bb;f3;b9;᜕ᶒIJf;,ıf; ௷ıf; 1 ௸IJe;a2;df;ce;⏚᜕ᶒIJb;ఐĴb;ᶒe38;Ĵb;IJe;ᱯIJb; ‐ᕡdf1;&#ff0e;Ĵf;Ĵc;Ĵf;Ĵc;IJf; ALD <a3;ὅᛇȠa;௯Ĵc;௺Ĵb; df;b9;bb;f3;b9;᜕ᶒIJe;e2d;İb;,TMD İb; 4 ௸(R104C, G116R, Y174C, S342P) ,NBD İb; 4 ௸(Q544R, S606P, S606L, R617H) ,C ʠb;aef;Ze8;f4d;İb; 1 ௸ (H667D)ఔefb;ɢf;IJb;⍶ఁ(Fig. 1) ,ıd;IJe;a5f;Pfd;d30;Pde; ᑁ4d5;ɦb;ఔYe3;᪆௱ıf;&#ff0e;௭Ĵc;IJe;b9f; a13;IJf;,ᜧb66;▾b7;f3;dd; b8;a6;e0;ᛇȠa;௱ıf;IJe;,a73;௱İf;ff0;ఇıf;əd;௦&#ff0e; ALDP IJf;da;eb;aa;ad;b7;bd;fc;e0;IJb;İa;௫Ĵb;ᬿ╩⒴ᾦPaa; ⏚IJe; b ⏚ᓄIJb;_a2;e0e;௱௺Ĵb;௭İc;Me5;Ĵc;௺Ĵb;&#ff0e; b9f;ωb;IJb; ALD <a3;ὅᵫᩭIJe;e4a;dad;Rbd;d30;Pde;IJf;ᬿ╩⒴ᾦPaa; ⏚IJe; b ⏚ᓄd3b;ឋİc;b63;e38;IJa;dda;dad;Rbd;d30;Pde;bd4;ఇ௺d04; 50 ߟ70%a0b;ea6;e1b;c11;௱௺Ĵb;&#ff0e;ıd;௭[ce;˯f;ɂb;5ca;ఁ᜕ᶒɂb; ALDP IJe;a5f;Pfd;ఔNba;a8d;௳Ĵb;ıf;ఉ,ALDP ఔ˿a;Ife;௱௺ IJa; ALD <a3;ὅᵫᩭdda;dad;Rbd;d30;Pde;IJb;,N ʠb;aef;IJb; His bf;b0;ఔed8;4a0;௱ıf;[ce;˯f;ɂb;᜕ᶒɂb; ALDP ఔe00;Έe;ឋIJb; ˿a;Ife;௱, &#ff3b;1-14 C]lignoceric acid ఔ9fa;cea;௱௺ᬿ╩⒴ ᾦPaa;⏚ b ⏚ᓄd3b;ឋIJe;e2c;b9a;ఔʹc;௷ıf;&#ff0e;ıd;IJe;d50;ʧc;, ALDP b20;ʀd;dda;dad;Rbd;d30;Pde;IJe;ᬿ╩⒴ᾦPaa;⏚ b ⏚ᓄd3b;ឋ IJf;,b63;e38;d30;Pde;IJe;d04; 50%ije;e1b;c11;௱௺ıf;İc;,[ce;˯f; ɂb; His-ALDP ఔ˿a;Ife;௯ıb;Ĵb;b63;e38;Ȝc;a0b;ea6;IJb;ije; d3b;ឋİc;8de;fa9;௱ıf;&#ff0e;௭IJe;௭İb;˿a;Ife;௯ıb;ıf;[ce;˯f;ɂb; His-ALDP IJf; ALDP Ȝc;b49;IJe;a5f;Pfd;ఔᢝ௸௭İc;Nba; a8d;௯Ĵc;ıf;&#ff0e;e00;Ab9;,9 a2e;ϙe;IJe;df;b9;bb;f3;b9;᜕ᶒ ALDP ఔ˿a;Ife;௱ıf;dda;dad;Rbd;d30;Pde;IJf;ᬿ╩⒴ᾦPaa;⏚ b ⏚ᓄd3b; ឋIJe;ᜉ4a0;IJf;a8d;ఉĴc;IJa;İb;௷ıf;&#ff0e;ఐ௷௺,௭Ĵc;IJe;df; b9;bb;f3;b9;᜕ᶒ ALDP IJf;a5f;Pfd;ఔb20;İf;௭İc;Nba;a8d;௯Ĵc; ıf;&#ff0e; ௸,[ce;˯f;ɂb;5ca;ఁ᜕ᶒɂb; His-ALDP ఔ˿a;Ife;௱ ıf; ALD <a3;ὅdda;dad;Rbd;d30;Pde;ఔ8de;5ce;௱,᜕ᶒɂb; ALDP IJe;˿a;Ife;[cf;ఔ immunoblotting IJb;ఐĴa;b9a;[cf;ᓄ௱Ye3;᪆௱ ıf;(Table 1) &#ff0e;IJa;İa; ALDP IJe;˿a;Ife;[cf;IJf;,da;eb;aa;ad; b7;bd;fc;e0;IJe;ᢣa19;⏗d20;Ĵb;ab;bf;e9;fc;bc;IJe;˿a;Ife;[cf;Xdc; b63;௱ıf;&#ff0e;ıd;IJe;d50;ʧc;,᜕ᶒɂb; ALDP(R104C, G116R, Y174C, S342P, Q544R, S606P)IJf;,[ce;˯f;ɂb;ijb;ijc; Ȝc;a0b;ea6;IJe;˿a;Ife;[cf;ఔ̙a;௱ıf;&#ff0e;e00;Ab9;,᜕ᶒɂb; ALDP (S606L, R617H, H667D)IJf;˿a;Ife;[cf;İc;[ce;˯f;ɂb;IJe;˿a; 167 Table 1.
X
ABCD1 p.Arg104Cys 17202797:27:1156
status: NEWX
ABCD1 p.Arg104Cys 17202797:27:5044
status: NEW34 167 No. 1 Ife;[cf;bd4;ఇ௺d04; 50%a0b;ea6;e1b;c11;௱௺ıf;&#ff0e;IJa;İa;,ᔜ ALDP dd;b8;c6;a3;d6;IJe;d30;Pde;IJf;d04; 30%a0b;ea6;Ĵa;,ᔜ d30;Pde;╹IJe;˿a;Ife;4b9;᳛IJb;ᨵɢf;IJa;dee;IJf;a8d;ఉĴc;IJa;İb;௷ ıf;&#ff0e;௭IJe;௭İb;,ALDP IJe;˿a;Ife;[cf;İc;e1b;c11;௱௺ ıf; 3 ௸IJe;᜕ᶒ ALDP IJf;d30;Pde;ᑁIJe;b89;b9a;ឋİc;f4e;e0b;௱ ௺Ĵb;?a8;bdf;௯Ĵc;ıf;&#ff0e;ije;ıf;‐ᕡdf1;௭IJb; S606P S606L IJf;Ȝc;௲Ze8;f4d;IJe;᜕ᶒIJb;ఊfc2;Ĵf;ıa;,f6e;?db;௱ ıf;a2;df;ce;⏚IJb;ఐ௷௺˿a;Ife;[cf;IJb;IJf;dee;İc;a8d;ఉĴc;ıf;&#ff0e; ௸,᜕ᶒɂb; His-ALDP IJe;d30;Pde;ᑁc40;ᙠఔVcd;ᐝ ᢙf53;cd5;Nba;a8d;௱ıf;&#ff0e;᜕ᶒɂb; ALDP(R104C, G116R, S342P, Q544R, S606P, S606L)IJf; ALDP İc;ab;bf; e9;fc;bc;IJe;c40;ᙠe00;Qf4;௱ıf;௭İb;,b63;e38;IJb;da;eb;aa;ad; b7;bd;fc;e0;ఆc40;ᙠ௱௺Ĵb;௭İc;Nba;a8d;௯Ĵc;ıf;&#ff0e;e00;Ab9;, ᜕ᶒɂb; ALDP(Y174C, H667D)IJf;c40;ᙠİc;e00;Qf4;ıb; ıa;,ALDP