ABCB1 p.Ser400Ala
ClinVar: |
c.1199G>A
,
p.Ser400Asn
N
, Benign
|
Predicted by SNAP2: | A: N (87%), C: N (57%), D: N (66%), E: N (78%), F: N (78%), G: N (87%), H: N (97%), I: N (82%), K: N (82%), L: N (72%), M: N (78%), N: N (57%), P: D (91%), Q: N (93%), R: N (97%), T: N (97%), V: N (82%), W: D (85%), Y: N (82%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: D, H: D, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, R: D, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Functional implications of genetic polymorphisms i... Pharm Res. 2004 Jun;21(6):904-13. Pauli-Magnus C, Kroetz DL
Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1).
Pharm Res. 2004 Jun;21(6):904-13., [PMID:15212152]
Abstract [show]
The multidrug resistance (MDR1) gene product P-glycoprotein is a membrane protein that functions as an ATP-dependent efflux pump, transporting exogenous and endogenous substrates from the inside of cells to the outside. Physiological expression of P-glycoprotein in tissues with excretory or protective function is a major determinant of drug disposition and provides a cellular defense mechanism against potentially harmful compounds. Therefore, P-glycoprotein has significant impact on therapeutic efficacy and toxicity as it plays a key role in absorption of oral medications from the intestinal tract, excretion into bile and urine, and distribution into protected tissues such as the brain and testes. There is increasing interest in the possible role of genetic variation in MDR1 in drug therapy. Numerous genetic polymorphisms in MDR1 have been described, some of which have been shown to determine P-glycoprotein expression levels and substrate transport. Furthermore, some of these polymorphisms have an impact on pharmacokinetic and pharmacodynamic profiles of drug substrates and directly influence outcome and prognosis of certain diseases. This review will focus on the impact of genetic variation in MDR1 on expression and function of P-glycoprotein and the implications of this variation for drug therapy and disease risk.
Comments [show]
None has been submitted yet.
No. Sentence Comment
94 A vaccinia virus expression system was used to examine the Asn21Asp, Phe103Leu, Ser400Ala, Ala893Ser, and Ala893Thr P-glycoprotein variants.
X
ABCB1 p.Ser400Ala 15212152:94:80
status: NEW118 Functional Impact in vitro of MDR1 Variants Amino acid change Functional effect of the variant allele Reference Val185Ser Increased colchicine resistance [30] ⌬Phe335 Decreased resistance to vinca alkaloids; no resistance to dactinomycin [31] Lys536Gln, Gly534Asp, Lys536Arg, Ser532Arg, ⌬Tyr490 Defective RNA processing [33] Ala893Ser Acquired overexpression of one allele in drug-resistant cells [20] Ala893Ser Decreased digoxin efflux [19] Asn21Asp, Phe103Leu, Ser400Ala, Ala893Ser, Ala893Thr No effect on P-glycoprotein cell surface expression and substrate specificity [69] Ala893Ser No difference in calcein-AM transport [27] Ala893Ser/Thr No difference in transport of verapamil, digoxin, viblastine and cyclosporine A [35] 3435 polymorphisms were analyzed separately, with AUC values being highest for individuals carrying the reference alleles.
X
ABCB1 p.Ser400Ala 15212152:118:477
status: NEW