ABCC7 p.Leu732*
ClinVar: |
c.2195T>G
,
p.Leu732*
D
, Pathogenic
|
CF databases: |
c.2195T>G
,
p.Leu732*
D
, CF-causing
|
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Extensive sequencing of the CFTR gene: lessons lea... Hum Genet. 2005 Dec;118(3-4):331-8. Epub 2005 Sep 28. McGinniss MJ, Chen C, Redman JB, Buller A, Quan F, Peng M, Giusti R, Hantash FM, Huang D, Sun W, Strom CM
Extensive sequencing of the CFTR gene: lessons learned from the first 157 patient samples.
Hum Genet. 2005 Dec;118(3-4):331-8. Epub 2005 Sep 28., [PMID:16189704]
Abstract [show]
Cystic fibrosis (CF) is one of the most common monogenic diseases affecting Caucasians and has an incidence of approximately 1:3,300 births. Currently recommended screening panels for mutations in the responsible gene (CF transmembrane regulator gene, CFTR) do not detect all disease-associated mutations. Our laboratory offers extensive sequencing of the CFTR (ABCC7) gene (including the promoter, all exons and splice junction sites, and regions of selected introns) as a clinical test to detect mutations which are not found with conventional screening. The objective of this report is to summarize the findings of extensive CFTR sequencing from our first 157 consecutive patient samples. In most patients with classic CF symptoms (18/24, 75%), extensive CFTR sequencing confirmed the diagnosis by finding two disease-associated mutations. In contrast, only 5 of 75 (7%) patients with atypical CF had been identified with two CFTR mutations. A diagnosis of CF was confirmed in 10 of 17 (58%) newborns with either positive sweat chloride readings or positive immunoreactive trypsinogen (IRT) screen results. We ascertained ten novel sequence variants that are potentially disease-associated: two deletions (c.1641AG>T, c.2949_2853delTACTC), seven missense mutations (p.S158T, p.G451V, p.K481E, p.C491S, p.H949L, p.T1036N, p.F1099L), and one complex allele ([p.356_A357del; p.358I]). We ascertained three other apparently novel complex alleles. Finally, several patients were found to carry partial CFTR gene deletions. In summary, extensive CFTR gene sequencing can detect rare mutations which are not found with other screening and diagnostic tests, and can thus establish a definitive diagnosis in symptomatic patients with previously negative results. This enables carrier detection and prenatal diagnosis in additional family members.
Comments [show]
None has been submitted yet.
No. Sentence Comment
72 The two deletions Table 2 Atypical CF or nonclassic patients in whom extensive sequencing revealed two CFTR mutations Patient Genotype Phenotype Sex Age (years) Sweat chloride concentration (mmol/l) 1 p.S912L/DF508 Chronic lung and sinus disease F 52 Not done 2 p.R1070W/p.N1303K Recurrent respiratory infections F 4.5 2X intermediate 3 p.G551D/c.2789+2 InsA Pancreatic insufficiency, little lung involvement F 50 92, 96 4 c.3849+10kb C>T/p.L732X Failure to thrive, chronic cough, chronic sinusitis M 5.5 70,73 5 p.W1282X/p.R170H Chronic pancreatitis, CBVAD M 44 Borderline (c.1641 AG>T, and c.2949-2953 del TACTC) are expected to be severe disease-associated mutations, since they change the CFTR reading frame; the two patients harboring these novel deletions had a diagnosis of CF with elevated sweat chloride levels and carried a second, previously described, CF mutation.
X
ABCC7 p.Leu732* 16189704:72:441
status: NEW[hide] CFTR mutations in Turkish and North African cystic... Genet Test. 2008 Mar;12(1):25-35. Lakeman P, Gille JJ, Dankert-Roelse JE, Heijerman HG, Munck A, Iron A, Grasemann H, Schuster A, Cornel MC, Ten Kate LP
CFTR mutations in Turkish and North African cystic fibrosis patients in Europe: implications for screening.
Genet Test. 2008 Mar;12(1):25-35., [PMID:18373402]
Abstract [show]
AIMS: To obtain more insight into the variability of the CFTR mutations found in immigrant cystic fibrosis (CF) patients who are living in Europe now, and to estimate the test sensitivity of different frequently used methods of DNA analysis to detect CF carriers or patients among these Turkish or North African immigrants. METHODS: A survey among 373 European CF centers asking which CFTR mutations had been found in Turkish and North African CF patients. RESULTS: 31 and 26 different mutations were reported in Turkish and North African patients, identifying 64.2% (113/176) and 87.4% (118/135) alleles, respectively (p < 0.001). The mean sensitivity (detection rate) of three most common CFTR mutation panels to detect these mutations differed between Turkish and North African people, 44.9% (79/176) versus 69.6% (94/135) (p < 0.001), and can be increased to 57.4% (101/176) and 79.3% (107/135) (p < 0.001), respectively, by expanding these panels with 13 mutations which have been found on two or more alleles. CONCLUSION: 35.8% and 12.6%, respectively, of CF alleles in Turkish and North African patients living in Europe now had not been identified. Among these populations, the test sensitivity of common CFTR mutation panels is insufficient for use in screening programs in Europe, even after expansion with frequent Turkish and North African mutations. This raises questions about whether and how to implement CF carrier and neonatal screening in a multiethnic society.
Comments [show]
None has been submitted yet.
