ABCC7 p.Gly314Ala
ClinVar: |
c.940G>C
,
p.Gly314Arg
?
, not provided
c.941G>T , p.Gly314Val ? , not provided c.941G>A , p.Gly314Glu ? , not provided |
CF databases: |
c.941G>T
,
p.Gly314Val
(CFTR1)
D
, This mutation was found in a CF patient homozygous for this mutation. He was diagnosed as CF at 32 years.
c.940G>C , p.Gly314Arg (CFTR1) D , This mutation was detected by chemical mismatch and sequencing. The mutation is a G to C change at nucleotide 1072. This results in a glycine to arginine substitution at amino acid 314 (G314R). It is in exon 7 and it eliminates a DdeI restriction site. This mutation was found in a patient with an American Indian/Caucasian mother and Dutch/French father. This patient has a [delta]F508 mutation on the other chromosomes and is pancreatic insufficient. This mutation was not found in 25 normal chromosomes and 25 CF chromosomes. c.941G>A , p.Gly314Glu (CFTR1) ? , This mutation, in exon 7 of the CFTR gene, was found by direct sequencing and the second mutation is [delta]F508. The patient is 7 years old. Diagnosis of CF was established at the age of five after severe lung infection. Sweat gland tests were positive. She is receiveing pancreatic enzyme supplements and long-term antibiotic treatment. |
Predicted by SNAP2: | A: D (85%), C: D (91%), D: D (95%), E: D (66%), F: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (91%), P: D (95%), Q: D (95%), R: D (71%), S: D (80%), T: D (91%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, F: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Use of MALDI-TOF mass spectrometry in a 51-mutatio... Genet Med. 2004 Sep-Oct;6(5):426-30. Buyse IM, McCarthy SE, Lurix P, Pace RP, Vo D, Bartlett GA, Schmitt ES, Ward PA, Oermann C, Eng CM, Roa BB
Use of MALDI-TOF mass spectrometry in a 51-mutation test for cystic fibrosis: evidence that 3199del6 is a disease-causing mutation.
Genet Med. 2004 Sep-Oct;6(5):426-30., [PMID:15371908]
Abstract [show]
PURPOSE: We developed a 51-mutation extended cystic fibrosis (CF) panel that incorporates the 25 previously recommended CFTR mutations, plus 26 additional mutations including 3199del6, which was associated with I148T. METHODS: This assay utilizes an integrated matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry system. RESULTS: CF testing was performed on over 5,000 individuals, including a 3-year-old Hispanic-American patient with a compound heterozygous G542X/3199del6 genotype. He is negative for I148T, or other mutations assessed by CFTR gene sequencing. CONCLUSION: These results demonstrate the successful implementation of MALDI-TOF mass spectrometry in CF clinical testing, and establish 3199del6 as a disease-causing CF mutation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
41 In the second case, an ASO result of a heterozygous G314E mutation was further characterized by MALDI-TOF mass spectrometry as a different allelic variant, G314A (data not shown).
X
ABCC7 p.Gly314Ala 15371908:41:156
status: NEW42 DNA sequence analysis confirmed the G314A allele, which is a novel missense variant of inconclusive clinical significance.
X
ABCC7 p.Gly314Ala 15371908:42:36
status: NEW93 Two previously unreported missense alleles were identified: G314A (allelic to G314E) and A455V (allelic to A455E).
X
ABCC7 p.Gly314Ala 15371908:93:60
status: NEW[hide] CFTR: mechanism of anion conduction. Physiol Rev. 1999 Jan;79(1 Suppl):S47-75. Dawson DC, Smith SS, Mansoura MK
CFTR: mechanism of anion conduction.
Physiol Rev. 1999 Jan;79(1 Suppl):S47-75., [PMID:9922376]
Abstract [show]
CFTR: Mechanism of Anion Conduction. Physiol. Rev. 79, Suppl.: S47-S75, 1999. - The purpose of this review is to collect together the results of recent investigations of anion conductance by the cystic fibrosis transmembrane conductance regulator along with some of the basic background that is a prerequisite for developing some physical picture of the conduction process. The review begins with an introduction to the concepts of permeability and conductance and the Nernst-Planck and rate theory models that are used to interpret these parameters. Some of the physical forces that impinge on anion conductance are considered in the context of permeability selectivity and anion binding to proteins. Probes of the conduction process are considered, particularly permeant anions that bind tightly within the pore and block anion flow. Finally, structure-function studies are reviewed in the context of some predictions for the origin of pore properties.
Comments [show]
None has been submitted yet.
