ABCC7 p.Arg347Gln
ClinVar: |
c.1039C>T
,
p.Arg347Cys
?
, not provided
c.1040G>A , p.Arg347His D , Pathogenic c.1040G>T , p.Arg347Leu D , Pathogenic c.1040G>C , p.Arg347Pro D , Pathogenic |
CF databases: |
c.1040G>C
,
p.Arg347Pro
D
, CF-causing ; CFTR1: This mutation destroys a Hha I restriciton site and creates an NcoI site and occurred in a family diagnosed as PS. The mutation have been identified and analyzed using the SSCP technique.
c.1040G>A , p.Arg347His D , CF-causing ; CFTR1: The patient is of Italian origin and carries the [delta]F508 mutation on the other chromosome. Initially we thought this was the same mutation as R347 because it destroys the same hhai site; however, R347H does not create the NcoI site. c.1040G>T , p.Arg347Leu (CFTR1) D , A nucleotide change, G->T at position 1172, was detected leading to R347L. The other chromosome carries a [delta]F508. This mutation was found on one chromosome among 150 CF chromosomes screened. c.1039C>T , p.Arg347Cys (CFTR1) ? , This mutation was identified by DGGE and direct sequencing. |
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (71%), I: D (95%), K: D (95%), L: D (80%), M: D (95%), N: D (95%), P: D (75%), Q: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: N, C: D, D: D, E: N, F: D, G: D, H: N, I: D, K: N, L: N, M: N, N: N, P: N, Q: N, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] CFTR: mechanism of anion conduction. Physiol Rev. 1999 Jan;79(1 Suppl):S47-75. Dawson DC, Smith SS, Mansoura MK
CFTR: mechanism of anion conduction.
Physiol Rev. 1999 Jan;79(1 Suppl):S47-75., [PMID:9922376]
Abstract [show]
CFTR: Mechanism of Anion Conduction. Physiol. Rev. 79, Suppl.: S47-S75, 1999. - The purpose of this review is to collect together the results of recent investigations of anion conductance by the cystic fibrosis transmembrane conductance regulator along with some of the basic background that is a prerequisite for developing some physical picture of the conduction process. The review begins with an introduction to the concepts of permeability and conductance and the Nernst-Planck and rate theory models that are used to interpret these parameters. Some of the physical forces that impinge on anion conductance are considered in the context of permeability selectivity and anion binding to proteins. Probes of the conduction process are considered, particularly permeant anions that bind tightly within the pore and block anion flow. Finally, structure-function studies are reviewed in the context of some predictions for the origin of pore properties.
Comments [show]
None has been submitted yet.
No. Sentence Comment
557 Ineffect of mutations on anion binding suggests that permeant anions can interact with the channel sufficiently confirmation of these results, Smith and Dawson (unpublished data) found that blockade of CFTR by externalstrongly to impede conduction rates but that the ''tight binding`` is dependent on some element of pore conforma- SCN was abolished in R347E and also in R347Q CFTR, confirming the importance of the positive charge at thistion that is not critical to promote the entry of anions into the pore.
X
ABCC7 p.Arg347Gln 9922376:557:371
status: NEW