No. Sentence Comment
113 Identity and Frequency of CFTR Mutations on Unrelated Turkish (Tr) and North African (NA) CF alleles Total number of allelesa Number of CF patients with this mutationb Mutation Exon All Tr NA Homozygote Compound heterozygote: two mutations found Compound heterozygote: one mutation found F508delc 10 73 33 40 27 11 6 N1303K 21 22 12 10 10 5 2 711 þ 1G > T Intron 5 14 - 14 7 2 0 G542X 11 14 6 8 7 1 0 R1162X 19 11 - 11 1 5 2 2183AA > G 13 9 9 - 3 3 1 W1282X 20 7 3 4 2 3 1 2789 þ 5G > A Intron 14b 6 3 3 1 4 1 L227R 6a 4 - 4 3 1 0 1677delTA 10 4 4 - 2 1 1 2184insA 13 4 4 - 1 2 0 R334W 7 4 4 - 1 1 1 G85E 3 4 3 1 1 2 0 R709X 13 3 - 3 2 0 0 L732X 13 3 3 - 2 0 0 2184delA 13 3 3 - 0 3 0 del exon 1-4d 1-4 3 3 - 1 1 0 del exon 19 19 2 2 - 2 0 0 3849 þ 10kbC > T Intron 19 2 - 2 1 0 0 S549N 11 2 1 1 0 1 1 3120 þ G > A Intron 16 2 2 - 1 0 0 3601-2A > G Intron 18 2 2 - 1 0 0 D1152H 18 2 2 - 1 0 0 E1104X 17b 2 - 2 1 0 0 S1159F 19 2 2 - 1 0 0 S977F 16 2 - 2 0 1 0 2347delG 13 2 - 2 1 0 0 4096-3C > G Intron 21 1 1 - 1 0 0 E831X 14a 1 1 - 1 0 0 L619S 13 1 1 - 1 0 0 1525-1G > Ac Intron 9 1 1 - 1 0 0 F1052V 17b 1 1 - 1 0 0 3130delA 17a 1 1 - 1 0 0 R352Q 7 1 - 1 0 1 0 1812-1G > A Intron 11 1 - 1 0 1 0 R553X 11 1 - 1 0 0 1 IVS8-5T Intron 8 1 1 - 0 1 0 R1066C 17b 1 - 1 0 1 0 3129del4 17a 1 - 1 0 1 0 D110H 4 1 1 - 0 1 0 R117H 4 1 - 1 0 1 0 S945L 15 1 - 1 0 1 0 1716G=A 10 1 - 1 0 0 1 711 þ 3A > G Intron 5 1 1 - 0 1 0 R75X 3 1 1 - 0 1 0 R764X 13 1 - 1 0 1 0 S1196X 19 1 1 - 0 1 0 S492F 10 1 - 1 0 1 0 G551D 11 1 - 1 1 0 0 del exon 2 2 1 1 - 1 0 0 Subtotal 231 113 118 - No mutation 80 63 17 - Total 311 176 135 88 60 18 a n ¼ 311 alleles, based on 166 CF patients (332 alleles) with both parents and 22 CF patients (22 alleles) with one parent from Turkey or North Africa, minus 43 alleles of homozygous CF patients with consanguineous parents of whom only one allele was taken into account.
X
ABCC7 p.Leu732* 18373402:113:650
status: NEW[hide] Dysfunctional CFTR alters the bactericidal activit... PLoS One. 2011;6(5):e19970. Epub 2011 May 18. Del Porto P, Cifani N, Guarnieri S, Di Domenico EG, Mariggio MA, Spadaro F, Guglietta S, Anile M, Venuta F, Quattrucci S, Ascenzioni F
Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa.
PLoS One. 2011;6(5):e19970. Epub 2011 May 18., [PMID:21625641]
Abstract [show]
Chronic inflammation of the lung, as a consequence of persistent bacterial infections by several opportunistic pathogens represents the main cause of mortality and morbidity in cystic fibrosis (CF) patients. Mechanisms leading to increased susceptibility to bacterial infections in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in microbicidal functions of macrophages is emerging. Tissue macrophages differentiate in situ from infiltrating monocytes, additionally, mature macrophages from different tissues, although having a number of common activities, exhibit variation in some molecular and cellular functions. In order to highlight possible intrinsic macrophage defects due to CFTR dysfunction, we have focused our attention on in vitro differentiated macrophages from human peripheral blood monocytes. Here we report on the contribution of CFTR in the bactericidal activity against Pseudomonas aeruginosa of monocyte derived human macrophages. At first, by real time PCR, immunofluorescence and patch clamp recordings we demonstrated that CFTR is expressed and is mainly localized to surface plasma membranes of human monocyte derived macrophages (MDM) where it acts as a cAMP-dependent chloride channel. Next, we evaluated the bactericidal activity of P. aeruginosa infected macrophages from healthy donors and CF patients by antibiotic protection assays. Our results demonstrate that control and CF macrophages do not differ in the phagocytic activity when infected with P. aeruginosa. Rather, although a reduction of intracellular live bacteria was detected in both non-CF and CF cells, the percentage of surviving bacteria was significantly higher in CF cells. These findings further support the role of CFTR in the fundamental functions of innate immune cells including eradication of bacterial infections by macrophages.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 63% CF6 34 F F508del/L732X C.a., S.a.,P.a.
X
ABCC7 p.Leu732* 21625641:57:21
status: NEW[hide] Cystic fibrosis mutation screening in CBAVD patien... Mol Hum Reprod. 1998 Apr;4(4):333-7. Kanavakis E, Tzetis M, Antoniadi T, Pistofidis G, Milligos S, Kattamis C
Cystic fibrosis mutation screening in CBAVD patients and men with obstructive azoospermia or severe oligozoospermia.
Mol Hum Reprod. 1998 Apr;4(4):333-7., [PMID:9620832]
Abstract [show]
Congenital bilateral absence of the vas deferens (CBAVD) found in otherwise healthy infertile males, is associated with a high incidence of mutated cystic fibrosis transmembrane conductance regulator (CFTR) alleles, and is considered a genital form of cystic fibrosis (CF). The CF gene may also be involved in the aetiology of male infertility in cases other than CBAVD. The present study was undertaken to test the involvement of CFTR gene mutations in 14 CBAVD males and additionally in cases of male infertility caused by obstructive azoospermia (n = 10) and severe oligozoospermia (n = 3). The entire coding region of the CFTR gene was analysed using denaturing gradient gel electrophoresis (DGGE). The three allele (5T, 7T, 9T) polymorphic tract of thymidines in intron 8 (IVS8-polyT) of which the 5T allele acts as a mild mutation, causing reduced levels of normal CFTR mRNA due to deletion of exon 9, was also analysed. Of the 14 CBAVD cases, four (28.6%) were found to have mutations in both copies of the CFTR gene, six (42.8%) had one CFTR mutation, and in the remaining four (28.6%) no CFTR mutations were found. Of the 10 cases with obstructive azoospermia, three (30%) had one CFTR mutation and in the remaining seven (70%) no mutations were found. None of the three severe oligozoospermia cases carried a CFTR mutation. The frequency of the IVS8(5T) allele was 14.3% (4/28) for the CBAVD cases and 5% (1/20) for the obstructive azoospermia cases, none of the severe oligozoospermia males carried the IVS8-5(5T) allele. The data indicate that while there is a strong association between male infertility caused by CBAVD and mutations in the CFTR gene, cases of obstructive azoospermia without CBAVD also seem to be associated with CFTR gene mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