No. Sentence Comment
598 Mixtures of the TM2 and TM6 peptides producedmoderately impaired in G314A CFTR, and unaffected in G314D CFTR.
X
ABCC7 p.Gly314Ala 9922376:598:68
status: NEW[hide] Cystic fibrosis transmembrane conductance regulato... Biophys J. 1998 Mar;74(3):1320-32. Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drumm ML, Collins FS, Dawson DC
Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
Biophys J. 1998 Mar;74(3):1320-32., [PMID:9512029]
Abstract [show]
We compared the effects of mutations in transmembrane segments (TMs) TM1, TM5, and TM6 on the conduction and activation properties of the cystic fibrosis transmembrane conductance regulator (CFTR) to determine which functional property was most sensitive to mutations and, thereby, to develop a criterion for measuring the importance of a particular residue or TM for anion conduction or activation. Anion substitution studies provided strong evidence for the binding of permeant anions in the pore. Anion binding was highly sensitive to point mutations in TM5 and TM6. Permeability ratios, in contrast, were relatively unaffected by the same mutations, so that anion binding emerged as the conduction property most sensitive to structural changes in CFTR. The relative insensitivity of permeability ratios to CFTR mutations was in accord with the notion that anion-water interactions are important determinants of permeability selectivity. By the criterion of anion binding, TM5 and TM6 were judged to be likely to contribute to the structure of the anion-selective pore, whereas TM1 was judged to be less important. Mutations in TM5 and TM6 also dramatically reduced the sensitivity of CFTR to activation by 3-isobutyl 1-methyl xanthine (IBMX), as expected if these TMs are intimately involved in the physical process that opens and closes the channel.
Comments [show]
None has been submitted yet.
No. Sentence Comment
62 Expression levels Wild-type and 11 mutant CFTR constructs were used in this study: G91A, G91E, G91R, G314A, G314D, G314E, G314Q, K335R, K335A, K335D, and K335E.
X
ABCC7 p.Gly314Ala 9512029:62:101
status: NEW135 There was no readily discernible voltage dependence to the dose-dependent attenuation of wtCFTR conductance by SCN; and similar results were obtained for G314D and G314A.
X
ABCC7 p.Gly314Ala 9512029:135:164
status: NEW136 In the case of the G314E and G314Q mutants, however, the SCN effect appeared to be moderately voltage dependent (Fig. 2 TABLE 2 Summary of permeability and conductance ratios from anion substitution experiments n SCN NO3 Br HCOO I A.
X
ABCC7 p.Gly314Ala 9512029:136:164