İc;ed6;IJe;d30;Pde;ᑁc0f;ᘤb98;ఆ╹⍟௷௺f38;〈௯ Ĵc;௺Ĵb;ὃ௨Ĵc;ıf;&#ff0e;᜕ᶒɂb; ALDP(R617H) IJf; ALDP IJe;˿a;Ife;İc;a8d;ఉĴc;IJa;İb;௷ıf;&#ff0e;᜕ᶒɂb; ALDP(R104C, G116R, S342P, Q544R, S606P) IJf;[ce;˯f;ɂb;ijb;ijc;Ȝc;a0b;ea6;IJe;bf;f3;d1;af;[cf;İc;˿a;Ife;௱,da;eb; aa;ad;b7;bd;fc;e0;ఆIJe;c40;ᙠఊNba;a8d;௯Ĵc;ıf;IJe;,௭Ĵc;IJe; ᜕ᶒɂb; ALDP IJf;ᔠᡂ௯Ĵc;ıf;IJe;௵IJb;b63;e38;IJb;da;eb;aa;ad; b7;bd;fc;e0;IJb;Έb;Ĵc;Ĵb;İc;,da;eb;aa;ad;b7;bd;fc;e0;̳c;IJb;İa; ௺ıd;IJe;a5f;Pfd;(ATP d50;ᔠfb;4a0;c34;ᑖYe3;Re5;௱İf;IJf;9fa;cea;f38; 〈)IJb;ᶒe38;ఔᢝ௸௭İc;?a8;bdf;௯Ĵc;ıf;&#ff0e;ᱯIJb; R104C, G116R, S342P IJf; TMD IJb;b58;ᙠ௳Ĵb;௭İb; ALDP IJe;9fa;cea;f38;〈Pfd;İc;᜕ᓄ௱௺Ĵb;ὃ௨Ĵc;Ĵb;&#ff0e;e00;Ab9;, NBD IJb;b58;ᙠ௳Ĵb; Q544R, S606P IJf; ATP d50;ᔠfb;4a0;c34; ᑖYe3;IJb;f71;aff;ఔe0e;௨௺Ĵb;5ef;Pfd;ឋİc;ὃ௨Ĵc;Ĵb;&#ff0e;ije;ıf; S606P, S606L IJf;᜕ᶒİc;Ȝc;௲Ze8;f4d;ఊEcb;⌼ḄIJb;b89;b9a; ឋİc;ᶒIJa;௷௺ıf;&#ff0e;Roerig IJf; S606L IJe;᜕ᶒɂb; ALDP IJf;,ATP IJe;Yaa;Ȥc;ឋİc;f4e;e0b;௱௺Ĵb;e00;Ab9; ATP 4a0;c34;ᑖYe3;IJf;b63;e38;IJb;ʹc;Ĵf;Ĵc;௺Ĵb;ᛇȠa;௱௺ Ĵb;&#ff0e; 29) ௭IJe;௭IJf; ALDP ATP IJe;Yaa;Ȥc;ឋİc; ALDP IJe;b89;b9a;ឋIJb;ఊf71;aff;ఔ5ca;ijc;௱௺Ĵb;5ef;Pfd;ឋఔ̙a;௱௺ Ĵb;&#ff0e;S606L S606P IJe;b89;b9a;ឋIJe;⍟a5f;Pfd;IJe;_a2;fc2; IJf; ALDP IJe;a5f;Pfd;ఔMe5;Ĵb;e0a;ఊ‐ᕡdf1;Fb9;Ĵa;, eca;f8c;௯IJb;ʳc;a0e;ఔʹc;௦fc5;⌕İc;Ĵb;&#ff0e;e00;Ab9;,Y174C IJe;᜕ᶒɂb; ALDP IJf;b63;e38;IJb;˿a;Ife;௳Ĵb;IJb;ఊfc2;Ĵf;ıa;, da;eb;aa;ad;b7;bd;fc;e0;ఆc40;ᙠıb;ıa;ed6;IJe;d30;Pde;ᑁc0f;ᘤb98;ఆdf; b9;bf;fc;b2;c3;c6;a3;f3;b0;௱ıf;&#ff0e;௭Ĵc;ije;IJb;da;eb;aa;ad;b7; bd;fc;e0;ఆIJe;c40;ᙠᓄb7;b0;ca;eb;ఔb20;İf;da;eb;aa;ad;b7;bd;fc;e0; ̳c;bf;f3;d1;af;cea;IJf;,Ϗe;ᱯᶒḄIJb;df;c8;b3;f3;c9;ea;a2;ఌc0f;Pde; f53;IJb;Ofb;ʹc;௳Ĵb;௭İc;Me5;Ĵc;௺Ĵb;&#ff0e; 