ABCB1 p.Gly812Val
Predicted by SNAP2: | A: D (85%), C: D (85%), D: D (95%), E: D (95%), F: D (95%), H: D (95%), I: D (91%), K: D (95%), L: D (95%), M: D (91%), N: D (91%), P: D (91%), Q: D (95%), R: D (95%), S: D (85%), T: D (91%), V: D (91%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Biochemical, cellular, and pharmacological aspects... Annu Rev Pharmacol Toxicol. 1999;39:361-98. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM
Biochemical, cellular, and pharmacological aspects of the multidrug transporter.
Annu Rev Pharmacol Toxicol. 1999;39:361-98., [PMID:10331089]
Abstract [show]
Considerable evidence has accumulated indicating that the multidrug transporter or P-glycoprotein plays a role in the development of simultaneous resistance to multiple cytotoxic drugs in cancer cells. In recent years, various approaches such as mutational analyses and biochemical and pharmacological characterization have yielded significant information about the relationship of structure and function of P-glycoprotein. However, there is still considerable controversy about the mechanism of action of this efflux pump and its function in normal cells. This review summarizes current research on the structure-function analysis of P-glycoprotein, its mechanism of action, and facts and speculations about its normal physiological role.
Comments [show]
None has been submitted yet.
No. Sentence Comment
52 Table 1 aa mutation Region Sourceb Reference (Continued) G812V IC 4 Human MDR1 153 15319, Taken together, these mutational data suggest that the two halves of human P-gp interact to form a single transporter and that the major drug binding domains reside in or near transmembrane domains 5, 6 and 11, 12.
X
ABCB1 p.Gly812Val 10331089:52:57
status: NEW[hide] Molecular genetic analysis and biochemical charact... Semin Cell Dev Biol. 2001 Jun;12(3):247-56. Hrycyna CA
Molecular genetic analysis and biochemical characterization of mammalian P-glycoproteins involved in multidrug resistance.
Semin Cell Dev Biol. 2001 Jun;12(3):247-56., [PMID:11428917]
Abstract [show]
A variety of human cancers become resistant or are intrinsically resistant to treatment with conventional drug therapies. This phenomenon is due in large part to the overexpression of a 170 kDa plasma membrane ATP-dependent pump known as the multidrug resistance transporter or P-glycoprotein. P-glycoprotein is a member of the large ATP binding cassette (ABC) superfamily of membrane transporters. This review focuses on the use of structure-function analyses to elucidate further the mechanism of action of mammalian P-glycoproteins. Ultimately, a complete understanding of the mechanism is important for the development of novel strategies for the treatment of many human cancers.
Comments [show]
None has been submitted yet.
No. Sentence Comment
27 List of mutations in human, mouse and hamster P-gp`s that affect substrate specificity f aaa Mutation Regionb Sourcec Reference aa 78-97 EC 1 human MDR1 78 (ABC20)d Q128He TM 2 mouse mdr3 79 R138H IC 1 mouse mdr3 79 Q139H, R IC 1 mouse mdr3 79 G141V IC 1 human MDR1 25,80 Q145H IC 1 mouse mdr3 79 E155G, K IC 1 mouse mdr3 79 F159I IC 1 mouse mdr3 79 D174G IC 1 mouse mdr3 79 S176F, P IC 1 mouse mdr3 79 K177I IC 1 mouse mdr3 79 N179S IC1 mouse mdr3 79 N183S/G185V IC 1 human MDR1 81 G183D IC1 mouse mdr3 79 G185V IC 1 human MDR1 82-84 G187V IC 1 human MDR1 80 A192T TM 3 mouse mdr3 79 F204S EC 2 mouse mdr3 79 W208G EC 2 mouse mdr3 79 K209E EC 2 mouse mdr3 79 L210I TM 4 mouse mdr3 79 T211P TM 4 mouse mdr3 79 I214T TM 4 mouse mdr3 79 P223A TM 4 human MDR1 85 K285T IC 2 human MDR1 1 G288V IC 2 human MDR1 80 I299M, T319S, L322I, TM 5, EC3, IC 3 human MDR1 86 G324K, S351N V334 TM 6 human MDR1 1 F335A TM 6 human MDR1 25 F335 TM 6 human MDR1 87 V338A TM 6 human MDR1 88 G338A, A339P TM 6 hamster PGY 1 89,90 A339P TM 6 hamster PGY 1 90 G341V TM 6 human MDR1 88 K536R,Q N-NBD human MDR1 91 ERGA→DKGT N-NBD mouse mdr3 92 (aa 522-525) T578C N-NBD mouse mdr3 92 G812V IC 4 human MDR1 80 G830V IC 4 human MDR1 25,80 P866A TM 10 human MDR1 85 F934A TM 11 mouse mdr3 93 G935A TM 11 mouse mdr3 93 I936A TM 11 mouse mdr3 93 F938A TM 11 mouse mdr3 93 S939A TM 11 mouse mdr3 93 S939F TM 11 mouse mdr3 94,95 S941F TM 11 mouse mdr1 94,95 T941A TM 11 mouse mdr3 93 Q942A TM 11 mouse mdr3 93 Table 1-continued aaa Mutation Regionb Sourcec Reference A943G TM 11 mouse mdr3 93 Y946A TM 11 mouse mdr3 93 S948A TM 11 mouse mdr3 93 Y949A TM 11 mouse mdr3 93 C952A TM 11 mouse mdr3 93 F953A TM 11 mouse mdr3 93 F983A TM 12 human MDR1 96 L975A, V981A, F983A TM 12 human MDR1 96 M986A, V988A, TM 12 human MDR1 96 Q990A, V991A V981A, F983A TM 12 human MDR1 96 L975A, F983A TM 12 human MDR1 96 L975A, V981A TM 12 human MDR1 96 F978 TM 12 human MDR1 1 F978A TM 12 human MDR1 25 a aa, amino acid.
X
ABCB1 p.Gly812Val 11428917:27:1165
status: NEW[hide] How does P-glycoprotein recognize its substrates? Semin Cancer Biol. 1997 Jun;8(3):151-9. Ueda K, Taguchi Y, Morishima M
How does P-glycoprotein recognize its substrates?
Semin Cancer Biol. 1997 Jun;8(3):151-9., [PMID:9441945]
Abstract [show]
We review how P-glycoprotein recognizes a wide variety of compounds and how it carries its substrates across membranes. Amino acid substitutions that affect the substrate specificity of P-glycoprotein have been found scattered throughout the molecule. In particular, some amino acid residues in the putative transmembrane domain (TM) 1 together with TM5-6 and TM11-12 may help to govern substrate specificity. The features that substrates for P-glycoprotein share are also discussed. The amphipathy of a substrate may decide whether the substrate can be intercalated into the lipid bilayer of the membrane. In addition, only certain molecular volumes and tertiary structures may make it possible for the substrate to fit into the substrate-binding site(s) of P-glycoprotein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
98 The effects of amino acid substitutions on substrate specificity of P-glycoprotein can generally be classified into two groups.46 The first group is of mutations Gly185-to-Val, 51,52 Gly141-to-Val, and Gly187- to-Val,54 all in the first cytoplasmic loop; Gly288-to- Val54 in the second cytoplasmic loop; Phe335-to-Ala 39 and Val338-to-Ala 40 in TM6; Gly812-to-Val and Gly830-to-Val 54 in the fourth cytoplasmic loop.
X
ABCB1 p.Gly812Val 9441945:98:350
status: NEW