status: NEW137 Permeability Ratios Wild type 4-9 3.42 Ϯ 0.28 1.42 Ϯ 0.04 1.22 Ϯ 0.02 0.39 Ϯ 0.01 0.44 Ϯ 0.03 G91A 3-6 3.24 Ϯ 0.26 1.53 Ϯ 0.04 1.27 Ϯ 0.02 0.37 Ϯ 0.04 0.40 Ϯ 0.04 G91E 3-7 3.50 Ϯ 0.54 1.59 Ϯ 0.04 1.27 Ϯ 0.01 0.35 Ϯ 0.01 0.51 Ϯ 0.04 G91R 3-4 5.26 ؎ 0.46* 1.60 Ϯ 0.03 1.40 ؎ 0.01* 0.32 Ϯ 0.04 0.64 ؎ 0.04* G314A 3-4 2.87 Ϯ 0.17 1.45 Ϯ 0.03 1.19 Ϯ 0.02 0.31 Ϯ 0.03 0.33 Ϯ 0.03 G314D 4 3.42 Ϯ 0.34 1.44 Ϯ 0.05 1.25 Ϯ 0.04 0.33 Ϯ 0.03 0.51 Ϯ 0.05 G314E 3-4 3.72 Ϯ 0.56 1.65 ؎ 0.09* 1.35 ؎ 0.03* 0.49 Ϯ 0.04 0.53 Ϯ 0.04 G314Q 3-4 3.89 Ϯ 0.37 1.62 Ϯ 0.11 1.27 Ϯ 0.04 0.36 Ϯ 0.03 0.62 Ϯ 0.05 K335R 3-5 3.44 Ϯ 0.29 1.35 Ϯ 0.04 1.22 Ϯ 0.03 0.40 Ϯ 0.05 0.41 Ϯ 0.07 K335A 5-6 5.34 ؎ 0.58* 1.48 Ϯ 0.06 1.28 Ϯ 0.04 0.37 Ϯ 0.03 0.60 Ϯ 0.06 K335D 4-6 3.02 Ϯ 0.19 1.50 Ϯ 0.03 1.10 ؎ 0.02* 0.54 ؎ 0.04* 0.65 ؎ 0.06* K335E 5-8 3.64 Ϯ 0.21 1.48 Ϯ 0.06 1.29 Ϯ 0.03 0.46 Ϯ 0.04 1.10 ؎ 0.04* B. Conductance Ratios Wild type 4-9 0.14 Ϯ 0.02 0.75 Ϯ 0.02 0.64 Ϯ 0.02 0.52 Ϯ 0.03 0.18 Ϯ 0.03 G91A 3-6 0.14 Ϯ 0.01 0.77 Ϯ 0.02 0.61 Ϯ 0.02 0.47 Ϯ 0.02 0.19 Ϯ 0.02 G91E 3-7 0.15 Ϯ 0.03 0.73 Ϯ 0.02 0.60 Ϯ 0.01 0.50 Ϯ 0.04 0.30 Ϯ 0.02 G91R 3-4 0.14 Ϯ 0.00 0.84 Ϯ 0.01 0.63 Ϯ 0.01 0.32 ؎ 0.01* 0.14 Ϯ 0.01 G314A 3-4 0.30 Ϯ 0.09 0.89 ؎ 0.01* 0.66 Ϯ 0.01 0.48 Ϯ 0.09 0.24 Ϯ 0.01 G314D 4 0.28 Ϯ 0.05 0.82 Ϯ 0.01 0.70 Ϯ 0.02 0.49 Ϯ 0.06 0.27 Ϯ 0.03 G314E 3-4 0.62 ؎ 0.07* 1.18 ؎ 0.04* 0.84 ؎ 0.05* 0.42 Ϯ 0.05 0.29 Ϯ 0.09 G314Q 3-4 0.63 ؎ 0.02* 1.01 ؎ 0.04* 0.82 ؎ 0.03* 0.50 Ϯ 0.02 0.42 ؎ 0.02* K335R 3-5 0.14 Ϯ 0.01 0.76 Ϯ 0.03 0.61 Ϯ 0.02 0.59 Ϯ 0.06 0.16 Ϯ 0.03 K335A 6 0.20 Ϯ 0.03 0.77 Ϯ 0.02 0.61 Ϯ 0.02 0.45 Ϯ 0.03 0.21 Ϯ 0.02 K335D 4-6 0.65 ؎ 0.04* 1.25 ؎ 0.02* 0.89 ؎ 0.02* 0.61 Ϯ 0.06 0.58 ؎ 0.06* K335E 5-8 0.50 ؎ 0.06* 1.19 ؎ 0.03* 0.89 ؎ 0.02* 0.53 Ϯ 0.03 0.48 ؎ 0.03* (A) The apparent permeability ratios (PS/PCl) for each substitute anion were calculated from the shift in reversal potential using the Goldman-Hodgkin-Katz relation (noted in Materials and Methods).
X
ABCC7 p.Gly314Ala 9512029:137:424
status: NEWX
ABCC7 p.Gly314Ala 9512029:137:1653
status: NEW169 TABLE 4 Quantitative analyses of the macroscopic I-V shape changes Mutant ⌬ Net charge n RR g(ϩ30)/g(-30) RR/RRWT Wild type 5 1.220 Ϯ 0.06 1.00 G91A 0 4 1.293 Ϯ 0.06 1.06 G91E -1 5 1.512 ؎ 0.10* 1.24 G91R 1 4 8.041 ؎ 0.87* 6.59 G314A 0 4 1.201 Ϯ 0.09 0.98 G314D -1 4 1.362 Ϯ 0.08 1.12 G314E -1 7 1.405 Ϯ 0.08 1.15 G314Q 0 5 1.376 Ϯ 0.10 1.13 K335R 0 4 1.209 Ϯ 0.06 0.99 K335A -1 4 1.295 Ϯ 0.07 1.06 K335D -2 5 0.762 ؎ 0.02* 0.62 K335E -2 4 0.919 ؎ 0.02* 0.75 The slope conductance was measured at ϩ30 mV and -30 mV with respect to the reversal potential.