30,31) ఐ௷௺, ALDP IJe; TMD2ߟ3 IJe;╹IJe;eb;fc;d7;IJf;,da;eb;aa;ad;b7; bd;fc;e0;ఆIJe;c40;ᙠᓄIJb;[cd;⌕IJa;f79;ᒘఔʧc;ıf;௱௺Ĵb;5ef;Pfd; ឋİc;?a8;bdf;௯Ĵc;Ĵb;&#ff0e;Pex19p b58;ᙠᓄIJe; in vitro bf;f3; d1;af;cea;ffb;a33;cfb;IJb;İa;௺,ALDP(Y174C)IJf; Pex19p IJb;d50;ᔠİd;Ĵb;IJe;,ALDP IJe; N ʠb;aef; 67ߟ164 IJb;b58;ᙠ௳Ĵb;da;eb;aa;ad;b7;bd;fc;e0;Ofb;ʹc;IJb;fc2;Ĵf;Ĵb;♚9df;İc; ALDP IJe;f55;İb;IJe;Ecb;⌼᜕ᓄIJb;ఐ௷௺de;b9;af;௯Ĵc;Ĵb; IJe;İb;ఊ௱Ĵc;IJa;&#ff0e; 5.
X
ABCD1 p.Arg104Cys 17202797:34:1333
status: NEWX
ABCD1 p.Arg104Cys 17202797:34:2207
status: NEWX
ABCD1 p.Arg104Cys 17202797:34:3124
status: NEW40 Dots in the electrophoretogram in R104C shows the band corresponding to ALDP-GFP fragments.
X
ABCD1 p.Arg104Cys 17202797:40:34
status: NEW41 168 Vol. 127 (2007) ALDP IJb;௸௺IJf; ALDP IJe; C ʠb;aef;IJb; GFP(green ߮uorescent protein)ఔͮd;ᔠ௯ıb;ıf;᜕ᶒ ALDP-GFP ఔ˿a;Ife;௯ıb;Ĵb;ఊIJb;,[ce;˯f;ɂb;d2;c8; ALDP ఔ CHO d30;Pde;IJb;ᐳ ˿a;Ife;௯ıb;ıf;(CHO d30;Pde;IJb;ఊ ᑁᙠឋIJe; ALDP İc;˿a;Ife;௱௺Ĵb;İc;,ʠc;b9f; a13;IJb;ᵨıf;ᢙf53;İc; ea4;dee;௱IJa;ıf;ఉ,d2;c8; ALDP ఔ˿a;Ife;௯ıb;ıf;) &#ff0e;GFP ͮd;ᔠbf;f3;d1;af;cea;IJf;ᑁᙠឋIJe;bf;f3;d1;af;cea;IJe;ȕa;ᑩİc;bb9; ᧕Ĵb;௭,b89;b9a;˿a;Ife;d30;Pde;IJe;5d6;f97;İc;bb9;᧕IJb;İd;Ĵb; ௭IJa;IJe;ᑭFb9;İc;Ĵb;&#ff0e;௭IJe;b9f; a13;IJf;,da;eb;aa;ad;b7; bd;fc;e0;IJb;b63;e38;IJb;f38;〈௯Ĵc;Ĵb;᜕ᶒɂb; ALDP(R104C, G116R, S606P) ,da;eb;aa;ad;b7;bd;fc;e0;IJb;c40;ᙠ௱IJa;᜕ ᶒɂb; ALDP(Y174C) ,˿a;Ife;[cf;İc;f4e;e0b;௱௺Ĵb;᜕ᶒ ɂb; ALDP(H667D)ఔ⍶క௴&#ff0e;௭Ĵc;b89;b9a;Έe;ᒖ˿a; Ife;d30;Pde;IJb;İa;௫Ĵb; ALDP-GFP IJe;d30;Pde;ᑁc40;ᙠឋఔijf;Ĵb; ,ıd;IJe;ᑖe03;IJf;e00;Έe;ឋ˿a;Ife;௯ıb;ıf; His-ALDP Ȝc; Ed8;௷ıf;&#ff0e; f97;Ĵc;ıf;b89;b9a;˿a;Ife;d30;Pde;ఐĴa;aa;eb;ac;cd;e9;c97;ᑖ˱b;ఔabf; Xfd;௱,b7;e7;cd6;bc6;ea6;4fe;Βd;⍤fc3;ᑖ`e2;cd5;IJb;ఐĴa;ᔜd5;e9;af;b7; e7;f3;IJb;ᑖ௫ıf;IJe;௵,SDS-PAGE 5ca;ఁ immunoblotting IJb;ఐĴa;᜕ᶒ ALDP IJe;c40;ᙠIJb;௸௺Ye3;᪆ఔʹc;௷ ıf;(Fig. 3) &#ff0e;da;eb;aa;ad;b7;bd;fc;e0;de;fc;ab;fc;௱௺da; eb;aa;ad;b7;bd;fc;e0;̳c;bf;f3;d1;af;cea;Ĵb; PMP70 da;eb; aa;ad;b7;bd;fc;e0;IJe;e3b;⌕IJa;de;c8;ea;c3;af;b9;bf;f3;d1;af;cea; Ĵb;ab;bf;e9;fc;bc;ఔᵨıf;&#ff0e;[ce;˯f;ɂb; ALDP ఔb89;b9a;Έe;ᒖ ˿a;Ife;௱௺Ĵb;d30;Pde;IJb;İa;௺,ab;bf;e9;fc;bc;d3b;ឋe26;ఁIJb; PMP70 İc;e3b;௱௺d5;e9;af;b7;e7;f3; 3 5ca;ఁ 4 IJb;b58;ᙠ௳ Ĵb;௭ఐĴa;,௭IJe;ᑖ˱b;IJb;da;eb;aa;ad;b7;bd;fc;e0;İc;8de;5ce;௯ Ĵc;ıf;௭İc;̙a;ᖂ௯Ĵc;ıf;&#ff0e;ije;ıf;d04; 110 kDa IJe;ᑖb50;b5; a4;ba;ఔᢝ௸ ALDP-GFP e26;ఁIJb; 83 kDa IJe;[ce;˯f;ɂb; ALDP IJf;,da;eb;aa;ad;b7;bd;fc;e0;de;fc;ab;fc;ijb;ijc;Ȝc;௲ ᑖe03;ఔ̙a;௱௺ıf;௭İb;da;eb;aa;ad;b7;bd;fc;e0;IJb;c40;ᙠ ௱௺Ĵb;௭İc;̙a;ᖂ௯Ĵc;ıf;&#ff0e;ije;ıf;᜕ᶒɂb; ALDP-GFP(G116R, S606P)ఊȜc;Ed8;IJe;ᑖe03;ఔ̙a;௱ıf;&#ff0e; e00;Ab9;,᜕ᶒɂb; ALDP-GFP(H667D)ఔb89;b9a;Έe;ᒖ ˿a;Ife;௱௺Ĵb;d30;Pde;IJe;ᛊᔠIJf;,ALDP-GFP IJe;d0;f3;c9; IJf;ʳc;3fa;௯Ĵc;IJa;İb;௷ıf;(Fig. 3) &#ff0e;‐ᕡdf1;௭IJb;, PMP70 IJf; ʳc; 3fa; ௯ Ĵc; ıf; İc; , ᐳ ˿a; Ife; ௯ ıb; ıf; [ce; ˯f; ɂb; ALDP