ABCB11 p.Arg1268Gln
Reviews: |
p.Arg1268Gln
D
|
Predicted by SNAP2: | A: D (80%), C: D (63%), D: D (95%), E: D (91%), F: D (91%), G: D (91%), H: D (85%), I: D (80%), K: D (75%), L: D (85%), M: D (75%), N: D (91%), P: D (91%), Q: D (85%), S: D (80%), T: D (80%), V: D (80%), W: D (91%), Y: D (91%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Bile salt transporters: molecular characterization... Physiol Rev. 2003 Apr;83(2):633-71. Trauner M, Boyer JL
Bile salt transporters: molecular characterization, function, and regulation.
Physiol Rev. 2003 Apr;83(2):633-71., [PMID:12663868]
Abstract [show]
Molecular medicine has led to rapid advances in the characterization of hepatobiliary transport systems that determine the uptake and excretion of bile salts and other biliary constituents in the liver and extrahepatic tissues. The bile salt pool undergoes an enterohepatic circulation that is regulated by distinct bile salt transport proteins, including the canalicular bile salt export pump BSEP (ABCB11), the ileal Na(+)-dependent bile salt transporter ISBT (SLC10A2), and the hepatic sinusoidal Na(+)- taurocholate cotransporting polypeptide NTCP (SLC10A1). Other bile salt transporters include the organic anion transporting polypeptides OATPs (SLC21A) and the multidrug resistance-associated proteins 2 and 3 MRP2,3 (ABCC2,3). Bile salt transporters are also present in cholangiocytes, the renal proximal tubule, and the placenta. Expression of these transport proteins is regulated by both transcriptional and posttranscriptional events, with the former involving nuclear hormone receptors where bile salts function as specific ligands. During bile secretory failure (cholestasis), bile salt transport proteins undergo adaptive responses that serve to protect the liver from bile salt retention and which facilitate extrahepatic routes of bile salt excretion. This review is a comprehensive summary of current knowledge of the molecular characterization, function, and regulation of bile salt transporters in normal physiology and in cholestatic liver disease and liver regeneration.
Comments [show]
None has been submitted yet.
No. Sentence Comment
631 G238V, E297G, G982R, R1153C, and R1268Q mutations prevent the protein from trafficking to the apical membrane, whereas the G238V mutant seems to be rapidly degraded by proteasomes.
X
ABCB11 p.Arg1268Gln 12663868:631:33
status: NEW[hide] The bile salt export pump. Pflugers Arch. 2007 Feb;453(5):611-20. Epub 2006 Oct 19. Stieger B, Meier Y, Meier PJ
The bile salt export pump.
Pflugers Arch. 2007 Feb;453(5):611-20. Epub 2006 Oct 19., [PMID:17051391]
Abstract [show]
Canalicular secretion of bile salts mediated by the bile salt export pump Bsep constitutes the major driving force for the generation of bile flow. Bsep is a member of the B-family of the super family of ATP-binding cassette transporters and is classified as ABCB11. Bsep has a narrow substrate specificity, which is largely restricted to bile salts. Bsep is extensively regulated at the transcriptional and posttranscriptional level, which directly modulates canalicular bile formation. Pathophysiological alterations of Bsep by either inherited mutations or acquired processes such as inhibition by drugs or disease-related down regulation may lead to a wide spectrum of mild to severe forms of liver disease. Furthermore, many genetic variants of Bsep are known, some of which potentially render individuals susceptible to acquired forms of liver disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
160 Their bile flow rate is slightly but not significantly lower in comparison to controls, but the total bile salt output into bile is massively reduced and their liver bile salt concen- S114R G238V V284L* C336S D482G R487H S593R E636G G982R G1004D R1153CD R1268Q E186G E297G R432T I498T I498T T923P A926P R1050C R1128H S194P G260D N519S A1228V V444A K461E M677V R698H PFIC2 BRIC2 acquired cholestasis SNP Fig. 2 Putative secondary structure of Bsep (NT-005403) generated with the TOPO program (http://www.sacs.ucsf.edu/TOPO-run/wtopo.pl).
X
ABCB11 p.Arg1268Gln 17051391:160:254
status: NEW[hide] Prediction of drug-induced intrahepatic cholestasi... Expert Opin Drug Saf. 2007 Jan;6(1):71-86. Sakurai A, Kurata A, Onishi Y, Hirano H, Ishikawa T
Prediction of drug-induced intrahepatic cholestasis: in vitro screening and QSAR analysis of drugs inhibiting the human bile salt export pump.
