ABCC7 p.Met1137Val
ClinVar: |
c.3409A>G
,
p.Met1137Val
?
, not provided
c.3410T>G , p.Met1137Arg ? , not provided |
CF databases: |
c.3409A>G
,
p.Met1137Val
(CFTR1)
?
, This mutation (M1137V) in exon 18 of CFTR gene. The nucleotide at position 3541 was changed from A to G leading to a substitution of methionine codon for valine codon at position 1137. The mutation was foudn once in 384 chromsomes (289 CF chromosomes and 95 normal chromosomes) screened. Mutation on the other chromosome of the pancreatic sufficient patient is unknown.
c.3410T>C , p.Met1137Thr (CFTR1) ? , The mutation was detected by DGGE analysis and characterized by direct sequencing. We have seen it only twice, in over 1300 control chromosomes from Italian population. c.3410T>G , p.Met1137Arg (CFTR1) ? , The M1137R mutation has been found once in 59 non-[delta]F508 chromosomes from the Portuguese population, associated with haplotype C. The patient carries the F1052V mutation on the other chromosome and presents a mild form of CF. M1137R was found neither in 28 normal chromosomes nor in 31 [delta]F508 CF chromosomes. |
Predicted by SNAP2: | A: D (95%), C: D (91%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (85%), K: D (95%), L: D (85%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: N (72%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: N, G: D, H: D, I: N, K: D, L: N, N: D, P: D, Q: D, R: D, S: D, T: D, V: N, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Insight in eukaryotic ABC transporter function by ... FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19. Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]
Abstract [show]
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
378 M1137R interfered with the proper maturation of the protein and the whole cell cAMP activated chloride currents were reduced for M1137V, I1139V, D1152H and D1154G, indicating that these mutations interfere with the proper gating of chloride channels [180].
X
ABCC7 p.Met1137Val 16442101:378:129
status: NEW[hide] The phenotypic consequences of CFTR mutations. Ann Hum Genet. 2003 Sep;67(Pt 5):471-85. Rowntree RK, Harris A
The phenotypic consequences of CFTR mutations.
Ann Hum Genet. 2003 Sep;67(Pt 5):471-85., [PMID:12940920]
Abstract [show]
Cystic fibrosis is a common autosomal recessive disorder that primarily affects the epithelial cells in the intestine, respiratory system, pancreas, gall bladder and sweat glands. Over one thousand mutations have currently been identified in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that are associated with CF disease. There have been many studies on the correlation of the CFTR genotype and CF disease phenotype; however, this relationship is still not well understood. A connection between CFTR genotype and disease manifested in the pancreas has been well described, but pulmonary disease appears to be highly variable even between individuals with the same genotype. This review describes the current classification of CFTR mutation classes and resulting CF disease phenotypes. Complex disease alleles and modifier genes are discussed along with alternative disorders, such as disseminated bronchiectasis and pancreatitis, which are also thought to result from CFTR mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 Several mutations within exon 18, which encodes transmembrane helix 12 and the subsequent intracytoplasmic loop, were also shown to fall into Class IV with M1137V, I1139V, M1140, D1152H and D1154G mutants exhibiting significantly reduced cAMP-activated chloride currents (Vankeerberghen et al. 1998b).
X
ABCC7 p.Met1137Val 12940920:80:156
status: NEW[hide] Genetics of idiopathic disseminated bronchiectasis... Semin Respir Crit Care Med. 2003 Apr;24(2):179-84. Luisetti M, Pignatti PF
Genetics of idiopathic disseminated bronchiectasis.
Semin Respir Crit Care Med. 2003 Apr;24(2):179-84., [PMID:16088537]
Abstract [show]
Bronchiectasis is an abnormal dilation of bronchi, consequent to the destruction of their walls. It is included in the category of obstructive pulmonary diseases, along with chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis. In approximately 50% of cases, bronchiectasis is associated with underlying conditions; in the remainder, known causes are not ascertainable (idiopathic bronchiectasis). A search for genetic determinants of this phenotype, with the cystic fibrosis gene as a candidate, has been performed by three independent groups. The results of this search agreed on the association of bronchiectasis with cystic fibrosis gene mutations and polymorphisms. The cystic fibrosis gene is also associated with bronchiectasis due to rheumatoid arthritis and allergic bronchopulmonary aspergillosis. A few other genes have been investigated in idiopathic bronchiectasis, with negative results. Idiopathic bronchiectasis is, therefore, to be considered as an obstructive multifactorial disorder belonging to the category of cystic fibrosis monosymptomatic diseases (or CFTR-opathies), whose pathogenesis is influenced by environmental factors and other undetermined genes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 Greek M/F 11/12 5/16 na Mean age (yrs) 53 Ϯ 15 53 Ϯ 14 na CFTR gene 1 G576A-R668C/L997F 1 ⌬F508/D192N 1 ⌬F508,I1027T mutation 1 ⌬F508/L997F 1 ⌬I507/3849 + 10kb C → T 1 D565G, R668C 1 ⌬F508/- 1 ⌬F508/3849 + 10kb C → T 1 T896I/- 1 R1066C/- 1 H949Y/T1220I 1 I148T/- 1 3667ins4/- 1 ⌬F508/- 1 ⌬F508/S977F 1 R75Q/- 1 2183AA→G 1 M1137V/- 1 L997F/- IVS8-5T 5 5/7 1 5/9 1 5/5 CFTR, cystic fibrosis transmembrane conductance regulator; na, not available.
