ABCC7 p.Arg334Glu

ClinVar: c.1000C>T , p.Arg334Trp D , Pathogenic
c.1001G>T , p.Arg334Leu ? , not provided
c.1001G>A , p.Arg334Gln ? , not provided
CF databases: c.1000C>T , p.Arg334Trp D , CF-causing ; CFTR1: This mutation has been found in two Spanish CF chromosomes. One of the patients has the [delta]F508 mutation in the other chromosome and the other patient does not. We have not found this mutation on 30 normal chromosomes with the same haplotype, and in 88 CF chromosomes without the [delta]F508, and in 24 with the [delta]F508. The mutation destroys a MapI site and is easily identified by agarose gel electrophoresis after PCR with intron primers.
c.1001G>A , p.Arg334Gln (CFTR1) ? , The above mutation was found by DGGE and direct sequencing in Caucasian patients.
c.1001G>T , p.Arg334Leu (CFTR1) D , Missense mutation E334L was detected in a German CBAVD patient who is compound heterozygous for the R334L and I336K mutations.
Predicted by SNAP2: A: D (91%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (91%), I: D (95%), K: D (85%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (91%), S: D (91%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%),
Predicted by PROVEAN: A: N, C: D, D: N, E: N, F: D, G: N, H: N, I: D, K: N, L: N, M: N, N: N, P: N, Q: N, S: N, T: N, V: D, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Gong X, Linsdell P
Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore.
J Physiol. 2003 Jun 1;549(Pt 2):387-97. Epub 2003 Apr 4., 2003-06-01 [PMID:12679372]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zhou JJ, Fatehi M, Linsdell P
Direct and indirect effects of mutations at the outer mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Membr Biol. 2007 Apr;216(2-3):129-42. Epub 2007 Aug 3., [PMID:17673962]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Jiang Q, Mak D, Devidas S, Schwiebert EM, Bragin A, Zhang Y, Skach WR, Guggino WB, Foskett JK, Engelhardt JF
Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor.
J Cell Biol. 1998 Nov 2;143(3):645-57., 1998-11-02 [PMID:9813087]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Liu X, Zhang ZR, Fuller MD, Billingsley J, McCarty NA, Dawson DC
CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore.
Biophys J. 2004 Dec;87(6):3826-41. Epub 2004 Sep 10., [PMID:15361410]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drumm ML, Collins FS, Dawson DC
Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
Biophys J. 1998 Mar;74(3):1320-32., [PMID:9512029]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Hipper A, Mall M, Greger R, Kunzelmann K
Mutations in the putative pore-forming domain of CFTR do not change anion selectivity of the cAMP activated Cl- conductance.
FEBS Lett. 1995 Nov 6;374(3):312-6., [PMID:7589561]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gong X, Linsdell P
Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
Arch Biochem Biophys. 2004 Jun 1;426(1):78-82., [PMID:15130785]

Abstract [show]
Comments [show]
Sentences [show]