58 Six (42.8%) had one CF mutation, and three of them with mutations ∆F508, L732X, 711ϩ3AϾG, are also 5T heterozygotes.
X
ABCC7 p.Leu732* 9620832:58:80
status: NEW64 Cystic fibrosis transmembrane conductance regulator (CFTR), PolyT genotypes and clinical data of men with congenital bilateral absence of the vas deferens (CBAVD, n ϭ 14), obstructive azoospermia (ObsA, n ϭ 10) and oligozoospermia (n ϭ 3) Patients Sweat chloride CFTR IVS8-polyT Other clinical (mEq/l) mutations alleles features Two mutations detected MS1 (CBAVD) 107.7 ∆F508/M1I 5T/9T Recurrent bronchitis MS6 (CBAVD) 74.5 ∆F508/711ϩ3AϾG 9T/7T Chronic cough MS19 (CBAVD) 51 W496X/F1052V 9T/9T MS24 (CBAVD) Ͻ40 D565G/R668C 7T/7T One mutation detected MS5 (CBAVD) Ͻ40 3272-26AϾG/- 7T/7T MS12 (CBAVD) Ͻ40 ∆F508/- 9T/7T MS14 (CBAVD) Ͻ40 ∆F508/- 9T/5T MS15 (CBAVD) 57.7 L732X/- 7T/5T Dehydration/recurrent bronchitis MS16 (CBAVD) Ͻ40 711ϩ3AϾG/- 7T/5T MS20 (CBAVD) Ͻ40 4010delTAT/- 7T/7T MS18 (ObsA) 48 ∆F508/- 5T/9T MS11 (ObsA) Ͻ40 R75Q/- 7T/7T MS23 (ObsA) Ͻ40 2790-8CϾG/- 7T/7T No mutation detected MS7 (CBAVD) Ͻ40 -/- 7T/7T MS10 (CBAVD) Ͻ40 -/- 7T/7T MS21 (CBAVD) Ͻ40 -/- 7T/9T MS28 (CBAVD) Ͻ40 -/- 7T/7T MS2 (ObsA) 54.2 -/- 7T/7T MS8 (ObsA) Ͻ40 -/- 7T/7T MS17 (ObsA) 50 -/- 7T/7T MS22 (ObsA) Ͻ40 -/- 7T/9T MS25 (ObsA) Ͻ40 -/- 7T/7T MS26 (ObsA) Ͻ40 - / - 7T/7T MS27 (ObsA) Ͻ40 -/- 7T/7T MS3 (oligozoospermia) 50 -/- 7T/7T MS4 (oligozoospermia) Ͻ40 -/- 7T/7T MS13 (oligozoospermia) Ͻ40 -/- 7T/7T Table II.
X
ABCC7 p.Leu732* 9620832:64:754
status: NEW90 Patient MS15 (L732X/-) who is also heterozygous for the 5T allele and thus could be considered to be a CF compound heterozygote, had a severe dehydration episode and few gastrointestinal manifestations of CF.
X
ABCC7 p.Leu732* 9620832:90:14
status: NEW[hide] Validation of double gradient denaturing gradient ... Clin Chem. 1999 Jan;45(1):35-40. Cremonesi L, Carrera P, Fumagalli A, Lucchiari S, Cardillo E, Ferrari M, Righetti SC, Zunino F, Righetti PG, Gelfi C
Validation of double gradient denaturing gradient gel electrophoresis through multigenic retrospective analysis.
Clin Chem. 1999 Jan;45(1):35-40., [PMID:9895335]
Abstract [show]
Among established techniques for the identification of either known or new mutations, denaturing gradient gel electrophoresis (DGGE) is one of the most effective. However, conventional DGGE is affected by major drawbacks that limit its routine application: the different denaturant gradient ranges and migration times required for different DNA fragments. We developed a modified version of DGGE for high-throughput mutational analysis, double gradient DGGE (DG-DGGE), by superimposing a porous gradient over the denaturant gradient, which maintains the zone-sharpening effect even during lengthy analyses. Because of this innovation, DG-DGGE achieves the double goals of retaining full effectiveness in the detection of mutations while allowing identical run time conditions for all fragments analyzed. Here we use retrospective analysis of a large number of well-characterized mutations and polymorphisms, spanning all predicted melting domains and the whole genomic sequence of three different genes--the cystic fibrosis transmembrane conductance regulator (CFTR), the beta-globin, and the p53 genes--to demonstrate that DG-DGGE may be applied to the rapid scanning of any sequence variation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
31 Mutations and polymorphisms analyzed in the CFTR gene. Position Denaturant gradient Mutation Exon 1 40-90% 125G/Ca,b M1V (A3G at 133) 175insT 182delT Exon 3 10-60% W57G (T3G at 301) 356G/Aa G85E (G3A at 386) Exon 4 20-70% R117H (G3A at 482) 541delC 621ϩ1G3T I148T (T3C at 575) Exon 5 20-70% E193K (G3A at 709) Intron 5 20-70% 711ϩ3A3G Exon 7 20-70% 1078delT R334W (C3T at 1132) T338I (C3T at 1145) R347P (G3C at 1172)b R347H (G3A at 1172) R352Q (G3A at 1187) Exon 10 20-70% M470V (1540A/G)a ⌬F508 (del 3 bp at 1652) Intron 10 10-60% 1717-1G3A Exon 11 10-60% G542X (G3T at 1756) 1784delG R553X (C3T at 1789) Exon 12 10-60% D579G (A3G at 1868) E585X (G3T at 1885) Intron 12 10-60% 1898ϩ3A3G Exon 13 30-80% 2183AA3G E730X (G3T at 2320) L732X (T3G at 2327) 2347delG Exon 14a 10-60% T854T (2694T/G)a V868V (2736G/A)a Intron 14b 30-80% 2789ϩ5G3A Exon 15 20-70% M952I (G3C at 2988)b Exon 17a 20-70% L997F (G3C at 3123)b Exon 17b 20-70% F1052V (T3G at 3286) R1066C (C3T at 3328) R1066H (G3A at 3329) A1067T (G3A at 3331) Exon 18 20-70% D1152H (G3C at 3586)b Exon 19 30-80% R1158X (C3T at 3604) Exon 20 20-70% S1251N (G3A at 3384) W1282X (G3A at 3978) Exon 21 20-70% N1303K (C3G at 4041)b Exon 22 30-80% G1349D (G3A at 4178) 4382delA Exon 24 30-80% Y1424Y (4404C/T)a a Polymorphism.