X
ABCC7 p.Met1137Val 16088537:42:411
status: NEW[hide] Atomic model of human cystic fibrosis transmembran... Cell Mol Life Sci. 2008 Aug;65(16):2594-612. Mornon JP, Lehn P, Callebaut I
Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces.
Cell Mol Life Sci. 2008 Aug;65(16):2594-612., [PMID:18597042]
Abstract [show]
We describe herein an atomic model of the outward-facing three-dimensional structure of the membrane-spanning domains (MSDs) and nucleotide-binding domains (NBDs) of human cystic fibrosis transmembrane conductance regulator (CFTR), based on the experimental structure of the bacterial transporter Sav1866. This model, which is in agreement with previous experimental data, highlights the role of some residues located in the transmembrane passages and directly involved in substrate translocation and of some residues within the intracellular loops (ICL1-ICL4) making MSD/NBD contacts. In particular, our model reveals that D173 ICL1 and N965 ICL3 likely interact with the bound nucleotide and that an intricate H-bond network (involving especially the ICL4 R1070 and the main chain of NBD1 F508) may stabilize the interface between MSD2 and the NBD1F508 region. These observations allow new insights into the ATP-binding sites asymmetry and into the molecular consequences of the F508 deletion, which is the most common cystic fibrosis mutation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
205 The fact that the CF-causing mutations M1137V, I1139V, D1152H and D1154G also interfere with the proper gating of the chloride channel [71] is in good agreement with such an hypothesis.
X
ABCC7 p.Met1137Val 18597042:205:39
status: NEW[hide] Mutations that permit residual CFTR function delay... Respir Res. 2010 Oct 8;11:140. Green DM, McDougal KE, Blackman SM, Sosnay PR, Henderson LB, Naughton KM, Collaco JM, Cutting GR
Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients.
Respir Res. 2010 Oct 8;11:140., [PMID:20932301]
Abstract [show]
BACKGROUND: Lung infection by various organisms is a characteristic feature of cystic fibrosis (CF). CFTR genotype effects acquisition of Pseudomonas aeruginosa (Pa), however the effect on acquisition of other infectious organisms that frequently precede Pa is relatively unknown. Understanding the role of CFTR in the acquisition of organisms first detected in patients may help guide symptomatic and molecular-based treatment for CF. METHODS: Lung infection, defined as a single positive respiratory tract culture, was assessed for 13 organisms in 1,381 individuals with CF. Subjects were divided by predicted CFTR function: 'Residual': carrying at least one partial function CFTR mutation (class IV or V) and 'Minimal' those who do not carry a partial function mutation. Kaplan-Meier estimates were created to assess CFTR effect on age of acquisition for each organism. Cox proportional hazard models were performed to control for possible cofactors. A separate Cox regression was used to determine whether defining infection with Pa, mucoid Pa or Aspergillus (Asp) using alternative criteria affected the results. The influence of severity of lung disease at the time of acquisition was evaluated using stratified Cox regression methods by lung disease categories. RESULTS: Subjects with 'Minimal' CFTR function had a higher hazard than patients with 'Residual' function for acquisition of 9 of 13 organisms studied (HR ranging from 1.7 to 3.78 based on the organism studied). Subjects with minimal CFTR function acquired infection at a younger age than those with residual function for 12 of 13 organisms (p-values ranging: < 0.001 to 0.017). Minimal CFTR function also associated with younger age of infection when 3 alternative definitions of infection with