ABCC8 p.Asp212Ile
Predicted by SNAP2: | A: D (53%), C: D (53%), E: N (82%), F: D (53%), G: N (53%), H: D (53%), I: N (72%), K: D (53%), L: D (53%), M: N (57%), N: N (57%), P: D (63%), Q: N (53%), R: D (53%), S: N (61%), T: N (61%), V: D (53%), W: D (63%), Y: N (53%), |
Predicted by PROVEAN: | A: D, C: D, E: N, F: D, G: D, H: D, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, R: D, S: N, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Mutations in the ABCC8 gene encoding the SUR1 subu... Diabetes Obes Metab. 2007 Nov;9 Suppl 2:28-39. Patch AM, Flanagan SE, Boustred C, Hattersley AT, Ellard S
Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period.
Diabetes Obes Metab. 2007 Nov;9 Suppl 2:28-39., [PMID:17919176]
Abstract [show]
AIM: Mutations in the ABCC8 gene encoding the SUR1 subunit of the pancreatic ATP-sensitive potassium channel cause permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). We reviewed the existing literature, extended the number of cases and explored genotype-phenotype correlations. METHODS: Mutations were identified by sequencing in patients diagnosed with diabetes before 6 months without a KCNJ11 mutation. RESULTS: We identified ABCC8 mutations in an additional nine probands (including five novel mutations L135P, R306H, R1314H, L438F and M1290V), bringing the total of reported families to 48. Both dominant and recessive mutations were observed with recessive inheritance more common in PNDM than TNDM (9 vs. 1; p < 0.01). The remainder of the PNDM probands (n = 12) had de novo mutations. Seventeen of twenty-five children with TNDM inherited their heterozygous mutation from a parent. Nine of these parents had permanent diabetes (median age at diagnosis: 27.5 years, range: 13-35 years). Recurrent mutations of residues R1183 and R1380 were found only in TNDM probands and dominant mutations causing PNDM clustered within exons 2-5. CONCLUSIONS: ABCC8 mutations cause PNDM, TNDM or permanent diabetes diagnosed outside the neonatal period. There is some evidence that the location of the mutation is correlated with the clinical phenotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 Five residues are sites for different amino acid substitutions: V86A/G, F132L/V, D212I/N, R1183Q/W and R1380C/H/L.
X
ABCC8 p.Asp212Ile 17919176:85:81
status: NEW161 Affected probands and family members can be separated into three distinct groups based T229I/T229I ABCC8 mutations Transient Neonatal Diabetes Mellitus Recessive homozygous mutations R826W (2) H1024Y R1183Q (2) R1183W (5) R1314H R1380C (3) R1380H R1380L (2) D209E D212I D212N R306H V324M C435R L451P L582V (2) Dominant heterozygous mutations Permanent Neonatal Diabetes Mellitus E382K/E382K A1185E/A1185E Mosaic N72S Recessive homozygous or mosaic mutations P45L/G1401R E208K/Y263D T229I/V1523L L438F/M1290V P207S/c.536del4 E1327K+V1523A/ c.1327ins10 Recessive compound heterozygous mutations 1K Dominant heterozygous mutations D209E Q21 L213R L225P(2) I1425V V86A V86G F132L (2) F132V L135P Fig. 2 A diagram illustrating the inheritance of ABCC8 mutations in probands with permanent and transient forms of neonatal diabetes.
X
ABCC8 p.Asp212Ile 17919176:161:264
status: NEW163 Permanent Neonatal Diabetes Mellitus Transient Neonatal Diabetes Mellitus 1 5 10 15 20 25 30 35 39 N72S V86A V86G F132L F132V L135PP45L P207S E208K D209E Q211K L213R L225P T229I Y263D D209E D212I D212N T229I R306H V324M L438F L451P E382K R826W R1183W R1183Q A1185E E1327K R1314H M1290V R1380C R1380H R1380L G1401R V1523A V1523L H1024YC435R L582V I1425V Fig. 3 The location of missense mutations causing neonatal diabetes within the coding sequence of ABCC8.