X
ABCC7 p.Leu732* 9895335:31:758
status: NEW[hide] Spectrum of CFTR mutations in cystic fibrosis and ... Hum Mutat. 2000;16(2):143-56. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD
Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France.
Hum Mutat. 2000;16(2):143-56., [PMID:10923036]
Abstract [show]
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 h M1K, K14X, W19X, 211delG, G27E, R31C, 237insA, 241delAT, Q39X, 244delTA, 296+2T>C, 297-3C>T, W57X+F87L, 306delTAGA, P67L, A72D, 347delC, R75Q, 359insT, 394delT, 405+4A>G, Q98R, 457TAT>G, R117H+5T, R117H+I1027T, R117L, R117P, H139R, A141D, M152V, N186K, D192N, D192del, E193X, 711+1G>A, 711+3A>G, 712-1G>T, L206F, W216X, C225R, Q237E, G241R, 852del22, 876-14del12, 905delG, 993del5, E292K, Y304X, F311del, 1161delC, R347L, R352Q, W361R, 1215delG, S364P, S434X, D443Y, S466X, C491R, T501A, I506T, F508C, I507del+F508C, F508del+L467F, 1774delCT, R553G, 1802delC, 1806delA, A559E, Y563N, 1833delT, Y569C, Y569H, Y569X, G576X, G576A, T582I, 1898+3A>G+186-13C>G, 1918delGC, R600G, L610S, G628R, 2043delG, 2118del4, E664X, 2174insA, Q689X, K698R, K716X, L732X, 2347delG, 2372del8, R764X, 2423delG, S776X, 2634insT, 2640delT, C866Y, 2752-1G>T, W882X, Y913C, V920M, 2896insAG, H939D, H939R, D979V, D985H, D993Y, 3120G>A, I1005R, 3195del6, 3293delA, 3320ins5, W1063X, A1067T, 3359delCT, T1086I, W1089X, Y1092X+S1235R, W1098X, E1104X, R1128X, 3532AC>GTA, 3548TCAT>G, M1140del, 3600G>A, R1162L, 3667ins4, 3732delA+K1200E, S1206X, 3791delC, S1235R+5T, Q1238R, Q1238X, 3849+4A>G, T1246I, 3869insG, S1255P, R1283K, F1286S, 4005+1G>T, 4006-8T>A, 4015delA, N1303H, N1303I, 4172delGC, 4218insT, 4326delTC, Q1382X, 4375-1C>T, 4382delA, D1445N, CF40kbdel4-10, Cfdel17b.
X
ABCC7 p.Leu732* 10923036:109:749
status: NEW[hide] CFTR mutations spectrum and the efficiency of mole... PLoS One. 2014 Feb 26;9(2):e89094. doi: 10.1371/journal.pone.0089094. eCollection 2014. Zietkiewicz E, Rutkiewicz E, Pogorzelski A, Klimek B, Voelkel K, Witt M
CFTR mutations spectrum and the efficiency of molecular diagnostics in Polish cystic fibrosis patients.
PLoS One. 2014 Feb 26;9(2):e89094. doi: 10.1371/journal.pone.0089094. eCollection 2014., [PMID:24586523]
Abstract [show]
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR). In light of the strong allelic heterogeneity and regional specificity of the mutation spectrum, the strategy of molecular diagnostics and counseling in CF requires genetic tests to reflect the frequency profile characteristic for a given population. The goal of the study was to provide an updated comprehensive estimation of the distribution of CFTR mutations in Polish CF patients and to assess the effectiveness of INNOLiPA_CFTR tests in Polish population. The analyzed cohort consisted of 738 patients with the clinically confirmed CF diagnosis, prescreened for molecular defects using INNOLiPA_CFTR panels from Innogenetics. A combined efficiency of INNOLiPA CFTR_19 and CFTR_17_TnUpdate tests was 75.5%; both mutations were detected in 68.2%, and one mutation in 14.8% of the affected individuals. The group composed of all the patients with only one or with no mutation detected (109 and 126 individuals, respectively) was analyzed further using a mutation screening approach, i.e. SSCP/HD (single strand conformational polymorphism/heteroduplex) analysis of PCR products followed by sequencing of the coding sequence. As a result, 53 more mutations were found in 97 patients. The overall efficiency of the CF allele detection was 82.5% (7.0% increase compared to INNOLiPA tests alone). The distribution of the most frequent mutations in Poland was assessed. Most of the mutations repetitively found in Polish patients had been previously described in other European populations. The most frequent mutated allele, F508del, represented 54.5% of Polish CF chromosomes. Another eight mutations had frequencies over 1%, 24 had frequencies between 1 and 0.1%; c.2052-2053insA and c.3468+2_3468+3insT were the most frequent non-INNOLiPA mutations. Mutation distribution described herein is also relevant to the Polish diaspora. Our study also demonstrates that the reported efficiency of mutation detection strongly depends on the diagnostic experience of referring health centers.
Comments [show]
None has been submitted yet.