Pa, mucoid Pa or Asp were employed. Risk of infection is correlated with CFTR function for 8 of 9 organisms in patients with good lung function (>90%ile) but only 1 of 9 organisms in those with poorer lung function (<50%ile). CONCLUSIONS: Residual CFTR function correlates with later onset of respiratory tract infection by a wide spectrum of organisms frequently cultured from CF patients. The protective effect conferred by residual CFTR function is diminished in CF patients with more advanced lung disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 For Pa, the hazard ratio Table 1 Classification of CFTR alleles Category Mutation Specific mutations Class I Defective Protein Synthesis (nonsense, frameshift, aberrant splicing) 1078delT, 1154 insTC, 1525-2A > G, 1717-1G > A, 1898+1G > A, 2184delA, 2184 insA, 3007delG, 3120+1G > A, 3659delC, 3876delA, 3905insT, 394delTT, 4010del4, 4016insT, 4326delTC, 4374+1G > T, 441delA, 556delA, 621+1G > T, 621-1G > T, 711+1G > T, 875+1G > C, E1104X, E585X, E60X, E822X, G542X, G551D/R553X, Q493X, Q552X, Q814X, R1066C, R1162X, R553X, V520F, W1282X, Y1092X Class II Abnormal Processing and Trafficking A559T, D979A, ΔF508, ΔI507, G480C, G85E, N1303K, S549I, S549N, S549R Class III Defective Channel Regulation/Gating G1244E, G1349D, G551D, G551S, G85E, H199R, I1072T, I48T, L1077P, R560T, S1255P, S549 (R75Q) Class IV Decreased Channel Conductance A800G, D1152H, D1154G, D614G, delM1140, E822K, G314E, G576A, G622D, G85E, H620Q, I1139V, I1234V, L1335P, M1137V, P67L, R117C, R117P, R117H, R334W, R347H, R347P, R347P/ R347H, R792G, S1251N, V232D Class V Reduced Synthesis and/or Trafficking 2789+5G > A, 3120G > A, 3272-26A > G, 3849+10kbC > T, 5T variant, 621+3A > G, 711+3A > G, A445E, A455E, IVS8 poly T, P574H was increased 3 fold for those with 'Minimal` function when compared to those with 'Residual` function.
X
ABCC7 p.Met1137Val 20932301:74:956
status: NEW[hide] Complete mutational screening of the CFTR gene in ... Hum Genet. 1998 Dec;103(6):718-22. Bombieri C, Benetazzo M, Saccomani A, Belpinati F, Gile LS, Luisetti M, Pignatti PF
Complete mutational screening of the CFTR gene in 120 patients with pulmonary disease.
Hum Genet. 1998 Dec;103(6):718-22., [PMID:9921909]
Abstract [show]
In order to determine the possible role of the cystic fibrosis transmembrane regulator (CFTR) gene in pulmonary diseases not due to cystic fibrosis, a complete screening of the CFTR gene was performed in 120 Italian patients with disseminated bronchiectasis of unknown cause (DBE), chronic bronchitis (CB), pulmonary emphysema (E), lung cancer (LC), sarcoidosis (S) and other forms of pulmonary disease. The 27 exons of the CFTR gene and their intronic flanking regions were analyzed by denaturing gradient gel electrophoresis and automatic sequencing. Mutations were detected in 11/23 DBE (P = 0.009), 7/25 E, 5/27 CB, 5/26 LC, 5/8 S (P = 0.013), 1/4 tuberculosis, and 1/5 pneumonia patients, and in 5/33 controls. Moreover, the IVS8-5T allele was detected in 6/25 E patients (P = 0.038). Four new mutations were identified: D651N, 2377C/T, E826K, and P1072L. These results confirm the involvement of the CFTR gene in disseminated bronchiectasis of unknown origin, and suggest a possible role for CFTR gene mutations in sarcoidosis, and for the 5T allele in pulmonary emphysema.
Comments [show]
None has been submitted yet.
No. Sentence Comment
61 Of these 22 mutations, 14 (R75Q, P111L, R117H, I148T, Y301C, ∆F508, E585X, V754M, L997F, R1066C, M1137V, 3667ins4, D1270N, 4382delA) are listed by the Cystic Fibrosis Genetic Analysis Consortium (CFGAC) as CF mutations (CFGAC website), even if their role in CF disease remains to be proven, as is the case for R75Q, P111L, V754M, L997F, and D1270N.
