ABCC7 p.Gly458Val
ClinVar: |
c.1373G>T
,
p.Gly458Val
D
, Pathogenic
|
CF databases: |
c.1373G>T
,
p.Gly458Val
(CFTR1)
?
, This mutation has been found in one CF chromosome of Belgian origin and is associated with haplotype XV2c/CS7/KM19/D9 : 2111. The mutation has been detected by direct sequencing of amplified DNA of this patient and has been confirmed by dot-blot analysis. This mutation has been detected in one out of 51 CF chromosomes (15 of them having the F508 deletion, one has a G542X mutation and 35 having an unknown mutation).
|
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (80%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Cystic fibrosis: a worldwide analysis of CFTR muta... Hum Mutat. 2002 Jun;19(6):575-606. Bobadilla JL, Macek M Jr, Fine JP, Farrell PM
Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening.
Hum Mutat. 2002 Jun;19(6):575-606., [PMID:12007216]
Abstract [show]
Although there have been numerous reports from around the world of mutations in the gene of chromosome 7 known as CFTR (cystic fibrosis transmembrane conductance regulator), little attention has been given to integrating these mutant alleles into a global understanding of the population molecular genetics associated with cystic fibrosis (CF). We determined the distribution of CFTR mutations in as many regions throughout the world as possible in an effort designed to: 1) increase our understanding of ancestry-genotype relationships, 2) compare mutational arrays with disease incidence, and 3) gain insight for decisions regarding screening program enhancement through CFTR multi-mutational analyses. Information on all mutations that have been published since the identification and cloning of the CFTR gene's most common allele, DeltaF508 (or F508del), was reviewed and integrated into a centralized database. The data were then sorted and regional CFTR arrays were determined using mutations that appeared in a given region with a frequency of 0.5% or greater. Final analyses were based on 72,431 CF chromosomes, using data compiled from over 100 original papers, and over 80 regions from around the world, including all nations where CF has been studied using analytical molecular genetics. Initial results confirmed wide mutational heterogeneity throughout the world; however, characterization of the most common mutations across most populations was possible. We also examined CF incidence, DeltaF508 frequency, and regional mutational heterogeneity in a subset of populations. Data for these analyses were filtered for reliability and methodological strength before being incorporated into the final analysis. Statistical assessment of these variables revealed that there is a significant positive correlation between DeltaF508 frequency and the CF incidence levels of regional populations. Regional analyses were also performed to search for trends in the distribution of CFTR mutations across migrant and related populations; this led to clarification of ancestry-genotype patterns that can be used to design CFTR multi-mutation panels for CF screening programs. From comprehensive assessment of these data, we offer recommendations that multiple CFTR alleles should eventually be included to increase the sensitivity of newborn screening programs employing two-tier testing with trypsinogen and DNA analysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 Mutational Arrays, Detection Rates and Methods by Region* Estimated Projected detection of Number of Number of Country/ allele two CFTR mutations chromosomes Region Mutation array detectiona mutationsb includedc (max/min)d Reference Europe Albania ∆F508 (72.4%) C276X (0.7%) 74.5 55.5 4 270/146 CFGAC [1994]; Macek et al. G85E (0.7%) R1070Q (0.7%) [2002] Austria ∆F508 (62.9%) 457TAT→G (1.2%) 76.6 58.7 11 1516/580 Estiville et al. [1997]; Dörk et al. (total) G542X (3.3%) 2183AA→G (0.7%) [2000]; Macek et al. [2002] CFTRdele2,3 (2.1%) N1303K (0.6%) R1162X (1.9%) I148T (0.5%) R553X (1.7%) R117H (0.5%) G551D (1.2%) Austria ∆F508 (74.6%) 2183AA→G (2.4%) 95.3 90.8 8 126 Stuhrmann et al. [1997] (tyrol) R1162X (8.7%) G551D (1.6%) G542X (2.4%) R347P (1.6%) 2789+5G→A (2.4%) Q39X (1.6%) Belarus ∆F508 (61.2%) R553X (0.5%) 75.2 56.6 9 278/188 Dörk et al. [2000]; Macek et al. G542X (4.5%) R334W (0.5%) [2002] CFTRdele2,3 (3.3%) R347P (0.5%) N1303K (3.2%) S549N (0.5%) W1282X (1.0%) Belgium ∆F508 (75.1%) 622-1A→C (0.5%) 100.0 100.0 27 1504/522 Cuppens et al. [1993]; Mercier et G542X (3.5%) G458V (0.5%) al. [1993]; CFGAC [1994]; N1303K (2.7%) 1898+G→C (0.5%) Estivill et al.