No. Sentence Comment
71 Exon / intron (legacy) Exon / intron (Ensembl) Protein change SVM value cDNA (HGVS nomenclature) gDNA (cDNA +132 bp) Number of PL CF chromosomes Reference a Mutations in trans Pathogenic mutations 1 1 L15Ffs10X c.43delC 175delC 1 CFMDB 1717-1G.A 2 2 G27V 21.92 c.80G.T 212G.T 1 Novel F508del 2 2 S18RfsX16 c.54-5940_273 +10250del21kb exon2,3del21kb 66 IL19 various CF mutations i2 i2 IVS2_Donor c.164+1G.A 296+1G.A 3 CFMDB various CF mutations 3 3 G85E 22.61 c.254G.A 386G.A 1 IL17 unknown 3 3 E60X c.178G.T 310G.T 0 IL17 x 3 3 L88IfsX22 c.262_263delTT 394delTT 0 IL17 x 4 4 E92K 21.92 c.274G.A 406G.A 2 CFMDB c.164+1G.A; c.2051- 2AA.G 4 4 L101X c.302T.G 434T.G 1 CFMDB c.3717+12191C.T 4 4 K114IfsX5 c.341_353del13bp 473del13bp 1 Novel F508del 4 4 R117H 20.35 c.350G.A 482G.A 5 IL17 F508del; 2x unknown 4 4 R117C 22.07 c.349C.T 481C.T 2 CFMDB S1206X;1x unknown 4 4 L137_L138insT c.412_413insACT L138ins 1 CFMDB F508del 4 4 R153I 22.61 c.458G.T 590G.T 2 Novel F508del; c.3527delC i4 i4 IVS4_Donor c.489+1G.T 621+1G.T 5 IL17 F508del; c.489+1G.T 5 5 L165X c.494T.A 626T.A 1 Novel F508del i5 i5 IVS5_Donor c.579+1G.T 711+1G.T 0 IL19 x i5 i5 IVS5_Donor c.579+3A.G 711+3A.G 2 CFMDB 2,3del21kb; c.2052-3insA i5 i5 IVS5_Donor c.579+5G.A 711+5G.A 0 IL17 x 7 8 F311L 20.90 c.933C.G 965C.G 2 CFMDB 2x F508 7 8 G314R 20.58 c.940G.A 1072G.A 4 CFMDB various CF mutations 7 8 F316LfsX12 c.948delT 1078delT 1 IL17 unkown 7 8 R334W 22.41 c.1000C.T 1132C.T 6 IL17 various CF mutations 7 8 I336K 22.07 c.1007T.A 1139T.A 2 CFMDB 2,3de21kb; F508del 7 8 R347P 22.27 c.1040G.C 1172G.C 11 IL17 various CF mutations i7 i8 IVS8_Donor c.1116+2T.A 1248+2T.A 1 Novel Q1412X 9 10 A455E 22.61 c.1364C.A 1496C.A 0 IL17 x i9 i10 IVS10_Donor c.1392+1G.A 1524+1G.A 1 CFMDB c.3816-7delGT 10 11 S466X c.1397C.G 1529C.G 1 CFMDB G542X 10 11 I507del c.1519_1521delATC 1651delATC 2 IL19 F508del 10 11 F508del c.1521_1523delCTT 1654delCTT 805 IL19 various CF mutations i10 i11 IVS11_Acceptor c.1585-1G.A 1717-1G.A 27 IL19 various CF mutations 11 12 G542X c.1624G.T 1756G.T 25 IL19 various CF mutations 11 12 G551D 21.24 c.1624G.T 1756G.T 5 IL19 various CF mutations 11 12 Q552X c.1654C.T 1786C.T 0 IL19 x 11 12 R553X c.1657C.T 1789C.T 14 IL19 various CF mutations 11 12 R560T 21.92 c.1679G.C 1811G.C 0 IL19 x i12 i13 IVS13_Donor c.1766+1G.A 1898+1G.A 6 IL19 various CF mutations i12 i13 IVS13_Donor c.1766+1G.C 1898+1G.C 1 CFMDB F508del 13 14 H620P 21.73 c.1859A.C 1991A.C 1 CFMDB F508del 13 14 R668C//G576A 21.61//1.73 c.2002C.T//c.1727G.C 2134C.T// 1859G.C 5 b CFMDB// rs1800098 c.1585-1G.A; 4 unknown 13 14 L671X c.2012delT 2143delT 27 IL17 various CF mutations 13 14 K684SfsX38 c.2051_2052delAAinsG 2183AA.G 10 IL17 various CF mutations 13 14 K684NfsX38 c.2052delA 2184delA 0 IL17 x 13 14 Q685TfsX4 c.2052_2053insA 2184insA 15 CFMDB various CF mutationsc , 1 unknown Table 2. Cont. Exon / intron (legacy) Exon / intron (Ensembl) Protein change SVM value cDNA (HGVS nomenclature) gDNA (cDNA +132 bp) Number of PL CF chromosomes Reference a Mutations in trans 13 14 L732X c.2195T.G 2327T.G 1 CFMDB F508del 14A 15 R851X c.2551C.T 2683C.T 3 CFMDB various CF mutations 14A 15 I864SfsX28 c.2589_2599del11bp 2721del11bp 2 CFMDB F508del; 2,3del21kb i14B i16 IVS16_Donor c.2657+2_2657+3insA 2789+2insA 1 CFMDB F508del i14B i16 IVS16_Donor c.2657+5G.A 2789+5G.A 0 IL17 unkown 15 17 Y919C 21.02 c.2756A.G 2888A.G 1 CFMDB unknown 15 17 H939HfsX27 c.2817_2820delTACTC 2949delTACTC 1 Novel unkown i15 i17 IVS17_Donor c.2908+3A.C 3040+3A.C 1 Novel F508del i16 i18 IVS18_Donor c.2988+1G.A 3120+1G.A 0 IL19 x 17A 19 I1023_V1024del c.3067_3072delATAGTG 3199del6 0 IL19 x i17A i19 IVS19 c.3140-26A.G 3272-26A.G 9 IL19 various CF mutations 17B 20 L1065R 21.90 c.3194T.G 3326T.G 1 CFMDB F508del 17B 20 Y1092X c.3276C.A 3408C.A 1 CFMDB R334W i18 i21 IVS21_Donor c.3468+2_3468+3insT 3600+2insT 11 CFMDB various CF mutationsd , 1 unknown 18 21 E1126EfsX7 c.3376_3379delGAAG 3508delGAAG 1 Novel F508del 19 22 R1158X c.3472C.T 3604C.T 2 CFMDB F508del; R553X 19 22 R1162X c.3484C.T 3616C.T 1 IL17 F508del 19 22 L1177SfsX15 c.3528delC 3659delC 4 IL17 various CF mutations 19 22 S1206X c.3617C.A 3749C.A 1 CFMDB R117C i19 i22 IVS22 c.3717+12191C.T 3849+10kbC.T 58 IL17 various CF mutations 20 23 G1244R 22.62 c.3730G.C 3862G.C 1 CFMDB F508del 20 23 S1251N 22.28 c.3752G.A 3884G.A 0 IL19 x 20 23 L1258FfsX7 c.3773_3774insT 3905insT 0 IL19 x 20 23 V1272VfsX28 c.3816_3817delGT 3944delGT 1 CFMDB c.1392+1G.A 20 23 W1282X c.3846G.A 3978G.A 9 IL19 various CF mutations 21 24 N1303K 22.62 c.3909C.G 4041C.G 18 IL19 various CF mutations 22 25 V1327X c.3979delG 4111delG 1 Novel F508del 22 25 S1347PfsX13 c.4035_4038dupCCTA c.4167dupCCTA 1 CFMDB 2,3del21kb 23 26 Q1382X c.4144C.T 4276C.T 1 CFMDB F508del 23 26 Q1412X c.4234C.T 4366C.T 2 CFMDB F508del; c.1116+2T.A i23 i26 IVS26_Donor c.4242+1G.T 4374+1G.T 1 CFMDB F508del Sequence changes of uncertain pathogenic effect, tentatively counted as mutations 6A 6 E217G 0.30 c.650A.G 782A.G 1 CFMDB; rs1219109046 unknown 7 8 R352Q 20.01 c.1055G.A 1187G.A 1 CFMDB; rs121908753 F508del 7 8 Q359R 0.33 c.1076A.G 1208A.G 1 CFMDB F508del i8 i9 IVS9 c.1210-12T5_1210- 34_35 (TG)12 1332-12Tn_- 34TGm 6 CFMDB F508del; 3x unknown i8 i9 IVS9 c.1210-12T5_1210- 34_35 (TG)13 1332-12Tn_- 34TGm 2 CFMDB 2143delT; 1x unknown i8 i9 IVS9 c.1210-12T8 1332-12Tn 1 Novel unknown 10 11 I506V 20.21 c.1516A.G 1648A.G 1 CFMDB; rs1800091 unknown 12 13 V562L 0.79 c.1684G.C 1816G.C 1 CFMDB; rs1800097 unknown 13 14 G723V 0.44 c.2168G.T 2300G.T 1 CFMDB; rs200531709 unknown 15 17 D924N 0.03 c.2770G.A 2902G.A 1 CFMDB; rs201759207 unknown patient with F508del on another allele) was not supported by the SVM value (+0.35); the patient was PS and had ambiguous chloride values (45, 64 and 83 mmol/L).
