ABCC7 p.Leu1143Cys

Predicted by SNAP2: A: D (66%), C: D (59%), D: D (91%), E: D (85%), F: N (78%), G: D (85%), H: D (80%), I: D (53%), K: D (91%), M: D (63%), N: D (80%), P: D (91%), Q: D (80%), R: D (91%), S: D (75%), T: D (80%), V: N (53%), W: D (85%), Y: D (75%),
Predicted by PROVEAN: A: D, C: D, D: D, E: D, F: N, G: D, H: D, I: N, K: D, M: N, N: D, P: D, Q: D, R: D, S: D, T: D, V: N, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Chen EY, Bartlett MC, Loo TW, Clarke DM
The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2004 Sep 17;279(38):39620-7. Epub 2004 Jul 21., 2004-09-17 [PMID:15272010]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Qian F, El Hiani Y, Linsdell P
Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
Pflugers Arch. 2011 Oct;462(4):559-71. Epub 2011 Jul 28., [PMID:21796338]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O'Donnell N, Dawson DC, Sansom MS
Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore.
Biochemistry. 2012 Mar 20;51(11):2199-212. Epub 2012 Mar 7., [PMID:22352759]

Abstract [show]
Comments [show]
Sentences [show]