Expert Opin Drug Saf. 2007 Jan;6(1):71-86., [PMID:17181454]
Abstract [show]
Drug-induced intrahepatic cholestasis is one of the major causes of hepatotoxicity, which often occur during the drug discovery and development process. Human ATP-binding cassette transporter ABCB11 (sister of P-glycoprotein/bile salt export pump) mediates the elimination of cytotoxic bile salts from liver cells to bile, and, therefore, plays a critical role in the generation of bile flow. The authors have recently developed in vitro high-speed screening and quantitative structure-activity relationship analysis methods to investigate the interaction of ABCB11 with a variety of compounds. Based on the extent of inhibition of the bile salt export pump, the authors analysed the quantitative structure-activity relationship to identify chemical groups closely associated with the inhibition of ABCB11. This approach provides a new tool to predict compounds with a potential risk of drug-induced intrahepatic cholestasis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
120 H2N COOH S56L G238V G260D C336S L339V V444A K461E D482G T923P K930X G982R R1090X R1153C Outside Inside R1268Q A1228VE1186K R1128H R1057X R1050C A926P A865V R698H E636G M677V S593R E592Q N591S R575XA570T Q558H I498T R432T R415Q R299K E297G V284A I206V S194P E186G cholestasis Expert Opin. Drug Saf. (2007) 6(1) Table 1.
X
ABCB11 p.Arg1268Gln 17181454:120:103
status: NEW131 - 25 3383 G→A Arg1128His BRIC2 [45] - 25 3457 C→T Arg1153Cys PFIC2 [35] rs1521808 26 3556 G→A Glu1186Lys - [102] - 26 3683 C→T Ala1228Val - [44] - 27 3767 - 3768 X→C Frame shift at position 1256 PFIC2 [35] - 27 3803 G→A Arg1268Gln PFIC2 [35] Intron 4 3 A→C - PFIC2 [43] Table 2.
X
ABCB11 p.Arg1268Gln 17181454:131:262
status: NEW[hide] Phenotypic differences in PFIC2 and BRIC2 correlat... Am J Physiol Gastrointest Liver Physiol. 2008 Jan;294(1):G58-67. Epub 2007 Oct 18. Kagawa T, Watanabe N, Mochizuki K, Numari A, Ikeno Y, Itoh J, Tanaka H, Arias IM, Mine T
Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells.
Am J Physiol Gastrointest Liver Physiol. 2008 Jan;294(1):G58-67. Epub 2007 Oct 18., [PMID:17947449]
Abstract [show]
Progressive familial cholestasis (PFIC) 2 and benign recurrent intrahepatic cholestasis (BRIC) 2 are caused by mutations in the bile salt export pump (BSEP, ABCB11) gene; however, their prognosis differs. PFIC2 progresses to cirrhosis and requires liver transplantation, whereas BRIC2 is clinically benign. To identify the molecular mechanism(s) responsible for the phenotypic differences, eight PFIC2 and two BRIC2 mutations were introduced in rat Bsep, which was transfected in MDCK II cells. Taurocholate transport activity, protein expression, and subcellular distribution of these mutant proteins were studied in a polarized MDCK II monolayer. The taurocholate transport activity was approximately half of the wild-type (WT) in BRIC2 mutants (A570T and R1050C), was substantially less in two PFIC2 mutants (D482G and E297G), and was almost abolished in six other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X). Bsep protein expression levels correlated closely with transport activity, except for R1057X. The half-life of the D482G mutant was shorter than that of the WT (1.35 h vs. 3.49 h in the mature form). BRIC2 mutants and three PFIC mutants (D482G, E297G, and R1057X) were predominantly distributed in the apical membrane. The other PFIC2 mutants remained intracellular. The R1057X mutant protein was stably expressed and trafficked to the apical membrane, suggesting that the COOH-terminal tail is required for transport activity but not for correct targeting. In conclusion, taurocholate transport function was impaired in proportion to rapid degradation of Bsep protein in the mutants, which were aligned in the following order: A570T and R1050C > D482G > E297G > K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X. These results may explain the phenotypic difference between BRIC2 and PFIC2.
Comments [show]
None has been submitted yet.
No. Sentence Comment
13 The taurocholate transport activity was approximately half of the wild-type (WT) in BRIC2 mutants (A570T and R1050C), was substantially less in two PFIC2 mutants (D482G and E297G), and was almost abolished in six other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X).
X
ABCB11 p.Arg1268Gln 17947449:13:256
status: NEW19 In conclusion, taurocholate transport function was impaired in proportion to rapid degradation of Bsep protein in the mutants, which were aligned in the following order: A570T and R1050C Ͼ D482G Ͼ E297G Ͼ K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X.
X
ABCB11 p.Arg1268Gln 17947449:19:245
status: NEW139 The positions of 8 PFIC2 mutations (E297G, K461E, D482G, G982R, R1057C, R1153C, 3767-3768insC, and R1268Q) and 2 BRIC2 mutations (A570T and R1050C) are indicated by ଝ and ଙ, respectively.