X
ABCC7 p.Leu732* 24586523:71:3027
status: NEW[hide] Improving newborn screening for cystic fibrosis us... Genet Med. 2015 Feb 12. doi: 10.1038/gim.2014.209. Baker MW, Atkins AE, Cordovado SK, Hendrix M, Earley MC, Farrell PM
Improving newborn screening for cystic fibrosis using next-generation sequencing technology: a technical feasibility study.
Genet Med. 2015 Feb 12. doi: 10.1038/gim.2014.209., [PMID:25674778]
Abstract [show]
Purpose:Many regions have implemented newborn screening (NBS) for cystic fibrosis (CF) using a limited panel of cystic fibrosis transmembrane regulator (CFTR) mutations after immunoreactive trypsinogen (IRT) analysis. We sought to assess the feasibility of further improving the screening using next-generation sequencing (NGS) technology.Methods:An NGS assay was used to detect 162 CFTR mutations/variants characterized by the CFTR2 project. We used 67 dried blood spots (DBSs) containing 48 distinct CFTR mutations to validate the assay. NGS assay was retrospectively performed on 165 CF screen-positive samples with one CFTR mutation.Results:The NGS assay was successfully performed using DNA isolated from DBSs, and it correctly detected all CFTR mutations in the validation. Among 165 screen-positive infants with one CFTR mutation, no additional disease-causing mutation was identified in 151 samples consistent with normal sweat tests. Five infants had a CF-causing mutation that was not included in this panel, and nine with two CF-causing mutations were identified.Conclusion:The NGS assay was 100% concordant with traditional methods. Retrospective analysis results indicate an IRT/NGS screening algorithm would enable high sensitivity, better specificity and positive predictive value (PPV). This study lays the foundation for prospective studies and for introducing NGS in NBS laboratories.Genet Med advance online publication 12 February 2015Genetics in Medicine (2015); doi:10.1038/gim.2014.209.
Comments [show]
None has been submitted yet.
No. Sentence Comment
15 Correspondence: Mei W. Baker (mwbaker@wisc.edu) Improving newborn screening for cystic fibrosis using next-generation sequencing technology: a technical feasibility study Mei W. Baker, MD1,2 , Anne E. Atkins, MPH2 , Suzanne K. Cordovado, PhD3 , Miyono Hendrix, MS3 , Marie C. Earley, PhD3 and Philip M. Farrell, MD, PhD1,4 Table 1ߒ CF-causing or varying consequences mutations in the MiSeqDx IUO Cystic Fibrosis System c.1521_1523delCTT (F508del) c.2875delG (3007delG) c.54-5940_273ߙ+ߙ10250del21kb (CFTRdele2,3) c.3909C>G (N1303K) c.3752G>A (S1251N) Mutations that cause CF when combined with another CF-causing mutation c.1624G>T (G542X) c.2988ߙ+ߙ1G>A (3120ߙ+ߙ1G->A) c.3964-78_4242ߙ+ߙ577del (CFTRdele22,23) c.613C>T (P205S) c.1021T>C (S341P) c.948delT (1078delT) c.2988G>A (3120G->A) c.328G>C (D110H) c.200C>T (P67L) c.1397C>A (S466X(C>A)) c.1022_1023insTC (1154insTC) c.2989-1G>A (3121-1G->A) c.3310G>T (E1104X) c.3937C>T (Q1313X) c.1397C>G (S466X(C>G)) c.1081delT (1213delT) c.3140-26A>G (3272-26A->G) c.1753G>T (E585X) c.658C>T (Q220X) c.1466C>A (S489X) c.1116ߙ+ߙ1G>A (1248ߙ+ߙ1G->A) c.3528delC (3659delC) c.178G>T (E60X) c.115C>T (Q39X) c.1475C>T (S492F) c.1127_1128insA (1259insA) c.3659delC (3791delC) c.2464G>T (E822X) c.1477C>T (Q493X) c.1646G>A (S549N) c.1209ߙ+ߙ1G>A (1341ߙ+ߙ1G->A) c.3717ߙ+ߙ12191C>T (3849ߙ+ߙ10kbC->T) c.2491G>T (E831X) c.1573C>T (Q525X) c.1645A>C (S549R) c.1329_1330insAGAT (1461ins4) c.3744delA (3876delA) c.274G>A (E92K) c.1654C>T (Q552X) c.1647T>G (S549R) c.1393-1G>A (1525-1G->A) c.3773_3774insT (3905insT) c.274G>T (E92X) c.2668C>T (Q890X) c.2834C>T (S945L) c.1418delG (1548delG) c.262_263delTT (394delTT) c.3731G>A (G1244E) c.292C>T (Q98X) c.1013C>T (T338I) c.1545_1546delTA (1677delTA) c.3873ߙ+ߙ1G>A (4005ߙ+ߙ1G->A) c.532G>A (G178R) c.3196C>T (R1066C) c.1558G>T (V520F) c.1585-1G>A (1717-1G->A) c.3884_3885insT (4016insT) c.988G>T (G330X) c.3197G>A (R1066H) c.3266G>A (W1089X) c.1585-8G>A (1717-8G->A) c.273ߙ+ߙ1G>A (405ߙ+ߙ1G->A) c.1652G>A (G551D) c.3472C>T (R1158X) c.3611G>A (W1204X) c.1679ߙ+ߙ1.6kbA>G (1811ߙ+ߙ1.6kbA->G) c.274-1G>A (406-1G->A) c.254G>A (G85E) c.3484C>T (R1162X) c.3612G>A (W1204X) c.1680-1G>A (1812-1G->A) c.4077_4080delTGTTinsAA (4209TGTT->AA) c.2908G>C (G970R) c.349C>T (R117C) c.3846G>A (W1282X) c.1766ߙ+ߙ1G>A (1898ߙ+ߙ1G->A) c.4251delA (4382delA) c.595C>T (H199Y) c.1000C>T (R334W) c.1202G>A (W401X) c.1766ߙ+ߙ3A>G (1898ߙ+ߙ 3A->G) c.325_327delTATinsG (457TAT->G) c.1007T>A (I336K) c.1040G>A (R347H) c.1203G>A (W401X) c.2012delT (2143delT) c.442delA (574delA) c.1519_1521delATC (I507del) c.1040G>C (R347P) c.2537G>A (W846X) c.2051_2052delAAinsG (2183AA->G) c.489ߙ+ߙ1G>T (621ߙ+ߙ 1G->T) c.2128A>T (K710X) c.1055G>A (R352Q) c.3276C>A (Y1092X (C>A)) c.2052delA (2184delA) c.531delT (663delT) c.3194T>C (L1065P) c.1657C>T (R553X) c.3276C>G (Y1092X (C>G)) c.2052_2053insA (2184insA) c.579ߙ+ߙ1G>T (711ߙ+ߙ 1G->T) c.3230T>C (L1077P) c.1679G>A (R560K) c.366T>A (Y122X) c.2175_2176insA (2307insA) c.579ߙ+ߙ3A>G (711ߙ+ߙ 3A->G) c.617T>G (L206W) c.1679G>C (R560T) - c.2215delG (2347delG) c.579ߙ+ߙ5G>A (711ߙ+ߙ 5G->A) c.1400T>C (L467P) c.2125C>T (R709X) - c.2453delT (2585delT) c.580-1G>T (712-1G->T) c.2195T>G (L732X) c.223C>T (R75X) - c.2490ߙ+ߙ1G>A (2622ߙ+ߙ1G->A) c.720_741delAGGGAG AATGATGATGAAGTAC (852del22) c.2780T>C (L927P) c.2290C>T (R764X) - c.2583delT (2711delT) c.1364C>A (A455E) c.3302T>A (M1101K) c.2551C>T (R851X) - c.2657ߙ+ߙ5G>A (2789ߙ+ߙ5G->A) c.1675G>A (A559T) c.1A>G (M1V) c.3587C>G (S1196X) - Mutations/variants that were validated in this study are in bold. CF, cystic fibrosis. Table 1ߒ Continued on next page reduce carrier detection and potentially improve the positive predictive value (PPV), the NBS goals of equity and the highest possible sensitivity become more difficult to achieve.
X
ABCC7 p.Leu732* 25674778:15:3490
status: NEW[hide] A Genotypic-Oriented View of CFTR Genetics Highlig... Mol Med. 2015 Apr 21;21:257-75. doi: 10.2119/molmed.2014.00229. Lucarelli M, Bruno SM, Pierandrei S, Ferraguti G, Stamato A, Narzi F, Amato A, Cimino G, Bertasi S, Quattrucci S, Strom R
A Genotypic-Oriented View of CFTR Genetics Highlights Specific Mutational Patterns Underlying Clinical Macrocategories of Cystic Fibrosis.
Mol Med. 2015 Apr 21;21:257-75. doi: 10.2119/molmed.2014.00229., [PMID:25910067]
Abstract [show]
Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype-phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype-phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype-phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway.
Comments [show]
None has been submitted yet.
No. Sentence Comment
385 [Gly576Ala;Arg668Cys] D579G c.1736A>G CF-PS varying clinical consequence p.Asp579Gly E585X c.1753G>T CF-PI CF-causing p.Glu585* H609L c.1826A>T CFTR-RD nd p.His609Leu A613T c.1837G>A CF-PS nd p.Ala613Thr D614G c.1841A>G CF-PS unknown significance p.Asp614Gly 2143delT c.2012delT CF-PS CF-causing p.Leu671* 2183AA>G c.2051_2052delAAinsG CF-PI,CF-PS CF-causing p.Lys684SerfsX38 2184insA c.2052_2053insA CF-PI CF-causing p.Gln685ThrfsX4 R709X c.2125C>T CF-PI CF-causing p.Arg709* L732X c.2195T>G CF-PI CF-causing p.Leu732* R764X c.2290C>T CF-PI CF-causing p.Arg764* Q779X c.2335C>T uncertain: CF-PI and/or CF-PS nd p.Gln779* E831X c.2491G>T CF-PS CF-causing p.Glu831* Y849X c.2547C>A CF-PI CF-causing p.Tyr849* ex14b-17bdel c.2620-674_3367+198del9858 CF-PI nd 2789+5G>A c.2657+5G>A CF-PI,CF-PS CF-causing 2790-2A>G c.2658-2A>G CF-PS nd S912L c.2735C>T uncertain: found only with an unknown allele in trans nd p.Ser912Leu S945L c.2834C>T CF-PS CF-causing p.Ser945Leu S977F c.2930C>T CFTR-RD varying clinical consequence p.Ser977Phe L997F c.2991G>C CF-PS,CFTR-RD,CBAVD non CF-causing p.Leu997Phe ex17a-18del c.2988+1173_3468+2111del8600 CF-PI nd P1013L c.3038C>T CFTR-RD nd p.Pro1013Leu Y1032C c.3095A>G CFTR-RD nd p.Tyr1032Cys 3272-26A>G c.3140-26A>G CF-PS CF-causing L1065P c.3194T>C CF-PI,CF-PS CF-causing p.Leu1065Pro L1065R c.3194T>G uncertain: CF-PI and/or CF-PS nd p.Leu1065Arg R1066C c.3196C>T CF-PI CF-causing p.Arg1066Cys R1066H c.3197G>A CF-PI CF-causing p.Arg1066His G1069R c.3205G>A uncertain: found only with an unknown allele in trans varying clinical consequence p.Gly1069Arg Continued on next page of 0.021).