X
ABCC7 p.Gly314Ala 9512029:169:265
status: NEWX
ABCC7 p.Gly314Ala 9512029:169:276
status: NEW171 TABLE 3 The permeability ratio (PSCN/PCl) is independent of the mole fraction of [SCN]0 for wtCFTR and the G314 variants [SCN]/{[SCN]ϩ[Cl]} n PSCN/PCl 0.02 0.05 0.10 0.20 0.50 0.90 Wild type 12 3.82 Ϯ 0.50 4.43 Ϯ 0.57 4.58 Ϯ 0.48 4.69 Ϯ 0.43 4.66 Ϯ 0.38 4.44 Ϯ 0.35 G314A 9 4.32 Ϯ 0.73 3.78 Ϯ 0.53 3.81 Ϯ 0.47 3.79 Ϯ 0.34 3.82 Ϯ 0.29 3.72 Ϯ 0.25 G314D 3 2.99 Ϯ 0.26 2.56 Ϯ 1.05 2.82 Ϯ 1.07 2.68 Ϯ 0.97 2.87 Ϯ 0.65 2.89 Ϯ 0.43 G314E 6 4.48 Ϯ 1.05 4.01 Ϯ 0.69 4.17 Ϯ 0.62 4.15 Ϯ 0.59 3.96 Ϯ 0.41 3.82 Ϯ 0.40 G314Q 3 5.39 Ϯ 0.57 4.49 Ϯ 0.58 4.69 Ϯ 1.26 4.05 Ϯ 1.26 3.86 Ϯ 1.47 3.68 Ϯ 1.51 The permeability ratios were calculated from the shift in reversal potential using the Goldman-Hodgkin-Katz equation.
X
ABCC7 p.Gly314Ala 9512029:171:308
status: NEW173 TABLE 5 Concentration-dependent activation of wtCFTR, G91, G314, and K335 variants by IBMX in the presence of 10 M forskolin Mutant n K1/2(IBMX) (mM) Wild type 15 0.35 Ϯ 0.04 G91A 5 0.42 Ϯ 0.06 G91E 8 0.51 ؎ 0.06* G91R 5 0.49 Ϯ 0.09 G314A 10 1.21 ؎ 0.11* G314D 3 1.35 ؎ 0.16* G314E 8 6.39 ؎ 1.35* G314Q 4 14.26 ؎ 6.64* K335R 4 0.46 Ϯ 0.04 K335A 2 0.35 Ϯ 0.15 K335D 7 0.87 ؎ 0.13* K335E 3 0.95 ؎ 0.07* The steady-state slope conductance was measured at -60 mV as increasing concentrations of IBMX (0.02-5.0 mM) were added to the perfusate in the continued presence of 10 mM forskolin.
X
ABCC7 p.Gly314Ala 9512029:173:264
status: NEW198 The results presented here are consistent with the notion that the binding of anions within the CFTR pore is a sensitive indicator of changes in pore structure whereas permeability ratios appear to be rather insensitive to similar TABLE 6 Qualitative summary of the functional consequences of mutations at G91, G314, and K335 Property G91 (TM1) K335 (TM6) G314 (TM5) G91A G91E G91R K335R K335A K335D K335E G314A G314D G314E G314Q I-V shape - - ϩϩϩ - - ϩϩ ϩ - - - - Psub/PCl - - - - - - ϩϩ - - - - gsub/gCl - - - - - ϩϩϩ ϩϩϩ ϩϩ - ϩϩϩ ϩϩϩ SCN- binding - - - - - ϩϩϩ ϩϩϩ ϩϩ - ϩϩϩϩ ϩϩϩϩ Activation - - - - - ϩϩ ϩϩ ϩϩϩ ϩϩϩ ϩϩϩϩ ϩϩϩϩ Results are expressed as follows: -, function of the CFTR construct with the indicated substitution was indistinguishable from wild type; ϩ to ϩϩϩϩ, semiquantitative indication of the magnitude of the change in the function compared with wild type.
X
ABCC7 p.Gly314Ala 9512029:198:406
status: NEW233 The increased conductance ratios seen in G314E, G314Q, and to a lesser extent, G314A channels are compatible with the hypothesis that substitution for G314 distorted an anion binding site such that the affinities for Br, NO3, and SCN were all reduced relative to Cl.