X
ABCC7 p.Met1137Val 9921909:61:104
status: NEW88 of cases CFTR gene PolyTb status tested mutationa DBE 23 1 G576A-R668C/L997F 7/9 1 ∆F508/L997F 9/9 1 ∆F508/- 7/9 1 R1066C/- 5/7 1 3667ins4/- 5/7 1 R75Q/- 7/7 1 M1137V/- 7/7 1 -/- 5/5 3 -/- 5/7 10 -/- 7/7 2 -/- 7/9 CB 27 1 P111L/- 7/7 1 R117H/- 7/7 1 E585X/- 7/7 1 P1072L/- 7/7 1 -/- 5/7 15 -/- 7/7 6 -/- 7/9 1 -/- 9/9 E 25 1 R668C/- 7/7 6 -/- 5/7 16 -/- 7/7 6 -/- 7/9 S 8 1 E826K/- 7/7 1 ∆F508/- 7/9 1 4382delA/- 7/7 1 L997F/- 7/9 1 V754M/- 7/9 3 -/- 7/7 LC 26 1 I148T/- 5/7 1 D1270N-R74W 5/7 1 D651N/- 7/7 1 Y301C/- 7/7 1 -/- 5/7 16 -/- 7/7 5 -/- 7/9 TB 4 1 -/- 5/7 1 -/- 7/7 2 -/- 7/9 Pneumonia 5 4 -/- 7/7 1 -/- 5/7 Pnx 2 2 -/- 7/7 Controls 68 1 L997F/- 7/9 1 R31C/- 7/7 1 I506V/- 5/7 1 -/- 5/7 1 -/- 5/9 23 -/- 7/7 4 -/- 7/9 1 -/- 9/9 2 ?
X
ABCC7 p.Met1137Val 9921909:88:174
status: NEW[hide] CFTR mutation combinations producing frequent comp... Hum Mutat. 2012 Nov;33(11):1557-65. doi: 10.1002/humu.22129. Epub 2012 Jul 2. El-Seedy A, Girodon E, Norez C, Pajaud J, Pasquet MC, de Becdelievre A, Bienvenu T, des Georges M, Cabet F, Lalau G, Bieth E, Blayau M, Becq F, Kitzis A, Fanen P, Ladeveze V
CFTR mutation combinations producing frequent complex alleles with different clinical and functional outcomes.
Hum Mutat. 2012 Nov;33(11):1557-65. doi: 10.1002/humu.22129. Epub 2012 Jul 2., [PMID:22678879]
Abstract [show]
Genotype-phenotype correlations in cystic fibrosis (CF) may be difficult to establish because of phenotype variability, which is associated with certain CF transmembrane conductance regulator (CFTR) gene mutations and the existence of complex alleles. To elucidate the clinical significance of complex alleles involving p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys, we performed a collaborative genotype-phenotype correlation study, collected epidemiological data, and investigated structure-function relationships for single and natural complex mutants, p.[Gly576Ala;Arg668Cys], p.[Gly149Arg;Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys]. Among 153 patients carrying at least one of these mutations, only three had classical CF and all carried p.Gly149Arg in the triple mutant. Sixty-four had isolated infertility and seven were healthy individuals with a severe mutation in trans, but none had p.Gly149Arg. Functional studies performed on all single and natural complex mutants showed that (1) p.Gly149Arg results in a severe misprocessing defect; (2) p.Asp443Tyr moderately alters CFTR maturation; and (3) p.Gly576Ala, a known splicing mutant, and p.Arg668Cys mildly alter CFTR chloride conductance. Overall, the results consistently show the contribution of p.Gly149Arg to the CF phenotype, and suggest that p.[Arg668Cys], p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] are associated with CFTR-related disorders. The present study emphasizes the importance of comprehensive genotype-phenotype and functional studies in elucidating the impact of mutations on clinical phenotype. Hum Mutat 33:1557-1565, 2012. (c) 2012 Wiley Periodicals, Inc.
Comments [show]
None has been submitted yet.