X
ABCC8 p.Asp212Ile 17919176:163:190
status: NEW176 No neurological features were reported in R1183W/Q A1185E E1327K G1401R V1523A/L NBD1 NBD2 outside membrane inside P45L N72S F132L/V L135P P207S E208K D209E Q211K D212I/N L213R L225P T229I Y263D E382K V86A/G L438F C435R R1380C/H/L L451P R826W TMD0 TMD1 TMD2 R306H V324M L582V H1024Y I1425V R1314H M1290V Fig. 4 A schematic of the membrane topologies of SUR1 showing the location of the ABCC8 missense mutations causing neonatal diabetes.
X
ABCC8 p.Asp212Ile 17919176:176:163
status: NEW192 Muscle weakness was identified in two cousins with the D212I mutation.
X
ABCC8 p.Asp212Ile 17919176:192:55
status: NEW198 The exceptions are D212I and D212N that result in a remitting/relapsing phenotype with permanent diabetes in later life.
X
ABCC8 p.Asp212Ile 17919176:198:19
status: NEW224 Furthermore, different mutations at the same residue (V86A/G, F132L/V, D212I/N, R1183Q/W and R1380C/H/L) cause either PNDM (V86 and F132) or biphasic TNDM (D212, R1183 and R1380), suggesting a different pathological mechanism.
X
ABCC8 p.Asp212Ile 17919176:224:71
status: NEW[hide] Permanent neonatal diabetes due to activating muta... Rev Endocr Metab Disord. 2010 Sep;11(3):193-8. Edghill EL, Flanagan SE, Ellard S
Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11.
Rev Endocr Metab Disord. 2010 Sep;11(3):193-8., [PMID:20922570]
Abstract [show]
The ATP-sensitive potassium (K(ATP)) channel is composed of two subunits SUR1 and Kir6.2. The channel is key for glucose stimulated insulin release from the pancreatic beta cell. Activating mutations have been identified in the genes encoding these subunits, ABCC8 and KCNJ11, and account for approximately 40% of permanent neonatal diabetes cases. The majority of patients with a K(ATP) mutation present with isolated diabetes however some have presented with the Developmental delay, Epilepsy and Neonatal Diabetes syndrome. This review focuses on mutations in the K(ATP) channel which result in permanent neonatal diabetes, we review the clinical and functional effects as well as the implications for treatment.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 One of the most notable R1183W/Q A1185E E1327K G1401R V1523A/L V1524M R1531A NBD1 NBD2 outside membrane inside P45L N72S F132L/V L135P P207S E208K D209E Q211K D212I/N L213R L225P T229I Y263D A269D/N E382K V86A/G R1380C/H/L C435R L438F M1290V L451P R826W R1314H TMD0 TMD1 TMD2 R306H V324M L582V H1024Y I1425V A90V Y356C R521Q N1123D R1153G T1043TfsX74 Fig. 3 Schematic representation of 50 ABCC8 mutations which cause neonatal diabetes.
X
ABCC8 p.Asp212Ile 20922570:85:159
status: NEW[hide] Review. SUR1: a unique ATP-binding cassette protei... Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):257-67. Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P, Ashcroft FM
Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator.
Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):257-67., [PMID:18990670]
Abstract [show]
SUR1 is an ATP-binding cassette (ABC) transporter with a novel function. In contrast to other ABC proteins, it serves as the regulatory subunit of an ion channel. The ATP-sensitive (KATP) channel is an octameric complex of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits, and it links cell metabolism to electrical activity in many cell types. ATPase activity at the nucleotide-binding domains of SUR results in an increase in KATP channel open probability. Conversely, ATP binding to Kir6.2 closes the channel. Metabolic regulation is achieved by the balance between these two opposing effects. Precisely how SUR1 talks to Kir6.2 remains unclear, but recent studies have identified some residues and domains that are involved in both physical and functional interactions between the two proteins. The importance of these interactions is exemplified by the fact that impaired regulation of Kir6.2 by SUR1 results in human disease, with loss-of-function SUR1 mutations causing congenital hyperinsulinism and gain-of-function SUR1 mutations leading to neonatal diabetes. This paper reviews recent data on the regulation of Kir6.2 by SUR1 and considers the molecular mechanisms by which SUR1 mutations produce disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
185 Such naturally occurring mutations TNDM PNDM DEND TNDM PNDM DEND iDEND WT P206L D212N P45L N72S P207S E208K+Y263D D212I T229I A1185E V1522L+Y229I F132L 0 0.05 0.10 0.15 fractionofcurrentremaining in3mMMgATP(a) (b) (i) (ii) Figure 4.