X
ABCC7 p.Leu732* 25910067:385:477
status: NEW[hide] The improvement of the best practice guidelines fo... Eur J Hum Genet. 2015 May 27. doi: 10.1038/ejhg.2015.99. Girardet A, Viart V, Plaza S, Daina G, De Rycke M, Des Georges M, Fiorentino F, Harton G, Ishmukhametova A, Navarro J, Raynal C, Renwick P, Saguet F, Schwarz M, SenGupta S, Tzetis M, Roux AF, Claustres M
The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: toward an international consensus.
Eur J Hum Genet. 2015 May 27. doi: 10.1038/ejhg.2015.99., [PMID:26014425]
Abstract [show]
Cystic fibrosis (CF) is one of the most common indications for preimplantation genetic diagnosis (PGD) for single gene disorders, giving couples the opportunity to conceive unaffected children without having to consider termination of pregnancy. However, there are no available standardized protocols, so that each center has to develop its own diagnostic strategies and procedures. Furthermore, reproductive decisions are complicated by the diversity of disease-causing variants in the CFTR (cystic fibrosis transmembrane conductance regulator) gene and the complexity of correlations between genotypes and associated phenotypes, so that attitudes and practices toward the risks for future offspring can vary greatly between countries. On behalf of the EuroGentest Network, eighteen experts in PGD and/or molecular diagnosis of CF from seven countries attended a workshop held in Montpellier, France, on 14 December 2011. Building on the best practice guidelines for amplification-based PGD established by ESHRE (European Society of Human Reproduction and Embryology), the goal of this meeting was to formulate specific guidelines for CF-PGD in order to contribute to a better harmonization of practices across Europe. Different topics were covered including variant nomenclature, inclusion criteria, genetic counseling, PGD strategy and reporting of results. The recommendations are summarized here, and updated information on the clinical significance of CFTR variants and associated phenotypes is presented.European Journal of Human Genetics advance online publication, 27 May 2015; doi:10.1038/ejhg.2015.99.
Comments [show]
None has been submitted yet.
No. Sentence Comment
79 (unknown) Q39X c.115C4T p.Gln39* P67L c.200C4T p.Pro67Leu R75X c.223C4T p.Arg75* 405+1G4A c.273+1G4A 406-1G4A c.274-1G4A E92X c.274G4T p.Glu92* E92K c.274G4A p.Glu92Lys Q98X c.292C4T p.Gln98* 457TAT4G c.325_327delTATinsG p.Tyr109Glyfs*4 D110H c.328G4C p.Asp110His R117C c.349C4T p.Arg117Cys Y122X c.366 T4A p.Tyr122* 574delA c.442delA p.Ile148Leufs*5 444delA c.313delA p.Ile105Serfs*2 663delT c.531delT p.Ile177Metfs*12 G178R c.532G4A p.Gly178Arg 711+3 A4G c.579+3 A4G 711+5G4A c.579+5G4A 712-1G4T c.580-1G4T H199Y c.595C4T p.His199Tyr P205S c.613C4T p.Pro205Ser L206W c.617 T4G p.Leu206Trp Q220X c.658C4T p.Gln220* 852del22 c.720_741delAGGGAGAAT GATGATGAAGTAC p.Gly241Glufs*13 1078delT c.948delT p.Phe316Leufs*12 G330X c.988G4T p.Gly330* Table 1 (Continued ) HGVS nomenclature Legacy name cDNA nucleotide name Protein name R334W c.1000C4T p.Arg334Trp I336K c.1007 T4A p.Ile336Lys T338I c.1013C4T p.Thr338Ile 1154insTC c.1021_1022dupTC p.Phe342Hisfs*28 S341P c.1021 T4C p.Ser341Pro R347H c.1040G4A p.Arg347His 1213delT c.1081delT p.Trp361Glyfs*8 1248+1G4A c.1116+1G4A 1259insA c.1130dupA p.Gln378Alafs*4 W401X(TAG) c.1202G4A p.Trp401* W401X(TGA) c.1203G4A p.Trp401* 1341+1G4A c.1209+1G4A 1461ins4 c.1329_1330insAGAT p.Ile444Argfs*3 1525-1G4A c.1393-1G4A S466X c.1397C4A or c.1397C4G p.Ser466* L467P c.1400 T4C p.Leu467Pro S489X c.1466C4A p.Ser489* S492F c.1475C4T p.Ser492Phe 1677delTA c.1545_1546delTA p.Tyr515* V520F c.1558G4T p.Val520Phe 1717-1G4A c.1585-1G4A 1717-8G4A c.1585-8G4A S549R c.1645 A4C p.Ser549Arg S549N c.1646G4A p.Ser549Asn S549R c.1647 T4G p.Ser549Arg Q552X c.1654C4T p.Gln552* A559T c.1675G4A p.Ala559Thr 1811+1.6kbA4G c.1680-886 A4G 1812-1G4A c.1680-1G4A R560K c.1679G4A p.Arg560Lys E585X c.1753G4T p.Glu585* 1898+3 A4G c.1766+3 A4G 2143delT c.2012delT p.Leu671* 2184insA c.2052_2053insA p.Gln685Thrfs*4 2184delA c.2052delA p.Lys684Asnfs*38 R709X c.2125C4T p.Arg709* K710X c.2128 A4T p.Lys710* 2307insA c.2175dupA p.Glu726Argfs*4 L732X c.2195 T4G p.Leu732* 2347delG c.2215delG p.Val739Tyrfs*16 R764X c.2290C4T p.Arg764* 2585delT c.2453delT p.Leu818Trpfs*3 E822X c.2464G4T p.Glu822* 2622+1G4A c.2490+1G4A E831X c.2491G4T p.Glu831* W846X c.2537G4A p.Trp846* W846X (2670TGG4TGA) c.2538G4A p.Trp846* R851X c.2551C4T p.Arg851* 2711delT c.2583delT p.Phe861Leufs*3 S945L c.2834C4T p.Ser945Leu 2789+2insA c.2657+2_2657+3insA Q890X c.2668C4T p.Gln890* L927P c.2780 T4C p.Leu927Pro 3007delG c.2875delG p.Ala959Hisfs*9 G970R c.2908G4C p.Gly970Arg 3120G4A c.2988G4A function variants that cause CF disease when paired together; (ii) variants that retain residual CFTR function and are compatible with milder phenotypes such as CFTR-RD; (iii) variants with no clinical consequences; and (iv) variants of unproven or uncertain clinical relevance.
X
ABCC7 p.Leu732* 26014425:79:1951
status: NEW