ABCC7 p.Phe337Cys

Predicted by SNAP2: A: D (71%), C: D (66%), D: D (91%), E: D (91%), G: D (75%), H: D (75%), I: D (71%), K: D (91%), L: D (53%), M: D (66%), N: D (85%), P: D (91%), Q: D (85%), R: D (85%), S: D (85%), T: D (85%), V: D (75%), W: D (85%), Y: D (71%),
Predicted by PROVEAN: A: D, C: D, D: D, E: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: N,

[switch to compact view]
Comments [show]
Publications
[hide] Beck EJ, Yang Y, Yaemsiri S, Raghuram V
Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
J Biol Chem. 2008 Feb 22;283(8):4957-66. Epub 2007 Dec 3., 2008-02-22 [PMID:18056267]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Fatehi M, Linsdell P
State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Biol Chem. 2008 Mar 7;283(10):6102-9. Epub 2007 Dec 31., 2008-03-07 [PMID:18167343]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC
Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore.
Biochemistry. 2009 Oct 27;48(42):10078-88., 2009-10-27 [PMID:19754156]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Bai Y, Li M, Hwang TC
Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
J Gen Physiol. 2010 Sep;136(3):293-309., [PMID:20805575]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O'Donnell N, Dawson DC, Sansom MS
Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore.
Biochemistry. 2012 Mar 20;51(11):2199-212. Epub 2012 Mar 7., [PMID:22352759]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MS, Dawson DC
Locating a Plausible Binding Site for an Open Channel Blocker, GlyH-101, in the Pore of the Cystic Fibrosis Transmembrane Conductance Regulator.
Mol Pharmacol. 2012 Aug 24., [PMID:22923500]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cui G, Song B, Turki HW, McCarty NA
Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers.
Pflugers Arch. 2012 Mar;463(3):405-18. Epub 2011 Dec 13., [PMID:22160394]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Liu X, Dawson DC
Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway.
Biochemistry. 2011 Nov 29;50(47):10311-7. Epub 2011 Nov 4., [PMID:22014307]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, El Hiani Y, Linsdell P
Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Gen Physiol. 2011 Aug;138(2):165-78. Epub 2011 Jul 11., [PMID:21746847]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cheung M, Akabas MH
Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel.
J Gen Physiol. 1997 Mar;109(3):289-99., [PMID:9089437]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cheung M, Akabas MH
Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment.
Biophys J. 1996 Jun;70(6):2688-95., [PMID:8744306]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL 4th, Kirk KL
Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.
FASEB J. 2015 Nov 25. pii: fj.15-278382., [PMID:26606940]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gao X, Hwang TC
Localizing a gate in CFTR.
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2461-6. doi: 10.1073/pnas.1420676112. Epub 2015 Feb 9., [PMID:25675504]

Abstract [show]
Comments [show]
Sentences [show]