ABCC7 p.Met348Cys

ClinVar: c.1043T>A , p.Met348Lys ? , not provided
CF databases: c.1042A>G , p.Met348Val (CFTR1) ? , This mutation was identified in a CFTR gene mutation screening of 60 Patients with idiopathic chronic pancreatitis recruited from the region of North Rhine Westfalia in Germany. The entire coding region of the CFTR gene was sequenced.
c.1043T>A , p.Met348Lys (CFTR1) ? , The mutation on the other chromosome is still unknown. This mutation was found on one chromosome while screening 56 Italian CF chromosomes.
c.1043T>C , p.Met348Thr (CFTR1) ? , The mutation was detected by DGGE analysis and characterized by direct sequencing. We have seen it only twice, in over 1800 control chromosomes from Italian population.
Predicted by SNAP2: A: D (71%), C: D (66%), D: D (85%), E: D (85%), F: D (63%), G: D (80%), H: D (80%), I: N (53%), K: D (85%), L: N (66%), N: D (71%), P: D (91%), Q: D (63%), R: D (85%), S: D (66%), T: D (75%), V: N (53%), W: D (80%), Y: D (75%),
Predicted by PROVEAN: A: D, C: D, D: D, E: D, F: N, G: D, H: D, I: N, K: D, L: N, N: D, P: D, Q: D, R: D, S: D, T: D, V: N, W: N, Y: N,

[switch to compact view]
Comments [show]
Publications
[hide] Chen EY, Bartlett MC, Loo TW, Clarke DM
The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 2004 Sep 17;279(38):39620-7. Epub 2004 Jul 21., 2004-09-17 [PMID:15272010]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Beck EJ, Yang Y, Yaemsiri S, Raghuram V
Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
J Biol Chem. 2008 Feb 22;283(8):4957-66. Epub 2007 Dec 3., 2008-02-22 [PMID:18056267]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Bartlett MC, Clarke DM
Correctors promote folding of the CFTR in the endoplasmic reticulum.
Biochem J. 2008 Jul 1;413(1):29-36., 2008-07-01 [PMID:18361776]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Mornon JP, Lehn P, Callebaut I
Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces.
Cell Mol Life Sci. 2008 Aug;65(16):2594-612., [PMID:18597042]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC
Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore.
Biochemistry. 2009 Oct 27;48(42):10078-88., 2009-10-27 [PMID:19754156]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Bai Y, Li M, Hwang TC
Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
J Gen Physiol. 2010 Sep;136(3):293-309., [PMID:20805575]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Loo TW, Bartlett MC, Clarke DM
Benzbromarone stabilizes DeltaF508 CFTR at the cell surface.
Biochemistry. 2011 May 31;50(21):4393-5. Epub 2011 May 3., 2011-05-31 [PMID:21520952]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Qian F, El Hiani Y, Linsdell P
Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
Pflugers Arch. 2011 Oct;462(4):559-71. Epub 2011 Jul 28., [PMID:21796338]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O'Donnell N, Dawson DC, Sansom MS
Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore.
Biochemistry. 2012 Mar 20;51(11):2199-212. Epub 2012 Mar 7., [PMID:22352759]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Bai Y, Li M, Hwang TC
Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
J Gen Physiol. 2011 Nov;138(5):495-507., [PMID:22042986]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Wang W, El Hiani Y, Linsdell P
Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Gen Physiol. 2011 Aug;138(2):165-78. Epub 2011 Jul 11., [PMID:21746847]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cheung M, Akabas MH
Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment.
Biophys J. 1996 Jun;70(6):2688-95., [PMID:8744306]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Jih KY, Hwang TC
Nonequilibrium gating of CFTR on an equilibrium theme.
Physiology (Bethesda). 2012 Dec;27(6):351-61. doi: 10.1152/physiol.00026.2012., [PMID:23223629]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gao X, Bai Y, Hwang TC
Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
Biophys J. 2013 Feb 19;104(4):786-97. doi: 10.1016/j.bpj.2012.12.048., [PMID:23442957]

Abstract [show]
Comments [show]
Sentences [show]

[hide] El Hiani Y, Linsdell P
Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.
J Biol Chem. 2014 Oct 10;289(41):28149-59. doi: 10.1074/jbc.M114.593103. Epub 2014 Aug 20., [PMID:25143385]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Sorum B, Czege D, Csanady L
Timing of CFTR Pore Opening and Structure of Its Transition State.
Cell. 2015 Oct 22;163(3):724-33. doi: 10.1016/j.cell.2015.09.052. Epub 2015 Oct 22., [PMID:26496611]

Abstract [show]
Comments [show]
Sentences [show]