IJe;d0;f3;c9;ఊʳc;3fa;௯Ĵc;IJa;İb;௷ıf;&#ff0e;ije;ıf;᜕ᶒɂb; ALDP(S606L)IJb;௸௺ఊȜc;Ed8;௷ıf;&#ff0e;௭Ĵc; IJe; d50; ʧc; IJf; , ᜕ ᶒ ɂb; ALDP ( H667D, S606L ) IJf; PMP70 IJf;IJa;İf;,[ce;˯f;ɂb; ALDP ⋋ᔠf53;ఔf62;ᡂ ௱,e21;ὅİc;ᑖYe3;௯Ĵc;Ĵb;5ef;Pfd;ឋఔ̙a;ᖂ௱௺Ĵb;&#ff0e; ABC bf;f3;d1;af;cea;IJe;a5f;Pfd;˿a;Ife;IJb;[cd;⌕Ĵb; TMD ఌ NBD ee5;IJe; C ʠb;aef;Ze8;f4d;IJe;᜕ᶒİc;bf;f3;d1;af;cea;IJe;b89; b9a;ឋIJb;f71;aff;ఔ5ca;ijc;௳௭IJf;‐ᕡdf1;&#ff0e;ALDP IJe; C ʠb;aef;Ze8;f4d;Ĵb; 600ߟ700 a2;df;ce;⏚IJe;᜕ᶒİc; X-ALD ఔf15;İd;d77;௭௳ϗb;ea6;İc; ad8;௭İb;,ALDP IJe; C ʠb;aef;Ze8;f4d;IJf;bf;f3;d1;af;cea;IJe;b89;b9a;ឋIJb;[cd;⌕IJa;f79;ᒘఔ>c5; ௷௺Ĵb;5ef;Pfd;ឋİc;Ĵb;&#ff0e;Liu IJf; ALDP IJe;c0;a4; de;fc;ᓄIJb;IJf; C ʠb;aef;Ze8;f4d;(AA.631ߟ745)İc;[cd;⌕ Ĵb;ᛇȠa;௱௺Ĵb;&#ff0e; 13) H667D ఌ S606L IJe;ఐ௦IJa; ᜕ᶒIJf;,ıd;Ĵc;Qea;eab;Ĵb;IJf;[ce;˯f;ɂb; ALDP df;b9;d5; a9;fc;eb;c9;௱ıf;c0;a4;de;fc;ఔf62;ᡂ௱,ᶒe38;bf;f3;d1;af;cea; ௱௺a8d;b58;௯Ĵc;ᑖYe3;௯Ĵc;Ĵb;ὃ௨Ĵc;Ĵb;&#ff0e;e00;Ab9;,᜕ᶒ ɂb; ALDP-GFP(R104C)IJf;da;eb;aa;ad;b7;bd;fc;e0;ᑖ˱b; IJb;8de;5ce;௯Ĵc;Ĵb;ఊIJe;IJe;,d5;e9;b0;e1;f3;c8;ᓄ௱௺Ĵb;௭ 169 Fig. 4.
X
ABCD1 p.Arg104Cys 17202797:41:1293
status: NEWX
ABCD1 p.Arg104Cys 17202797:41:6978
status: NEW[hide] Eight novel mutations in the ABCD1 gene and clinic... World J Pediatr. 2015 Nov;11(4):366-73. doi: 10.1007/s12519-015-0044-0. Epub 2015 Oct 11. Chu SS, Ye J, Zhang HW, Han LS, Qiu WJ, Gao XL, Gu XF
Eight novel mutations in the ABCD1 gene and clinical characteristics of 25 Chinese patients with X-linked adrenoleukodystrophy.