No. Sentence Comment
105 [2002C>T;3718-2477C>T] p.Gln689X 2 CSD Nasal polyposis 14 y,16 y NA, 29 p.[Gly576Ala;Arg668Cys] NI 3 IP 35-39 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] NI 1 IP Bronchitis 49 y NA p.[Gly576Ala;Arg668Cys] p.PheF508del 1 IP 42 y NA p.[Gly576Ala;Arg668Cys] p.Arg668Cys 1 IP NA NA p.[Gly576Ala;Arg668Cys] c.1210_34TG[12]T[5] 4 IP 19-69 y NA p.[Gly576Ala;Arg668Cys] NI 1 Cholestasis 60 y NA p.[Gly576Ala;Arg668Cys] c.1584G>A 33 CBAVD 27-50 y 9-82 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Phe508del 2 CBAVD 30 y,36 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.2051_2052delAAinsG 1 CBAVD 34 y 72 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Trp1282X 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Asn1303Lys 1 CBAVD 35 y 65-66 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Ser549Asn 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.3605delA 1 CBAVD 30 y 41-69 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Gln1411X 1 CBAVD 31 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Arg347His 3 CBAVD 29 y, 34 y, NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Gly542X 1 CBAVD 35 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.946delT 1 CBAVD 26 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.4242_4242+1delGGinsT 1 CBAVD 41 y 31 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Arg117His 1 CBAVD 32 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Thr338Ile 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Glu379Lys 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Met1137Val 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Thr1246Ile 2 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] NI 1 CBAVD 34 NA p.[Gly576Ala;Arg668Cys] p.Asn1303Lys 8 CBAVD 30-42 y NA p.[Gly576Ala;Arg668Cys] NI 1 CBAVD 27 y NA p.Arg668Cys p.Phe508del 1 CBAVD 30 y NA p.Arg668Cys NI 1 CUAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Phe508del 1 CUAVD NA NA p.[Gly576Ala;Arg668Cys] NI 1 CUAVD Renal agenesis NA NA p.[Gly576Ala;Arg668Cys] NI 1 Hypofertility (not CBAVD) CF carrier`s partner NA NA p.[Gly576Ala;Arg668Cys] p.Asp1152His 1 FBA Mild CF considered possible, 2 older brothers with the same genotype, one with a very mild phenotype, the other being asymptomatic 22 wg NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Asn1303Lys 1 FBA TOP for de novo chromosomal translocation; not CF 21 wg NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Arg31Cys 1 FBA Not CF at birth 28 wg <30 p.[Gly576Ala;Arg668Cys] p.Phe508del 1 FBA Unknown outcome 23 wg NA p.[Gly576Ala;Arg668Cys] p.Phe508del 1 FBA Not CF at birth 21 wg <30 p.[Gly576Ala;Arg668Cys] p.Trp846X (Continued) Table 1.
X
ABCC7 p.Met1137Val 22678879:105:1369
status: NEW[hide] Genotype and phenotype correlations in patients wi... Gastroenterology. 2002 Dec;123(6):1857-64. Durno C, Corey M, Zielenski J, Tullis E, Tsui LC, Durie P
Genotype and phenotype correlations in patients with cystic fibrosis and pancreatitis.
Gastroenterology. 2002 Dec;123(6):1857-64., [PMID:12454843]
Abstract [show]
BACKGROUND & AIMS: Pancreatitis is known to occur in some patients with cystic fibrosis (CF), but the prevalence, natural history, and genotypic basis are unclear. We examined a well-defined cohort of patients with CF to answer these questions. METHODS: Patients with CF were identified from a computerized database (1966-1996). Chart audit identified all patients with CF and pancreatitis. RESULTS: Among 1075 patients with CF, 937 (87%) were pancreatic insufficient at diagnosis, 28 (3%) were pancreatic sufficient but developed pancreatic insufficiency after diagnosis, and 110 (10%) have remained pancreatic sufficient. No patients with pancreatic insufficiency developed pancreatitis. Nineteen patients (17.3%) with pancreatic sufficiency experienced one or more attacks of pancreatitis. The mean age at diagnosis of pancreatitis was 22.7 +/- 10.3 years (range, 10-35 years), and pancreatitis was recognized before the diagnosis of CF in 6 patients (32%). The diagnosis of CF in pancreatic-sufficient patients, with and without pancreatitis, was established at a significantly older age than in those with pancreatic insufficiency (P < 0.0001). Genotyped patients with pancreatic insufficiency carried 2 severe mutant alleles. All genotyped patients with pancreatic sufficiency and pancreatitis carried at least one mild mutation. No specific genotype was predictive of pancreatitis. CONCLUSIONS: Patients with CF with pancreatic sufficiency carry at least one mild mutant allele and are at a significant risk of developing pancreatitis. Symptoms of pancreatitis may precede the diagnosis of CF. Pancreatitis is associated with an otherwise mild CF phenotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
105 CFTR Genotypes Among CF Patients With PS With and Without Pancreatitis Two mutations (n) ⌬F508/R117H (9) ⌬F508/(5T) (6) ⌬F508/3272-26A 3 G (4) ⌬F508/R347H (2) ⌬F508/P574H (2) ⌬F508/875 ϩ 1G Ͼ C (2) ⌬F508/3849 ϩ 10kb C 3 T (1) ⌬F508/A455E (1) ⌬F508/D614G (1) ⌬F508/G85E (1) ⌬F508/R347P (1) ⌬F508/S1251N (1) ⌬F508/⌬F508a (1) ⌬F508/3120G Ͼ A (1) ⌬F508/G551Da (1) G542X/R117H (1) R560T/L206W (1) R117H/R117H (1) R31L/P67L (1) 1461ins4 (AGAT)/G85E (1) G551D/(5T) (1) R1066C/3849 ϩ 10kb C Ͼ T (1) G551D/3849 ϩ 10kb C Ͼ T (1) R334W/R334W (1) R334W/681delC (1) W1282X/3489 ϩ 10kb C Ͼ T (1) One mutation (n) ⌬F508/- (18) L1077P/- (1) W1282X/- (1) M1137V/- (1) G551D/- (1) R347H/- (1) Q30X1/- (1) G1244E/- (1) R117H/- (1) 621 ϩ 2G621 ϩ 1G 3 T/- (1) NOTE.
