ABCC7 p.Ala1136Cys
CF databases: |
c.3406G>A
,
p.Ala1136Thr
(CFTR1)
?
, This mutation was found in a patient with pancreatitis.
|
Predicted by SNAP2: | C: D (53%), D: D (85%), E: D (85%), F: D (85%), G: D (66%), H: D (91%), I: D (66%), K: D (91%), L: D (80%), M: D (71%), N: D (71%), P: D (85%), Q: D (80%), R: D (85%), S: N (66%), T: N (53%), V: D (71%), W: D (91%), Y: D (85%), |
Predicted by PROVEAN: | C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Novel residues lining the CFTR chloride channel po... J Membr Biol. 2009 Apr;228(3):151-64. Epub 2009 Apr 19. Fatehi M, Linsdell P
Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
J Membr Biol. 2009 Apr;228(3):151-64. Epub 2009 Apr 19., [PMID:19381710]
Abstract [show]
Substituted cysteine accessibility mutagenesis (SCAM) has been used widely to identify pore-lining amino acid side chains in ion channel proteins. However, functional effects on permeation and gating can be difficult to separate, leading to uncertainty concerning the location of reactive cysteine side chains. We have combined SCAM with investigation of the charge-dependent effects of methanethiosulfonate (MTS) reagents on the functional permeation properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels. We find that cysteines substituted for seven out of 21 continuous amino acids in the eleventh and twelfth transmembrane (TM) regions can be modified by external application of positively charged [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium [2-sulfonatoethyl] MTS (MTSES). Modification of these cysteines leads to changes in the open channel current-voltage relationship at both the macroscopic and single-channel current levels that reflect specific, charge-dependent effects on the rate of Cl(-) permeation through the channel from the external solution. This approach therefore identifies amino acid side chains that lie within the permeation pathway. Cysteine mutagenesis of pore-lining residues also affects intrapore anion binding and anion selectivity, giving more information regarding the roles of these residues. Our results demonstrate a straightforward method of screening for pore-lining amino acids in ion channels. We suggest that TM11 contributes to the CFTR pore and that the extracellular loop between TMs 11 and 12 lies close to the outer mouth of the pore.
Comments [show]
None has been submitted yet.
No. Sentence Comment
72 Of 21 cysteine mutants studied, only six significantly altered I-V relationship shape in the absence of external MTS reagents (Fig. 3a), with S1118C, T1121C, T1122C, G1127C and A1136C all causing significant inward rectification and V1129C showing outward rectification.
X
ABCC7 p.Ala1136Cys 19381710:72:177
status: NEW76 There was strong overlap between changes in control I-V shape and sensitivity to MTS reagents-only A1136C showed an I-V relationship that was significantly different in shape from wild-type in the absence of MTS reagents (Fig. 3a) but insensitive to charged MTS reagents (Fig. 3b).
X
ABCC7 p.Ala1136Cys 19381710:76:99
status: NEW168 Only one mutant that was apparently not affected by MTS reagents (A1136C) had a small effect on the shape of the I-V relationship (Fig. 3a).
X
ABCC7 p.Ala1136Cys 19381710:168:66
status: NEW[hide] Functional arrangement of the 12th transmembrane r... Pflugers Arch. 2011 Oct;462(4):559-71. Epub 2011 Jul 28. Qian F, El Hiani Y, Linsdell P
Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
Pflugers Arch. 2011 Oct;462(4):559-71. Epub 2011 Jul 28., [PMID:21796338]
Abstract [show]
The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel comprises 12 transmembrane (TM) alpha-helices, arranged into two pseudo-symmetrical groups of six. While TM6 in the N-terminal TMs is known to line the pore and to make an important contribution to channel properties, much less is known about its C-terminal counterpart, TM12. We have used patch clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of TM12 in a cysteine-less variant of CFTR. We find that methanethiosulfonate (MTS) reagents irreversibly modify cysteines substituted for TM12 residues N1138, M1140, S1141, T1142, Q1144, W1145, V1147, N1148, and S1149 when applied to the cytoplasmic side of open channels. Cysteines sensitive to internal MTS reagents were not modified by extracellular [2-(trimethylammonium)ethyl] MTS, consistent with MTS reagent impermeability. Both S1141C and T1142C could be modified by intracellular [2-sulfonatoethyl] MTS prior to channel activation; however, N1138C and M1140C, located deeper into the pore from its cytoplasmic end, were modified only after channel activation. Comparison of these results with previous work on CFTR-TM6 allows us to develop a model of the relative positions, functional contributions, and alignment of these two important TMs lining the CFTR pore. We also propose a mechanism by which these seemingly structurally symmetrical TMs make asymmetric contributions to the functional properties of the channel pore.
Comments [show]
None has been submitted yet.
No. Sentence Comment
90 A similar lack of effect following prolonged (>5 min) exposure to such high concentrations of both MTSES and MTSET was also observed in ten out of 19 cysteine-substituted mutants tested (I1131C, I1132C, L1133C, T1134C, L1135C, A1136C, M1137C, I1139C, L1143C, and A1146C).
X
ABCC7 p.Ala1136Cys 21796338:90:227
status: NEW