X
ABCB11 p.Arg1268Gln 17947449:139:99
status: NEW165 Other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X) did not show significant TC transport activity.
X
ABCB11 p.Arg1268Gln 17947449:165:43
status: NEW184 Subcellular distribution study revealed that E297G, R1057X, A570T, and R1050C mutants were predominantly located along the apical membrane, whereas the other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, and 3767-3768insC) remained intracellular (Fig. 7).
X
ABCB11 p.Arg1268Gln 17947449:184:195
status: NEW188 Other PFIC2 mutant proteins (K461E, G982R, R1153C, R1268Q, and 3767-3768insC) were unstable and lost all transport activity.
X
ABCB11 p.Arg1268Gln 17947449:188:51
status: NEW245 The mature form of Bsep protein (band C) of K461E, G982R, R1153C, R1268Q, and 3767-3768insC mutants was hardly detected (Fig. 6B) and, consequently, TC transport activity was abolished (Fig. 6A).
X
ABCB11 p.Arg1268Gln 17947449:245:66
status: NEW290 From the view of maintenance of TC transport activity, the mutants could be aligned in the following order: A570T and R1050C Ͼ D482G Ͼ E297G Ͼ K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X.
X
ABCB11 p.Arg1268Gln 17947449:290:183
status: NEW[hide] Update on progressive familial intrahepatic choles... J Pediatr Gastroenterol Nutr. 2008 Mar;46(3):241-52. Alissa FT, Jaffe R, Shneider BL
Update on progressive familial intrahepatic cholestasis.
J Pediatr Gastroenterol Nutr. 2008 Mar;46(3):241-52., [PMID:18376240]
Abstract [show]
Three distinct forms of familial intrahepatic cholestasis are the result of mutations in the ATP8B1, ABCB11, and ABCB4 genes. The pathophysiologies of the latter 2 of these diseases are well characterized and are the result of abnormalities in canalicular excretion of bile acids and phospholipids, respectively. The molecular pathophysiology of the systemic disease associated with mutations in ATP8B1 remains unclear. In all of these diseases, wide variations in clinical phenotypes have been observed. The variability can be ascribed at least in part to predicted genotype:phenotype correlations. Disease- and genotype-specific prognoses and therapeutic approaches may exist, although much more information needs to be ascertained before clinicians can confidently make decisions based on genetic information.
Comments [show]
None has been submitted yet.
No. Sentence Comment
188 Other common mutations include R575X, R1057X, G982R, C336S, R1153C, D482G, K461E, R1153C, R1268Q, R1090X, G238V, S114R, S593R, del 695, and del 3213 (66,67).
X
ABCB11 p.Arg1268Gln 18376240:188:90
status: NEW[hide] Missense mutations and single nucleotide polymorph... Hepatology. 2009 Feb;49(2):553-67. Byrne JA, Strautnieks SS, Ihrke G, Pagani F, Knisely AS, Linton KJ, Mieli-Vergani G, Thompson RJ
Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing.
Hepatology. 2009 Feb;49(2):553-67., [PMID:19101985]
Abstract [show]
The gene encoding the human bile salt export pump (BSEP), ABCB11, is mutated in several forms of intrahepatic cholestasis. Here we classified the majority (63) of known ABCB11 missense mutations and 21 single-nucleotide polymorphisms (SNPs) to determine whether they caused abnormal ABCB11 pre-messenger RNA splicing, abnormal processing of BSEP protein, or alterations in BSEP protein function. Using an in vitro minigene system to analyze splicing events, we found reduced wild-type splicing for 20 mutations/SNPs, with normal mRNA levels reduced to 5% or less in eight cases. The common ABCB11 missense mutation encoding D482G enhanced aberrant splicing, whereas the common SNP A1028A promoted exon skipping. Addition of exogenous splicing factors modulated several splicing defects. Of the mutants expressed in vitro in CHO-K1 cells, most appeared to be retained in the endoplasmic reticulum and degraded. A minority had BSEP levels similar to wild-type. The SNP variant A444 had reduced levels of protein compared with V444. Treatment with glycerol and incubation at reduced temperature overcame processing defects for several mutants, including E297G. Taurocholate transport by two assessed mutants, N490D and A570T, was reduced compared with wild-type. Conclusion: This work is a comprehensive analysis of 80% of ABCB11 missense mutations and single-nucleotide polymorphisms at pre-mRNA splicing and protein processing/functional levels. We show that aberrant pre-mRNA splicing occurs in a considerable number of cases, leading to reduced levels of normal mRNA. Thus, primary defects at either the protein or the mRNA level (or both) contribute significantly to BSEP deficiency. These results will help to develop mutation-specific therapies for children and adults suffering from intrahepatic cholestasis due to BSEP deficiency.