X
ABCC7 p.Met1137Val 12454843:105:817
status: NEW[hide] Characterization of mutations located in exon 18 o... FEBS Lett. 1998 Oct 16;437(1-2):1-4. Vankeerberghen A, Wei L, Teng H, Jaspers M, Cassiman JJ, Nilius B, Cuppens H
Characterization of mutations located in exon 18 of the CFTR gene.
FEBS Lett. 1998 Oct 16;437(1-2):1-4., [PMID:9804160]
Abstract [show]
In order to get a better insight into the function of amino acid residues located in the second transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, all exon 18 mutations found in cystic fibrosis (CF) patients were characterized at the protein and at the electrophysiological level. Of the different mutations present in transmembrane helix 12 (M1137V, M1137R, I11139V and deltaM1140), and the intracytoplasmic loop connecting TM12 and NBD2 (D1152H and D1154G), only M1137R interfered with the proper maturation of the protein. Permeability studies performed after injection of the different wild-type and mutant cRNAs in Xenopus laevis oocytes indicated that the mutations did not alter the permeability sequence of the CFTR channels. The whole cell cAMP activated chloride currents, however, were significantly reduced for M1137V, I1139V, D1152H and D1154G and close to zero for deltaM1140, indicating that these mutations interfere with the proper gating of the chloride channels.
Comments [show]
None has been submitted yet.
No. Sentence Comment
1 Of the different mutations present in transmembrane helix 12 (M1137V, M1137R, I1139V and vvM1140), and the intracytoplasmic loop connecting TM12 and NBD2 (D1152H and D1154G), only M1137R interfered with the proper maturation of the protein.
X
ABCC7 p.Met1137Val 9804160:1:62
status: NEW3 The whole cell cAMP activated chloride currents, however, were significantly reduced for M1137V, I1139V, D1152H and D1154G and close to zero for vvM1140, indicating that these mutations interfere with the proper gating of the chloride channels.
X
ABCC7 p.Met1137Val 9804160:3:89
status: NEW31 Six di¡erent mutations: a3541g ( = M1137V), t3542g ( = M1137R), a3547g ( = I1139V), deletion of atg from 3550 ( = vM1140), g3586c ( = D1152H) and a3593g ( = D1154G) were introduced using the Transformer Site-Directed Mutagenesis kit (Clontech).
X
ABCC7 p.Met1137Val 9804160:31:39
status: NEW72 This hypothesis is substantiated by the 'nding that another mutation that a¡ects the same amino acid residue, but that replaces it with an aliphatic one (M1137V), exhibits a `wild-type' maturation pattern.
X
ABCC7 p.Met1137Val 9804160:72:159
status: NEW78 COS1 cells transfected with wild-type, M1137V, M1137R, I1139V, vM1140, D1152H and D1154G CFTR were metabolically labelled, chased, CFTR was immunoprecipitated and separated on an SDS-PAGE gel.
X
ABCC7 p.Met1137Val 9804160:78:39
status: NEW80 M1137V, M1137R, I1139V and vM1140 are located in transmembrane helix 12 and D1152H and D1154G are located in the intracytoplasmic loop connecting TM12 and NBD.
X
ABCC7 p.Met1137Val 9804160:80:0
status: NEW83 Four mutants, M1137V, I1139V, D1152H and D1154G showed a signi'cantly reduced current, when compared to wild type, and two other mutants, M1137R and vM1140 were not activated by cAMP (Fig. 3).
X
ABCC7 p.Met1137Val 9804160:83:14
status: NEW89 The same permeation sequence was found for the four mutants, M1137V, I1139V, D1152H and D1154G (Fig. 2D).
X
ABCC7 p.Met1137Val 9804160:89:61
status: NEW71 This hypothesis is substantiated by the 'nding that another mutation that a&#a1;ects the same amino acid residue, but that replaces it with an aliphatic one (M1137V), exhibits a `wild-type' maturation pattern.
X
ABCC7 p.Met1137Val 9804160:71:158
status: NEW77 COS1 cells transfected with wild-type, M1137V, M1137R, I1139V, vM1140, D1152H and D1154G CFTR were metabolically labelled, chased, CFTR was immunoprecipitated and separated on an SDS-PAGE gel.