X
ABCC8 p.Asp212Ile 18990670:185:114
status: NEW204 (a) (b) P45L N72S F132L NH2 A90V V86G COOHL135P exoplasmic cytoplasmic Walker A Walker A linker Walker B linker Walker B V324M E382K C435R L438F L582V R826W H1023Y N1122D R1183Q A1185E R1314H E1327K R1380 L I1425V V1524 L P207S E208K Q211K D212I/N L225P T229I Y263D A269D R306H D209E L213R TMD0 TMD1 TMD2 NBD1 NBD2 CL3 linker site 1 site 2 NBD1 NBD2 R826W R1380 L E1327K I1425V V1524 L Figure 5.
X
ABCC8 p.Asp212Ile 18990670:204:240
status: NEW188 Such naturally occurring mutations TNDM PNDM DEND TNDM PNDM DEND iDEND WT P206L D212N P45L N72S P207S E208K+Y263D D212I T229I A1185E V1522L+Y229I F132L 0 0.05 0.10 0.15 fraction of current remaining in 3 mM MgATP (a) (b) (i) (ii) Figure 4.
X
ABCC8 p.Asp212Ile 18990670:188:114
status: NEW207 (a) (b) P45L N72S F132L NH2 A90V V86G COOH L135P exoplasmic cytoplasmic Walker A Walker A linker Walker B linker Walker B V324M E382K C435R L438F L582V R826W H1023Y N1122D R1183Q A1185E R1314H E1327K R1380 L I1425V V1524 L P207S E208K Q211K D212I/N L225P T229I Y263D A269D R306H D209E L213R TMD0 TMD1 TMD2 NBD1 NBD2 CL3 linker site 1 site 2 NBD1 NBD2 R826W R1380 L E1327K I1425V V1524 L Figure 5.
X
ABCC8 p.Asp212Ile 18990670:207:241
status: NEW[hide] Effective treatment with oral sulfonylureas in pat... Diabetes Care. 2008 Feb;31(2):204-9. Epub 2007 Nov 19. Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT
Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations.
Diabetes Care. 2008 Feb;31(2):204-9. Epub 2007 Nov 19., [PMID:18025408]
Abstract [show]
OBJECTIVE: Neonatal diabetes can result from mutations in the Kir6.2 or sulfonylurea receptor 1 (SUR1) subunits of the ATP-sensitive K(+) channel. Transfer from insulin to oral sulfonylureas in patients with neonatal diabetes due to Kir6.2 mutations is well described, but less is known about changing therapy in patients with SUR1 mutations. We aimed to describe the response to sulfonylurea therapy in patients with SUR1 mutations and to compare it with Kir6.2 mutations. RESEARCH DESIGN AND METHODS: We followed 27 patients with SUR1 mutations for at least 2 months after attempted transfer to sulfonylureas. Information was collected on clinical features, treatment before and after transfer, and the transfer protocol used. We compared successful and unsuccessful transfer patients, glycemic control before and after transfer, and treatment requirements in patients with SUR1 and Kir6.2 mutations. RESULTS: Twenty-three patients (85%) successfully transferred onto sulfonylureas without significant side effects or increased hypoglycemia and did not need insulin injections. In these patients, median A1C fell from 7.2% (interquartile range 6.6-8.2%) on insulin to 5.5% (5.3-6.2%) on sulfonylureas (P = 0.01). When compared with Kir6.2 patients, SUR1 patients needed lower doses of both insulin before transfer (0.4 vs. 0.7 units x kg(-1) x day(-1); P = 0.002) and sulfonylureas after transfer (0.26 vs. 0.45 mg x kg(-1) x day(-1); P = 0.005). CONCLUSIONS: Oral sulfonylurea therapy is safe and effective in the short term in most patients with diabetes due to SUR1 mutations and may successfully replace treatment with insulin injections. A different treatment protocol needs to be developed for this group because they require lower doses of sulfonylureas than required by Kir6.2 patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
54 Doses Table 1-Clinical characteristics of patients with SUR1 mutations according to success of treatment with sulfonylureas Characteristic All patients Patients with successful sulfonylurea treatment Patients with unsuccessful sulfonylurea treatment P* n 27 23 4 Mutation (number of patients) NA V86G†, P45L/G1401R- (2)†, D209E (3)†, T229I/V1523L†, Q211K†, V86A (2)†, E1507G, V215I/V607M, E208K/Y263D†, R1380L (2)‡, D212I (3)§, T229I/T229I‡, R1183W§, L225P†, R826W, and D209N F132L (2)†, F132V†, and N72S† (mosaic).