Comments [show]
None has been submitted yet.
No. Sentence Comment
72 ¶Exon 28 and hence R1268Q (c.3892GϾA) was not included in the splicing system studies.
X
ABCB11 p.Arg1268Gln 19101985:72:24
status: NEW154 The following mutations showed an enrichment of mature BSEP: R1153H (c.3458GϾA; Fig. 6B), R1128C (c.3382CϾT), R1128H (c.3383GϾA), R1231Q (c.3692GϾA), R1050C (c.3148CϾT; Fig. 6C) and R1268Q (c.3892GϾA), A570T (c.1708GϾA), and E297K (c.889GϾA; Fig. 6D).
X
ABCB11 p.Arg1268Gln 19101985:154:212
status: NEW219 These include the PFIC-associated mutations E297G (c.890AϾG; Fig. 6A), R1128C (c.3382CϾT) and R1231Q (c.3692GϾA; Fig. 6C), and R1268Q (c.3892GϾA; Fig. 6.d), the BRIC-associated mutations R1128H (c.3383GϾA) and R1050C (c.3148CϾT; Fig. 6C), and E297K (c.889GϾA; Fig. 6D), as well as A570T (c.1708GϾA), which can be associated with either form of disease.
X
ABCB11 p.Arg1268Gln 19101985:219:145
status: NEW[hide] The bile salt export pump: clinical and experiment... Semin Liver Dis. 2010 May;30(2):125-33. Epub 2010 Apr 26. Lam P, Soroka CJ, Boyer JL
The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease.
Semin Liver Dis. 2010 May;30(2):125-33. Epub 2010 Apr 26., [PMID:20422495]
Abstract [show]
The primary transporter responsible for bile salt secretion is the bile salt export pump (BSEP, ABCB11), a member of the ATP-binding cassette (ABC) superfamily, which is located at the bile canalicular apical domain of hepatocytes. In humans, BSEP deficiency results in several different genetic forms of cholestasis, which include progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), as well as other acquired forms of cholestasis such as drug-induced cholestasis (DIC) and intrahepatic cholestasis of pregnancy (ICP). Because bile salts play a pivotal role in a wide range of physiologic and pathophysiologic processes, regulation of BSEP expression has been a subject of intense research. The authors briefly describe the molecular characteristics of BSEP and then summarize what is known about its role in the pathogenesis of genetic and acquired cholestatic disorders, emphasizing experimental observations from animal models and cell culture in vitro systems.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 Ubiquitylation is involved in the degradation of receptors, channels, and transporters from the endoplasmic reticulum and cell surface of yeast and higher eukaryotes.86-88 Wang et al, showed for the first time that specific E3 ubiquitin ligases are involved in Bsep degradation.58 Bsep mutants (p.G238V, p.D482G, p.G982R, p.R1153C, and p.R1268Q) were highly ubiquitinated following overexpression of different E3 ubiquitin ligases and were rapidly degraded by proteasomes resulting in shorter half-lives compared with the wild-type protein.58 This study suggests that stabilizing aberrant BSEP proteins by inactivating key E3 ubiquitin ligases might be a novel therapeutic approach, providing that global effects on proteasomal degradation can be avoided.
X
ABCB11 p.Arg1268Gln 20422495:77:338
status: NEW[hide] Living-related liver transplantation for siblings ... Am J Transplant. 2011 Feb;11(2):394-8. doi: 10.1111/j.1600-6143.2010.03397.x. Epub 2011 Jan 10. Shimizu H, Migita O, Kosaki R, Kasahara M, Fukuda A, Sakamoto S, Shigeta T, Uemoto S, Nakazawa A, Kakiuchi T, Arai K
Living-related liver transplantation for siblings with progressive familial intrahepatic cholestasis 2, with novel genetic findings.
Am J Transplant. 2011 Feb;11(2):394-8. doi: 10.1111/j.1600-6143.2010.03397.x. Epub 2011 Jan 10., [PMID:21219577]
Abstract [show]
Progressive familial intrahepatic cholestasis is a syndrome of severe cholestasis progressing to biliary cirrhosis and liver failure that develops in childhood. This report describes two siblings with PFIC-2 who underwent living-related liver transplantation from their genetically proven heterozygous parents. Both patients had normal gamma-glutamyl transpeptidase levels, but showed severe pruritus with sleep disturbance, cholestasis, jaundice and growth failure. Genetic testing of each patient revealed two missense mutations of the bile salt export pump, S901R and C1083Y, which have not previously been associated with PFIC-2. Usual medical treatment failed to improve their clinical symptoms, and the two siblings underwent living-related liver transplantation from their heterozygous parents. The transplants improved their clinical symptoms significantly, and the patients have since shown age-appropriate growth. Electron microscopic findings of the explanted liver of the younger sister revealed dense and amorphous bile, which is characteristic of PFIC-2. In the cases presented here, living-related liver transplantation from a heterozygous donor was associated with better quality of life and improvement of growth, and thus appears to be a feasible option for PFIC-2 patients. Mutation analysis is a useful tool to help decide the course of treatment of PFIC.