X
ABCC7 p.Met1137Val 9804160:77:39
status: NEW79 M1137V, M1137R, I1139V and vM1140 are located in transmembrane helix 12 and D1152H and D1154G are located in the intracytoplasmic loop connecting TM12 and NBD2.
X
ABCC7 p.Met1137Val 9804160:79:0
status: NEW82 Four mutants, M1137V, I1139V, D1152H and D1154G showed a signi'cantly reduced current, when compared to wild type, and two other mutants, M1137R and vM1140 were not activated by cAMP (Fig. 3).
X
ABCC7 p.Met1137Val 9804160:82:14
status: NEW88 The same permeation sequence was found for the four mutants, M1137V, I1139V, D1152H and D1154G (Fig. 2D).
X
ABCC7 p.Met1137Val 9804160:88:61
status: NEW[hide] Increased incidence of cystic fibrosis gene mutati... Hum Mol Genet. 1995 Apr;4(4):635-9. Pignatti PF, Bombieri C, Marigo C, Benetazzo M, Luisetti M
Increased incidence of cystic fibrosis gene mutations in adults with disseminated bronchiectasis.
Hum Mol Genet. 1995 Apr;4(4):635-9., [PMID:7543317]
Abstract [show]
In order to identify a possible hereditary predisposition to the development of obstructive pulmonary disease of unknown origin, we have looked for the presence of Cystic Fibrosis Transmembrane Regulator (CFTR) gene mutations in unrelated patients with no signs of Cystic Fibrosis (CF). We screened for 70 common mutations, and also for rare mutations by denaturing gradient gel electrophoresis analysis. In this search, different CFTR gene mutations (R75Q, delta F508, R1066C, M1137V and 3667ins4) were found in five out of 16 adult Italian patients with disseminated bronchiectasis, a significant increase over the expected frequency of carriers. Moreover, three rare CFTR gene DNA polymorphisms (G576A, R668C, and 2736 A-->G), not deemed to be the cause of CF, were found in two patients, one of which was a compound heterozygote with R1066C. These results indicate that CFTR gene mutations, and perhaps also DNA polymorphisms, may be involved in the etiopathogenesis of at least some cases of bronchiectasis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
4 In this search, different CFTR gene mutations (R75Q, AF508, R1066C, M1137V and 3667ins4) were found in five out of 16 adult Italian patients with disseminated bronchiectasis, a significant increase over the expected frequency of carriers.
X
ABCC7 p.Met1137Val 7543317:4:68
status: NEW[hide] Quantification of major urinary metabolites of PGE... Prostaglandins Leukot Essent Fatty Acids. 2013 Aug;89(2-3):121-6. doi: 10.1016/j.plefa.2013.06.001. Epub 2013 Jun 20. Jabr S, Gartner S, Milne GL, Roca-Ferrer J, Casas J, Moreno A, Gelpi E, Picado C
Quantification of major urinary metabolites of PGE2 and PGD2 in cystic fibrosis: correlation with disease severity.
Prostaglandins Leukot Essent Fatty Acids. 2013 Aug;89(2-3):121-6. doi: 10.1016/j.plefa.2013.06.001. Epub 2013 Jun 20., [PMID:23791427]
Abstract [show]
Cystic fibrosis transmembrane conductance (CFTR) alterations are involved in the overproduction of prostaglandins (PG) in CF in vitro. We assessed the relationship between PGE-M and PGD-M urinary metabolites of PGE2 and PGD2 and CF severity. Twenty-four controls and 35 CF patients were recruited. PGE-M and PGD-M levels were measured by liquid chromatography/mass spectrometry and results were expressed as median and 25th-75th interquartile of ng/mg creatinine (Cr). PGE-M (15.63; 9.07-43.35ng/mg Cr) and PGD-M (2.16; 1.43-3.53ng/mg Cr) concentrations were higher in CF than in controls: PGE-M, (6.63; 4.35-8.60ng/mg Cr); PGD-M (1.23; 0.96-1.54ng/mg Cr). There was no correlation between metabolite levels and spirometric values. Patients with pancreatic insufficiency (n=29) had higher PGE-M levels (19.09; 9.36-52.69ng/mg Cr) than those with conserved function (n=6) (9.61; 5.78-14.34ng/mg Cr). PGE-M levels were associated with genotype severity: mild (7.14; 5.76-8.76, n=8), moderate (16.67; 13.67-28.62ng/mg Cr, n=5) and severe (22.82; 10.67-84.13ng/mg Cr). Our study confirms the key role of CFTR in the regulation of the cyclooxygenase pathway of arachidonic acid metabolism found in in vitro studies.
Comments [show]
None has been submitted yet.