X
ABCC8 p.Asp212Ile 18025408:54:472
status: NEW56 Doses Table 1-Clinical characteristics of patients with SUR1 mutations according to success of treatment with sulfonylureas Characteristic All patients Patients with successful sulfonylurea treatment Patients with unsuccessful sulfonylurea treatment P* n 27 23 4 Mutation (number of patients) NA V86Gߤ, P45L/G1401R- (2)ߤ, D209E (3)ߤ, T229I/V1523Lߤ, Q211Kߤ, V86A (2)ߤ, E1507G, V215I/V607M, E208K/Y263Dߤ, R1380L (2)ߥ, D212I (3)&#a7;, T229I/T229Iߥ, R1183W&#a7;, L225Pߤ, R826W, and D209N F132L (2)ߤ, F132Vߤ, and N72Sߤ (mosaic).
X
ABCC8 p.Asp212Ile 18025408:56:464
status: NEW[hide] Mutations in ATP-sensitive K+ channel genes cause ... Diabetes. 2007 Jul;56(7):1930-7. Epub 2007 Apr 19. Flanagan SE, Patch AM, Mackay DJ, Edghill EL, Gloyn AL, Robinson D, Shield JP, Temple K, Ellard S, Hattersley AT
Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood.
Diabetes. 2007 Jul;56(7):1930-7. Epub 2007 Apr 19., [PMID:17446535]
Abstract [show]
Transient neonatal diabetes mellitus (TNDM) is diagnosed in the first 6 months of life, with remission in infancy or early childhood. For approximately 50% of patients, their diabetes will relapse in later life. The majority of cases result from anomalies of the imprinted region on chromosome 6q24, and 14 patients with ATP-sensitive K+ channel (K(ATP) channel) gene mutations have been reported. We determined the 6q24 status in 97 patients with TNDM. In patients in whom no abnormality was identified, the KCNJ11 gene and/or ABCC8 gene, which encode the Kir6.2 and SUR1 subunits of the pancreatic beta-cell K(ATP) channel, were sequenced. K(ATP) channel mutations were found in 25 of 97 (26%) TNDM probands (12 KCNJ11 and 13 ABCC8), while 69 of 97 (71%) had chromosome 6q24 abnormalities. The phenotype associated with KCNJ11 and ABCC8 mutations was similar but markedly different from 6q24 patients who had a lower birth weight and who were diagnosed and remitted earlier (all P < 0.001). K(ATP) channel mutations were identified in 26 additional family members, 17 of whom had diabetes. Of 42 diabetic patients, 91% diagnosed before 6 months remitted, but those diagnosed after 6 months had permanent diabetes (P < 0.0001). K(ATP) channel mutations account for 89% of patients with non-6q24 TNDM and result in a discrete clinical subtype that includes biphasic diabetes that can be treated with sulfonylureas. Remitting neonatal diabetes was observed in two of three mutation carriers, and permanent diabetes occurred after 6 months of age in subjects without an initial diagnosis of neonatal diabetes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
71 Ten different ABCC8 gene mutations were identified in 13 probands: D209E (c.627CϾA), D212N (c.634GϾA), D212I (c.634 GϾA 635AϾT), V324M (c.970GϾA), L451P (c.1352TϾC), R826W (c.2476CϾT), R1183W (c.3547CϾT), R1183Q (c.3548GϾA), R1380C (c.4138CϾT), and R1380H (c.4139GϾA).
X
ABCC8 p.Asp212Ile 17446535:71:115
status: NEW107 Muscle weakness was identified in two cousins with a D212I mutation.