Comments [show]
None has been submitted yet.
No. Sentence Comment
104 The common mutations include E297G, R575X, R1057X, G982R, C336S, R1153C, D482G, K461E, R1153C, R1268Q, R1090X, G238V, S114R, S593R, del 695 and del 3213 (22).
X
ABCB11 p.Arg1268Gln 21219577:104:95
status: NEW[hide] A gene encoding a liver-specific ABC transporter i... Nat Genet. 1998 Nov;20(3):233-8. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlowska J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ
A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis.
Nat Genet. 1998 Nov;20(3):233-8., [PMID:9806540]
Abstract [show]
The progressive familial intrahepatic cholestases (PFIC) are a group of inherited disorders with severe cholestatic liver disease from early infancy. A subgroup characterized by normal serum cholesterol and gamma-glutamyltranspeptidase (gammaGT) levels is genetically heterogeneous with loci on chromosomes 2q (PFIC2) and 18q. The phenotype of the PFIC2-linked group is consistent with defective bile acid transport at the hepatocyte canalicular membrane. The PFIC2 gene has now been identified by mutations in a positional candidate, BSEP, which encodes a liver-specific ATP-binding cassette (ABC) transporter, sister of p-glycoprotein (SPGP). The product of the orthologous rat gene has been shown to be an effective bile acid transporter in vitro. These data provide evidence that SPGP is the human bile salt export pump (BSEP).
Comments [show]
None has been submitted yet.
No. Sentence Comment
122 The mutation 3457 C→T (R1153C) is present in a further two Saudi Arabian families and replaces a conserved arginine with a cysteine in the second nucleotide binding fold. One family of Kuwaiti origin carries 3803 G→A (R1268Q), which predicts replacement of arginine with glutamine in the second nucleotide binding fold. One or more of these mutations have been found in 25 PFIC families.
X
ABCB11 p.Arg1268Gln 9806540:122:232
status: NEW142 The ABC transporter family of proteins is the largest so far iden- Table 1• BSEP mutations found in PFIC patients Nucleotide mutation Amino acid number/ Protein consequence Families mutation 1723 C→T R575X Termination codon in first B2 heterozygous nucleotide binding fold Q homozygous 3169 C→T R1057X Termination codon in second B5 heterozygous nucleotide binding fold 908 del G 303 17 novel amino acids then truncation Family 57 heterozygous 3767-3768 ins C 1256 39 novel amino acids then truncation Family 99 homozygous 890 A→G E297G Glutamate to glycine in the intracellular loop S1, S3, S4B, S5, S6, S7, 38 homozygous between transmembrane spans 4 and 5 S4A, B5, B6, B7, 53, L heterozygous 1381 A→G K461E Lysine to glutamate in first Walker A motif Family 55 homozygous 1445 A→G D482G Aspartate to glycine in first P and 52 homozygous nucleotide binding fold 2944 G→A G982R Glycine to arginine in transmembrane span 11 Family 18 homozygous 3457 C→T R1153C Arginine to cysteine in second C and D homozygous nucleotide binding fold 3803 G→A R1268Q Arginine to glutamine in second J homozygous nucleotide binding fold In each case the nucleotide position in the human coding sequence is given along with details of the predicted protein consequence.
X
ABCB11 p.Arg1268Gln 9806540:142:1107
status: NEW236 The endonucleases used were: HphI (E297G), BpmI (K461E), FokI (D482G), AlwNI (G982R), BsrBI (R1153C) and AvaII (R1268Q).
X
ABCB11 p.Arg1268Gln 9806540:236:112
status: NEW[hide] Xenobiotic, bile acid, and cholesterol transporter... Pharmacol Rev. 2010 Mar;62(1):1-96. Epub 2010 Jan 26. Klaassen CD, Aleksunes LM
Xenobiotic, bile acid, and cholesterol transporters: function and regulation.
Pharmacol Rev. 2010 Mar;62(1):1-96. Epub 2010 Jan 26., [PMID:20103563]
Abstract [show]
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Comments [show]
None has been submitted yet.