World J Pediatr. 2015 Nov;11(4):366-73. doi: 10.1007/s12519-015-0044-0. Epub 2015 Oct 11., [PMID:26454440]
Abstract [show]
BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is a fatal neurodegenerative disease caused by mutations in the adenosine triphosphate-binding cassette D1 (ABCD1) gene. This study aimed to retrospectively investigate the clinical characteristics of 25 patients with X-ALD including members of large pedigrees, to analyze ABCD1 gene mutations, the effect of gene novel variants on ALD protein (ALDP) structure and function, and to expand gene mutation spectrum of Chinese patients. METHODS: Twenty-five male patients diagnosed with X-ALD were enrolled in this study. The clinical characteristics of the patients were retrospectively summarized by reviewing medical records or telephone consultation. ABCD1 gene mutations were analyzed. The pathogenicity of novel missense variants was analyzed using cobalt constraint-based multiple protein alignment tool, polymorphism phenotyping, sorting intolerant from tolerant, Align-Grantham variation and Grantham deviation, and Swiss-Program Database Viewer 4.04 software, respectively. RESULTS: Childhood cerebral form ALD (CCALD) is the most common phenotype (64%) in the 25 patients with X-ALD. The progressive deterioration of neurological and cognitive functions is the main clinical feature. The demyelination of the brain white matter and elevated plasma very long chain fatty acids (VLCFAs) were found in all patients. Different phenotypes were also presented within family members of the patients. Twenty-two different mutations including 8 novel mutations in the ABCD1 gene were identified in the 25 patients. Of the mutations, 63.6% were missense mutations and 34.8% located in exon 1. The amino acid residues of three novel missense mutations in eight species were highly conserved, and were predicted to be "probably" damaging to ALDP function. The other five novel mutations were splice, nonsense, deletion or duplication mutations. CONCLUSIONS: CCALD is the most common phenotype (64%) in our patients with X-ALD. Eight novel mutations in the ABCD1 gene identified are disease-causing mutations. Brain magnetic resonance imaging and plasma VLCFA determination should be performed for the patients who present with progressive deterioration of neurological development.
Comments [show]
None has been submitted yet.
No. Sentence Comment
111 However, some X-ALD males remain asymptomatic and one-third of heterozygous women remain free of clinical symptoms during their Patient number Exon Nucleotide change Amino acid change Protein localization References P1 2 c.1017G>T p.Trp339Cys TMD Novel P2 8 c.1850G>A p.Arg617His NBD Fanen et al, 1994[12] P4 1 c.892G>C p.Gly298Arg TMD Novel P5, P6 5 c.1415_16delAG p.Gln472Argfs*83 TMD to NBD Barcelo et al, 1994[13] P7 1 c.532C>T p.Gln178* TMD Novel P8 1 c.473T>C p.Leu158Pro TMD The peroxisomal diseases laboratory (unpublished) P10 6 c.1552C>T p.Arg518Trp NBD Fanen et al, 1994[12] P11 3 c.1202G>A p.Arg401Gln TMD to NBD Fuchs et al, 1994[14] P12 1 c.887A>G p.Tyr296Cys TMD Takano et al, 1999[15] P13 1 c.893G>A p.Gly298Asp TMD Lachtermacher et al, 2000[16] P14 1 c.310C>T p.Arg104Cys TMD Kok et al, 1995[17] P15 IVS 8 c.1866-10G>A p.Pro623fs* NBD Kemp et al, 1995[18] P16 5 c.1428C>A p.Cys476* NBD Novel P17 5 c.1421T>C p.Ile474Thr NBD Shimozawa et al, 2011[19] P18 6 c.1538A>G p.Lys513Arg NBD Piti&#e9;-Salp&#e9;tri&#e8;re Hospital (unpublished) P19 1 c.310C>T p.Arg104Cys TMD Kok et al, 1995[17] P20 6 c.1544C>A p.Ser515Tyr NBD Novel P21 2 c.901-1G>A p.Val301fs* TMD Kemp et al, 2001[20] P22 2 c.974T>C p.Leu325Pro TMD The peroxisomal diseases laboratory (unpublished) P23 3 c.1182delG p.Ala395Leufs*15 TMD to NBD Novel P24 1 c.424delC p.Leu142Serfs*56 TMD Novel P25 7 c.1759_1761dup p.Ile588His NBD Novel Table 2.
X
ABCD1 p.Arg104Cys 26454440:111:779
status: NEWX
ABCD1 p.Arg104Cys 26454440:111:1069
status: NEW