X
ABCC7 p.Gly314Ala 9512029:233:79
status: NEW138 Permeability Ratios Wild type 4-9 3.42 afe; 0.28 1.42 afe; 0.04 1.22 afe; 0.02 0.39 afe; 0.01 0.44 afe; 0.03 G91A 3-6 3.24 afe; 0.26 1.53 afe; 0.04 1.27 afe; 0.02 0.37 afe; 0.04 0.40 afe; 0.04 G91E 3-7 3.50 afe; 0.54 1.59 afe; 0.04 1.27 afe; 0.01 0.35 afe; 0.01 0.51 afe; 0.04 G91R 3-4 5.26 d1e; 0.46* 1.60 afe; 0.03 1.40 d1e; 0.01* 0.32 afe; 0.04 0.64 d1e; 0.04* G314A 3-4 2.87 afe; 0.17 1.45 afe; 0.03 1.19 afe; 0.02 0.31 afe; 0.03 0.33 afe; 0.03 G314D 4 3.42 afe; 0.34 1.44 afe; 0.05 1.25 afe; 0.04 0.33 afe; 0.03 0.51 afe; 0.05 G314E 3-4 3.72 afe; 0.56 1.65 d1e; 0.09* 1.35 d1e; 0.03* 0.49 afe; 0.04 0.53 afe; 0.04 G314Q 3-4 3.89 afe; 0.37 1.62 afe; 0.11 1.27 afe; 0.04 0.36 afe; 0.03 0.62 afe; 0.05 K335R 3-5 3.44 afe; 0.29 1.35 afe; 0.04 1.22 afe; 0.03 0.40 afe; 0.05 0.41 afe; 0.07 K335A 5-6 5.34 d1e; 0.58* 1.48 afe; 0.06 1.28 afe; 0.04 0.37 afe; 0.03 0.60 afe; 0.06 K335D 4-6 3.02 afe; 0.19 1.50 afe; 0.03 1.10 d1e; 0.02* 0.54 d1e; 0.04* 0.65 d1e; 0.06* K335E 5-8 3.64 afe; 0.21 1.48 afe; 0.06 1.29 afe; 0.03 0.46 afe; 0.04 1.10 d1e; 0.04* B. Conductance Ratios Wild type 4-9 0.14 afe; 0.02 0.75 afe; 0.02 0.64 afe; 0.02 0.52 afe; 0.03 0.18 afe; 0.03 G91A 3-6 0.14 afe; 0.01 0.77 afe; 0.02 0.61 afe; 0.02 0.47 afe; 0.02 0.19 afe; 0.02 G91E 3-7 0.15 afe; 0.03 0.73 afe; 0.02 0.60 afe; 0.01 0.50 afe; 0.04 0.30 afe; 0.02 G91R 3-4 0.14 afe; 0.00 0.84 afe; 0.01 0.63 afe; 0.01 0.32 d1e; 0.01* 0.14 afe; 0.01 G314A 3-4 0.30 afe; 0.09 0.89 d1e; 0.01* 0.66 afe; 0.01 0.48 afe; 0.09 0.24 afe; 0.01 G314D 4 0.28 afe; 0.05 0.82 afe; 0.01 0.70 afe; 0.02 0.49 afe; 0.06 0.27 afe; 0.03 G314E 3-4 0.62 d1e; 0.07* 1.18 d1e; 0.04* 0.84 d1e; 0.05* 0.42 afe; 0.05 0.29 afe; 0.09 G314Q 3-4 0.63 d1e; 0.02* 1.01 d1e; 0.04* 0.82 d1e; 0.03* 0.50 afe; 0.02 0.42 d1e; 0.02* K335R 3-5 0.14 afe; 0.01 0.76 afe; 0.03 0.61 afe; 0.02 0.59 afe; 0.06 0.16 afe; 0.03 K335A 6 0.20 afe; 0.03 0.77 afe; 0.02 0.61 afe; 0.02 0.45 afe; 0.03 0.21 afe; 0.02 K335D 4-6 0.65 d1e; 0.04* 1.25 d1e; 0.02* 0.89 d1e; 0.02* 0.61 afe; 0.06 0.58 d1e; 0.06* K335E 5-8 0.50 d1e; 0.06* 1.19 d1e; 0.03* 0.89 d1e; 0.02* 0.53 afe; 0.03 0.48 d1e; 0.03* (A) The apparent permeability ratios (PS/PCl) for each substitute anion were calculated from the shift in reversal potential using the Goldman-Hodgkin-Katz relation (noted in Materials and Methods).
X
ABCC7 p.Gly314Ala 9512029:138:424
status: NEWX
ABCC7 p.Gly314Ala 9512029:138:1653
status: NEW[hide] Novel missense mutation (G314R) in a cystic fibros... Hum Mutat. 1996;7(2):151-4. Nasr SZ, Strong TV, Mansoura MK, Dawson DC, Collins FS
Novel missense mutation (G314R) in a cystic fibrosis patient with hepatic failure.
Hum Mutat. 1996;7(2):151-4., [PMID:8829633]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 CFTR constructs bearing either the G314A or G314E substitution were associated with readily discernable CAMP-induced C1 currents.
X
ABCC7 p.Gly314Ala 8829633:56:35
status: NEW73 Cyclic AMP-activated C1 currents were only barely detectable with this construct, whereas wt and AF508 CFTR, as well as variants bearing more conservative substitutions at the same site (G314A and G314E), were associated with the expression of significant C1 channel function.
X
ABCC7 p.Gly314Ala 8829633:73:187
status: NEW