No. Sentence Comment
6508 Nucleotide Change Amino Acid Change In Vitro Function Protein Expression/ Localization ABCB11 BSEP N.D. G238V N.D. Intracellular A890G E297G 2 Intracellular N.D. C336S ↔ Normal G1296C R432T 2 Reduced T1331C V444A ↔ Normal/Reduced A1445G D482G 2 Normal/Reduced G2026T D676Y 2 Reduced G2563A G855R 2 Reduced G2944A G982R 2 Intracellular C3457T R1153C 2 Intracellular G3803A R1268Q 2 Intracellular searchers were able to identify functional roles for Mrp2 using rats lacking this transporter (Eisai hyperbilirubinemic rats on a Sprague-Dawley background and transport-deficient (TR-) on a Wistar background) (Paulusma et al., 1996; Ito et al., 1997).
X
ABCB11 p.Arg1268Gln 20103563:6508:386
status: NEW[hide] Apical/basolateral surface expression of drug tran... Pharm Res. 2005 Oct;22(10):1559-77. Epub 2005 Sep 22. Ito K, Suzuki H, Horie T, Sugiyama Y
Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport.
Pharm Res. 2005 Oct;22(10):1559-77. Epub 2005 Sep 22., [PMID:16180115]
Abstract [show]
It is well known that transporter proteins play a key role in governing drug absorption, distribution, and elimination in the body, and, accordingly, they are now considered as causes of drug-drug interactions and interindividual differences in pharmacokinetic profiles. Polarized tissues directly involved in drug disposition (intestine, kidney, and liver) and restricted distribution to naive sanctuaries (blood-tissue barriers) asymmetrically express a variety of drug transporters on the apical and basolateral sides, resulting in vectorial drug transport. For example, the organic anion transporting polypeptide (OATP) family on the sinusoidal (basolateral) membrane and multidrug resistance-associated protein 2 (MRP2/ABCC2) on the apical bile canalicular membrane of hepatocytes take up and excrete organic anionic compounds from blood to bile. Such vectorial transcellular transport is fundamentally attributable to the asymmetrical distribution of transporter molecules in polarized cells. Besides the apical/basolateral sorting direction, distribution of the transporter protein between the membrane surface (active site) and the intracellular fraction (inactive site) is of practical importance for the quantitative evaluation of drug transport processes. The most characterized drug transporter associated with this issue is MRP2 on the hepatocyte canalicular (apical) membrane, and it is linked to a genetic disease. Dubin-Johnson syndrome is sometimes caused by impaired canalicular surface expression of MRP2 by a single amino acid substitution. Moreover, single nucleotide polymorphisms in OATP-C/SLC21A6 (SLCO1B1) also affect membrane surface expression, and actually lead to the altered pharmacokinetic profile of pravastatin in healthy subjects. In this review article, the asymmetrical transporter distribution and altered surface expression in polarized tissues are discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
240 Seven amino acid substitutions in BSEP, linked to PFICII (G238V, E297G, C336S, D482G, G982R, R1153C, R1268Q), have been reported and have been examined using rat Bsep expressed in MDCK (128).
X
ABCB11 p.Arg1268Gln 16180115:240:101
status: NEW[hide] Enterohepatic bile salt transporters in normal phy... Gastroenterology. 2004 Jan;126(1):322-42. Kullak-Ublick GA, Stieger B, Meier PJ
Enterohepatic bile salt transporters in normal physiology and liver disease.
Gastroenterology. 2004 Jan;126(1):322-42., [PMID:14699511]
Abstract [show]
The vectorial transport of bile salts from blood into bile is essential for the generation of bile flow, solubilization of cholesterol in bile, and emulsification of lipids in the intestine. Major transport proteins involved in the enterohepatic circulation of bile salts include the hepatocellular bile salt export pump (BSEP, ABCB11), the apical sodium-dependent bile salt transporter (ASBT, SLC10A2) in cholangiocytes and enterocytes, the sodium-dependent hepatocyte bile salt uptake system NTCP (SLC10A1), the organic anion transporting polypeptides OATP-C (SLC21A6), OATP8 (SLC21A8) and OATP-A (SLC21A3), and the multidrug resistance protein MRP3 (ABCC3). Synthesis and transport of bile salts are intricately linked processes that undergo extensive feedback and feed-forward regulation by transcriptional and posttranscriptional mechanisms. A key regulator of hepatocellular bile salt homeostasis is the bile acid receptor/farnesoid X receptor FXR, which activates transcription of the BSEP and OATP8 genes and of the small heterodimer partner 1 (SHP). SHP is a transcriptional repressor that mediates bile acid-induced repression of the bile salt uptake systems rat Ntcp and human OATP-C. A nuclear receptor that activates rodent Oatp2 (Slc21a5) and human MRP2 (ABCC2) is the pregnane X receptor/steroid X receptor PXR/SXR. Intracellular trafficking and membrane insertion of bile salt transporters is regulated by lipid, protein, and extracellular signal-related kinases in response to physiologic stimuli such as cyclic adenosine monophosphate or taurocholate. Finally, dysfunction of individual bile salt transporters such as BSEP, on account of genetic mutations, steric inhibition, suppression of gene expression, or disturbed signaling, is an important cause of cholestatic liver disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
117 It is caused by mutations of the BSEP (ABCB11) gene, which is located on chromosome 2q 24.173 Children with PFIC2 do not express BSEP.174 When PFIC2-related BSEP mutations are introduced artificially into rat Bsep and expressed in Madin-Darby canine kidney and Sf9 insect cells, the G238V, E297G, G982R, R1153C, and R1268Q mutations prevent the protein from trafficking to the apical membrane, whereas the G238V mutant seems to be rapidly degraded by proteasomes.175 Whereas mutation C336S affects neither Bsep transport activity nor trafficking, mutations E297G, G982R, R1153C, and R1268Q abolish taurocholate transport activity.
