ABCB1 p.Ala954Cys
Predicted by SNAP2: | C: N (72%), D: D (80%), E: D (80%), F: D (80%), G: D (53%), H: D (75%), I: D (66%), K: D (80%), L: D (71%), M: D (66%), N: D (71%), P: D (80%), Q: D (71%), R: D (71%), S: N (82%), T: N (53%), V: D (59%), W: D (80%), Y: D (80%), |
Predicted by PROVEAN: | C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: N, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] ATP hydrolysis promotes interactions between the e... Biochemistry. 2005 Aug 2;44(30):10250-8. Loo TW, Bartlett MC, Clarke DM
ATP hydrolysis promotes interactions between the extracellular ends of transmembrane segments 1 and 11 of human multidrug resistance P-glycoprotein.
Biochemistry. 2005 Aug 2;44(30):10250-8., 2005-08-02 [PMID:16042402]
Abstract [show]
P-glycoprotein (P-gp, ABCB1) actively pumps a broad range of structurally unrelated cytotoxic compounds out of the cell. It has two homologous halves that are joined by a linker region. Each half has a transmembrane (TM) domain containing six TM segments and a nucleotide-binding domain (NBD). Cross-linking studies have shown that the drug-binding pocket is at the interface between the TM domains. The two NBDs interact to form the ATP-binding sites. Coupling of ATP hydrolysis to drug efflux has been postulated to occur by conversion of the binding pocket from a high-affinity to a low-affinity state through alterations in the packing of the TM segments. TM 11 has also been reported to be important for drug binding. Here, we used cysteine-scanning mutagenesis and oxidative cross-linking to test for changes in the packing of TM 11 during ATP hydrolysis. We generated 350 double cysteine mutants that contained one cysteine at the extracellular end of TM11 and another cysteine at the extracellular ends of TMs 1, 3, 4, 5, or 6. The mutants were expressed in HEK293 cells and treated with oxidant in the absence or presence of ATP. Cross-linked product was not detected in SDS-PAGE gels in the absence of ATP. By contrast, cross-linked product was detected in mutants M68C(TM1)/Y950C(TM11), M68C(TM1)/Y953C(TM11), M68C(TM1)/A954C(TM11), M69C(TM1)/A954C(TM11), and M69C(TM1)/ F957C(TM11) in the presence of ATP but not with ADP or AMP.PNP. These results indicate that rearrangement of TM11 may contribute to the release of drug substrate during ATP hydrolysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
158 Finally, we tested whether mutants M68C(TM1)/Y950C- (TM11), M68C(TM1)/Y953C(TM11), M68C(TM1)/A954C- (TM11), M69C(TM1)/A954C(TM11), and M69C(TM1)/ F957C(TM11) that showed ATP-dependent cross-linking were still active.
X
ABCB1 p.Ala954Cys 16042402:158:93
status: NEW