X
ABCC8 p.Asp212Ile 17446535:107:53
status: NEW138 TABLE 3 Comparison of clinical and biochemical characteristics of patients with a KATP channel mutation diagnosed before 6 months of age with patients whose diabetes was not diagnosed before age 6 months and the number of each mutation identified within each group Characteristic Mutation carriers diagnosed with diabetes within 6 months Mutation carriers who did not have diabetes diagnosed within the first 6 months P value n (% male) 35 (51) 16 (44) 0.75 Probands (n) 25 0 Age when entering study (years) 6 (0.8-43) 42 (5-56) - Ever diagnosed with diabetes (n) 35 7 1*10-6 Age at diagnosis (weeks) 4 (0-17) 1196 (260 to Ͼ2496) 3.7*10-5 Diabetes remitted (n) 32 0/7 3.7*10-10 Age at remission (weeks) 35 (2-208) - - Diabetes relapsed (n) 7 - - Age at relapse (years) 13 (3-25.5) - - Birth weight (g) 2,695 (1,360-3,570) 2,810 (907-3,090) 0.9 Gestation (weeks) 39 (30-42) 38 (34-40) 0.74 Centile birth weight 18 (Ͻ1st to 89th) 15 (Ͻ1st to 79th) 0.94 KCNJ11 mutations R34C 1 2 G53R 2 0 G53S 2 1 E179A 1 0 I182V 1 0 E227K 4 2 E229K 5 3 R365H 1 1 ABCC8 mutations D209E 1 1 D212N 2 1 D212I 4 0 V324M 1 1 L451P 2 1 R826W 1 0 R1183W 4 2 R1183Q 1 0 R1380C 1 0 R1380H 1 1 Data are median (range), unless otherwise indicated.
X
ABCC8 p.Asp212Ile 17446535:138:1099
status: NEW171 There are a cluster of mutations (D209E, D212N, and D212I) in the intracellular region that links the transmembrane domain with the gatekeeper module (8).
X
ABCC8 p.Asp212Ile 17446535:171:52
status: NEW72 Ten different ABCC8 gene mutations were identified in 13 probands: D209E (c.627Cb0e;A), D212N (c.634Gb0e;A), D212I (c.634 Gb0e;A 635Ab0e;T), V324M (c.970Gb0e;A), L451P (c.1352Tb0e;C), R826W (c.2476Cb0e;T), R1183W (c.3547Cb0e;T), R1183Q (c.3548Gb0e;A), R1380C (c.4138Cb0e;T), and R1380H (c.4139Gb0e;A).
X
ABCC8 p.Asp212Ile 17446535:72:115
status: NEW108 Muscle weakness was identified in two cousins with a D212I mutation.
X
ABCC8 p.Asp212Ile 17446535:108:53
status: NEW139 TABLE 3 Comparison of clinical and biochemical characteristics of patients with a KATP channel mutation diagnosed before 6 months of age with patients whose diabetes was not diagnosed before age 6 months and the number of each mutation identified within each group Characteristic Mutation carriers diagnosed with diabetes within 6 months Mutation carriers who did not have diabetes diagnosed within the first 6 months P value n (% male) 35 (51) 16 (44) 0.75 Probands (n) 25 0 Age when entering study (years) 6 (0.8-43) 42 (5-56) - Ever diagnosed with diabetes (n) 35 7 1*10afa;6 Age at diagnosis (weeks) 4 (0-17) 1196 (260 to b0e;2496) 3.7*10afa;5 Diabetes remitted (n) 32 0/7 3.7*10afa;10 Age at remission (weeks) 35 (2-208) - - Diabetes relapsed (n) 7 - - Age at relapse (years) 13 (3-25.5) - - Birth weight (g) 2,695 (1,360-3,570) 2,810 (907-3,090) 0.9 Gestation (weeks) 39 (30-42) 38 (34-40) 0.74 Centile birth weight 18 (b0d;1st to 89th) 15 (b0d;1st to 79th) 0.94 KCNJ11 mutations R34C 1 2 G53R 2 0 G53S 2 1 E179A 1 0 I182V 1 0 E227K 4 2 E229K 5 3 R365H 1 1 ABCC8 mutations D209E 1 1 D212N 2 1 D212I 4 0 V324M 1 1 L451P 2 1 R826W 1 0 R1183W 4 2 R1183Q 1 0 R1380C 1 0 R1380H 1 1 Data are median (range), unless otherwise indicated.
X
ABCC8 p.Asp212Ile 17446535:139:1117
status: NEW172 There are a cluster of mutations (D209E, D212N, and D212I) in the intracellular region that links the transmembrane domain with the gatekeeper module (8).
X
ABCC8 p.Asp212Ile 17446535:172:52
status: NEW