X
ABCB11 p.Arg1268Gln 14699511:117:316
status: NEWX
ABCB11 p.Arg1268Gln 14699511:117:583
status: NEW[hide] The bile salt export pump (BSEP) in health and dis... Clin Res Hepatol Gastroenterol. 2012 Dec;36(6):536-53. doi: 10.1016/j.clinre.2012.06.006. Epub 2012 Jul 12. Kubitz R, Droge C, Stindt J, Weissenberger K, Haussinger D
The bile salt export pump (BSEP) in health and disease.
Clin Res Hepatol Gastroenterol. 2012 Dec;36(6):536-53. doi: 10.1016/j.clinre.2012.06.006. Epub 2012 Jul 12., [PMID:22795478]
Abstract [show]
The bile salt export pump (BSEP) is the major transporter for the secretion of bile acids from hepatocytes into bile in humans. Mutations of BSEP are associated with cholestatic liver diseases of varying severity including progressive familial intrahepatic cholestasis type 2 (PFIC-2), benign recurrent intrahepatic cholestasis type 2 (BRIC-2) and genetic polymorphisms are linked to intrahepatic cholestasis of pregnancy (ICP) and drug-induced liver injury (DILI). Detailed analysis of these diseases has considerably increased our knowledge about physiology and pathophysiology of bile secretion in humans. This review focuses on expression, localization, and function, short- and long-term regulation of BSEP as well as diseases association and treatment options for BSEP-associated diseases.
Comments [show]
None has been submitted yet.
No. Sentence Comment
185 PFIC BRIC/NFC ICP Other liver diseases Genetic variants without disease association Missense mutations M1V C336S D549V L1055P E135K E137K T87R V43I S701P G19R W342G G556R C1083Y E137K L198P M123T S56L L712L L50S A382G G562D A1110E E186G E297G S194P Q121K A865D M62K R387H A570T S1114R L198P R415Q L198P R128H A865G C68Y A390P L581F G1116E E297G V444A G260D I206V S874P C107R G410D A588V G1116F G374S D482G E297K V284A I939M I112T L413W S593R G1116R A390P N591S V444A G295C R958Q W114R I420T I627T S1120N R432T T655I T510T G295R F959C Y157C D440E E636G R1128C V444A T655I G295S F959V A167T G455E R698C S1144R I498T D676Y R299K T965S A167V K461E S699P R1153C A570T P710P R303K F971L I182K T463I E709K R1153H T586I L827I L339V F971Y M183T Q466K G758R S1154P G648V G855R H423R L1006F M183V R470Q G766R N1173D T655I E1186K V444A N1009H G188W Y472C Y818F T1210P T923P V444D K1145N M217R V481E R832C N1211D A926P V444G I1183T R223C D482G R832H V1212F R948C A459V S226L R487H T859R R1231Q G1004D I468I G238V R487P A865V R1231W R1050C R487L T242I N490D Q869P L1242I G1116R Q546K A257G I498T G877R D1243G R1128H Q558H V284L G499E S901R R1268Q L1197G E592Q E297G I512T R948C A1283V R1231Q V597M R303G N515T N979D G1292V R616G R303K R517H G982R G1298R T619A Q312H F540L G1004D M677L R313S I541L T1029K M677V G327E I541T G1032R R696Q W330R F548Y A1044P R698H Nonsense mutations (premature stop-codons) S25X Y472X Y772X R1090X E96X W493X Q791X V1147X W330X R520X R928X Q1215X Y354X I528X Y1041X R1235X R415X R575X R1057X E1302X R470X Q702X Q1058X Table 1 (Continued) PFIC BRIC/NFC ICP Other liver diseases Genetic variants without disease association Splice site mutations 76 + 3G > T 908 + 1delG 2178 + 1G > T 3057-2A > G Q159Q 77-1G > C 908 + 1G > T 2179-2A > G 3213 + 1delG Q361Q 99-1G > T 908 + 1G > A 2343 + 1G > T 3213 + 4A > G 150 + 3A > C 1435-13 -8del 2343 + 2T > C 3213 + 5G > A 390-1G > A 2012-8T > G 2611-2A > T 611 + 1G > A 2178 + 1G > A R1001R Deletions/insertions/frame shifts Q101Dfs8X L380Wfs18X G648Vfs5X Q1058Hfs38X F959Hfs1X T127Hfs6X A382 A388del K700Sfs12X I1061Vfs34X F959Gfs48X N199Ifs14X P456Pfs24X T919del L1165del L232Cfs9X H484Rfs5X K930Efs92X A1192Efs50X R303Sfs17X I528Sfs21X K930Efs79X T1256Tfs40X V368Rfs27X I610Qfs45X K969 K972del Synonymous variants without disease association R33R F90F L232L I416I G557G I876I A1028A K1145K D36D I134I Y269Y G418G V597V G937G K1070K R52R S136S Q312Q F427F A804A Y981Y T1086T D58D V195V G319G E395E A535A G817G G1004G A1110A The overview shows ࣈ 290 known variants of BSEP on the protein level, except splice site mutations, which are shown on cDNA level.