No. Sentence Comment
113 Mutations Mutation class Severity Number Pancreatic sufficiency (n) W128X/W128X I/I Severe 1 0 I507/Q890X I/I Severe 1 0 F508del/G542X II/I Severe 2 0 F508del/2188AA4G II/I Severe 1 0 F508del/N1303K II/I Severe 3 0 F508del/1677delTA II/I Severe 1 0 F508del/2188AA4G II/I Severe 1 0 F508del/F508del II/II Severe 10 0 F508del/Q890X II/II Severe 1 0 F508del/E1308X II/II Severe 1 0 F508del/5T-12TG II/III Moderate 2 0 G542X/G85V I/III Moderate 1 0 F508del/124del23kbp II/III Moderate 1 0 G542X/M1137V I/III Moderate 1 1 I507/L206W I/IV Mild 1 0 F508del/L206W I/IV Mild 4 2 711+1G4L206W I/IV Mild 1 1 N1303K/3272-26A4G I/IV Mild 1 1 F508del/F587I II/V Mild 1 1 n&#bc;Number.
X
ABCC7 p.Met1137Val 23791427:113:491
status: NEW[hide] A Genotypic-Oriented View of CFTR Genetics Highlig... Mol Med. 2015 Apr 21;21:257-75. doi: 10.2119/molmed.2014.00229. Lucarelli M, Bruno SM, Pierandrei S, Ferraguti G, Stamato A, Narzi F, Amato A, Cimino G, Bertasi S, Quattrucci S, Strom R
A Genotypic-Oriented View of CFTR Genetics Highlights Specific Mutational Patterns Underlying Clinical Macrocategories of Cystic Fibrosis.
Mol Med. 2015 Apr 21;21:257-75. doi: 10.2119/molmed.2014.00229., [PMID:25910067]
Abstract [show]
Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype-phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype-phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype-phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway.
Comments [show]
None has been submitted yet.
No. Sentence Comment
390 L1077P c.3230T>C CF-PI CF-causing p.Leu1077Pro Y1092X(C>A) c.3276C>A CF-PI CF-causing p.Tyr1092* M1137V c.3409A>G CFTR-RD nd p.Met1137Val D1152H c.3454G>C CF-PI,CF-PS,CFTR-RD varying clinical consequence p.Asp1152His R1162X c.3484C>T CF-PI CF-causing p.Arg1162* D1168G c.3503A>G CFTR-RD nd p.Asp1168Gly 3667ins4 c.3535_3536insTCAA CF-PI CF-causing p.Thr1179IlefsX17 S1206X c.3617C>A uncertain: CF-PI and/or CF-PS nd p.Ser1206* I1234V c.3700A>G CF-PI,CF-PS CF-causing p.Ile1234Val S1235R c.3705T>G CFTR-RD non CF-causing p.Ser1235Arg 3849+10kbC>T c.3717+12191C>T CF-PI,CF-PS CF-causing V1240G c.3719T>G CFTR-RD nd p.Val1240Gly G1244R c.3730G>A uncertain: CF-PI and/or CF-PS nd p.Gly1244Arg G1244E c.3731G>A CF-PI,CF-PS CF-causing p.Gly1244Glu G1247R(G>C) c.3739G>C CF-PS nd p.Gly1247Arg W1282X c.3846G>A CF-PI CF-causing p.Trp1282* Q1291R c.3872A>G CF-PI,CF-PS,CFTR-RD nd p.Gln1291Arg 4016insT c.3884_3885insT CF-PI CF-causing p.Ser1297PhefsX5 4040delA c.3908delA CF-PI nd p.Asn1303ThrfsX25 N1303K c.3909C>G CF-PI CF-causing p.Asn1303Lys ex22-24del c.3964-3890_4443+3143del9454ins5 CF-PI nd ex22,23del c.3964-78_4242+577del1532 CF-PI CF-causing 4168delCTAAGCC c.4036_4042del CF-PI nd p.Leu1346MetfsX6 G1349D c.4046G>A CF-PI CF-causing p.Gly1349Asp H1375P c.4124A>C uncertain: CF-PI and/or CF-PS nd p.His1375Pro S1455X c.4364C>G CF-PS,CFTR-RD nd p.Ser1455* Q1476X c.4426C>T CFTR-RD nd p.Gln1476* nd,Not determined.According to the three rules described (see Materials and Methods),each mutated allele was classified according to its clinical outcome.It was impossible to univocally assign 16 of the 125 different mutated alleles to one or more macrocategories.A comparison with the CFTR2 project (11) (http://www.cftr2.org) is shown.The alleles are ordered according to their nucleotidic position.
X
ABCC7 p.Met1137Val 25910067:390:97
status: NEWX
ABCC7 p.Met1137Val 25910067:390:127
status: NEW