X
ABCB11 p.Arg1268Gln 22795478:185:1126
status: NEW[hide] Biosynthesis and trafficking of the bile salt expo... Mol Aspects Med. 2014 Jun;37:3-14. doi: 10.1016/j.mam.2013.05.001. Epub 2013 May 15. Soroka CJ, Boyer JL
Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations.
Mol Aspects Med. 2014 Jun;37:3-14. doi: 10.1016/j.mam.2013.05.001. Epub 2013 May 15., [PMID:23685087]
Abstract [show]
The bile salt export pump (BSEP, ABCB11) is the primary transporter of bile acids from the hepatocyte to the biliary system. This rate-limiting step in bile formation is essential to the formation of bile salt dependent bile flow, the enterohepatic circulation of bile acids, and the digestion of dietary fats. Mutations in BSEP are associated with cholestatic diseases such as progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), drug-induced cholestasis, and intrahepatic cholestasis of pregnancy. Development of clinical therapies for these conditions necessitates a clear understanding of the cell biology of biosynthesis, trafficking, and transcriptional and translational regulation of BSEP. This chapter will focus on the molecular and cell biological aspects of this critical hepatic membrane transporter.
Comments [show]
None has been submitted yet.
No. Sentence Comment
136 When seven PFIC2 missense mutations were expressed in MDCK cells, five of these common mutations (G238V, E297G, G982R, R1153C and R1268Q) were unable to traffic to the apical membrane (Wang et al., 2002).
X
ABCB11 p.Arg1268Gln 23685087:136:130
status: NEW185 In vitro studies using rat Bsep mutants of the human mutations G238V, D482G, G982R, R1153C, and R1268Q all resulted in retention of Bsep in the ER to different extents (Wang et al., 2008).
X
ABCB11 p.Arg1268Gln 23685087:185:96
status: NEW[hide] Genetic variations of bile salt transporters. Drug Discov Today Technol. 2014 Jun;12:e55-67. doi: 10.1016/j.ddtec.2014.03.006. Kubitz R, Droge C, Kluge S, Stindt J, Haussinger D
Genetic variations of bile salt transporters.
Drug Discov Today Technol. 2014 Jun;12:e55-67. doi: 10.1016/j.ddtec.2014.03.006., [PMID:25027376]
Abstract [show]
Bile salt transporters directly or indirectly influence biological processes through physicochemical or signalling properties of bile salts. The coordinated action of uptake and efflux transporters in polarized epithelial cells of the liver, biliary tree, small intestine and kidney determine bile salt concentrations in different compartments of the body. Genetic variations of bile salt transporters lead to clinical relevant phenotypes of varying severity ranging from a predisposition for drug-induced liver injury to rapidly progressing end-stage liver disease. This review focuses on the impact of genetic variations of bile salt transporters including BSEP, NTCP, ASBT and OSTalpha/beta and discusses approaches for transporter analysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
112 The missense mutations p.G238V, p.E297G, p.G982R, p.R1153C and p.R1268Q all led to a reduced expression at the apical membrane, when expressed in MDCK cells [124].
X
ABCB11 p.Arg1268Gln 25027376:112:65
status: NEW