[1997] R553X (1.7%) G970R (0.5%) 1717-1G→A (1.6%) 4218insT (0.5%) E60X (1.6%) 394delTT (0.5%) W1282X (1.4%) K830X (0.5%) 2183A→G+2184delA (1.2%) E822K (0.5%) W401X (1.0%) 3272-1G→A (0.5%) A455E (1.0%) S1161R (0.5%) 3272-26A→G (1.0%) R1162X (0.5%) S1251N (1.0%) 3750delAG (0.5%) S1235R (0.8%) S1255P (0.5%) ∆I507 (0.6%) Bulgaria ∆F508 (63.6%) R75Q (1.0%) 93.0 86.5 21 948/432 Angelicheva et al. [1997]; (total) N1303K (5.6%) 2183AA→G (0.9%) Estivill et al. [1997]; Macek G542X (3.9%) G1244V+S912L (0.9%) et al. [2002] R347P (2.2%) G85E (0.9%) 1677delTA (2.1%) 2184insA (0.9%) R1070Q (1.8%) L88X+G1069R (0.8%) Q220X (1.2%) 2789+5G→A (0.8%) 3849+10KbC→T (1.1%) G1244E (0.8%) W1282X (1.0%) 1717-1G→A (0.8%) 2176insC (1.0%) Y919C (0.7%) G1069R (1.0%) WORLDWIDEANALYSISOFCFTRMUTATIONS581 Bulgaria 1) DF508 4) 1677delTA - - 6 13 Angelicheva et al. [1997] (ethnic 2) R347P 5) Q493R Turks) 3) G542X 6) L571S - - 1 30 Angelicheva et al. [1997] Bulgaria 1) DF508 (100.0%) (Gypsy) Croatia ∆F508 (64.5%) G551D (1.1%) 72.5 52.6 5 276 Macek et al. [2002] G542X (3.3%) 3849+10KbC→T (0.7%) N1303K (2.9%) Czech ∆F508 (70.0%) 1898+1G→T (2.0%) 89.6 80.3 10 2196/628 CFGAC [1994]; Estiville et al. Republic CFTRdele2,3 (5.5%) 2143delT (1.2%) [1997]; Dörk et al. [2000]; G551D (3.8%) R347P (0.8%) Macek et al. [2002] N1303K (2.9%) 3849+10KbC→T (0.6%) G542X (2.2%) W1282X (0.6%) Denmark ∆F508 (87.5%) G542X (0.7%) 92.3 85.2 6 1888/678 CFGAC [1994]; Schwartz et al. (excluding 394delTT (1.8%) 621+1G→T (0.6%) [1994]; Estiville et al. [1997] Faroe) N1303K (1.1%) 3659delC (0.6%) Estonia ∆F508 (51.7%) R117C (1.7%) 80.2 64.3 10 165/80 Estivill et al. [1997]; Klaassen et 394delTT (13.3%) E217G (1.7%) al. [1998]; Macek et al. S1235R (3.3%) R1066H (1.7%) [2002] 359insT (1.7%) 3659delC (1.7%) I1005R (1.7%) S1169X (1.7%) Finland ∆F508 (46.2%) G542X (1.9%) 78.8 62.1 4 132/52 CFGAC [1994]; Kere et al. 394delTT (28.8%) 3372delA (1.9%) [1994]; Estivill et al. [1997] France ∆F508 (67.7%) 2789+5G→T (0.79%) 79.7 63.6 12 17854/7420 Chevalier-Porst et al. [1994]; (total) G542X (2.94%) 2184delA+2183A→G (0.77%) Estivill et al. [1997]; Claustres et al. [2000]; Guilloud-Bataille N1303K (1.83%) G551D (0.74%) et al. [2000] 1717-1G→A (1.35%) 1078delT (0.63%) W1282X (0.91%) ∆I507 (0.62%) R553X (0.86%) Y122K (0.59%) France ∆F508 (75.8%) R297Q (0.8%) 98.7 97.4 18 599/365 Férec et al. [1992]; Scotet et al. (Brittany) 1078delT (4.0%) R347H (0.8%) [2000] G551D (3.6%) I1234V (0.8%) N1303K (3.0%) R553X (0.8%) R117H (1.7%) 2789+5G→A (0.8%) 3272-26A→G (1.3%) 4005+1G→A (0.7%) G542X (1.1%) 621+1G→T (0.6%) 1717-1G→A (1.0%) ∆I507 (0.6%) G1249R (0.8%) W846X (0.5%) France ∆F508 (70.0%) N1303K (0.8%) 90.4 81.7 16 250 Claustres et al. [1993] (southern) G542X (6.4%) 3737delA (0.8%) 1717-1G→A (1.6%) R1162X (0.8%) L206W (1.2%) Y1092X (0.8%) R334W (1.2%) S945L (0.8%) ∆I507 (1.2%) K710X (0.8%) 2184delA (1.2%) 1078delT (0.8%) R1158X (1.2%) Y122X (0.8%) (Continued) BOBADILLAETAL.
X
ABCC7 p.Gly458Val 12007216:109:1167
status: NEW[hide] Serum zinc concentrations in cystic fibrosis patie... Biol Trace Elem Res. 2007 Oct;119(1):19-26. Van Biervliet S, Van Biervliet JP, Vande Velde S, Robberecht E
Serum zinc concentrations in cystic fibrosis patients aged above 4 years: a cross-sectional evaluation.
Biol Trace Elem Res. 2007 Oct;119(1):19-26., [PMID:17914215]
Abstract [show]
AIM: Assess the risk of zinc (Zn) deficiency in the older cystic fibrosis (CF) population. METHOD: Cross-sectional investigation of all CF patients above the age of 4 followed at the Ghent University center between 2002 and 2003. Data on age, weight, height z-score, pancreatic and pulmonary functions, chronic Pseudomonas infection, and CF transmembrane conductance regulator (CFTR) mutations were collected. Serum Zn, vitamins (vit) A and E, retinol-binding protein (RBP), albumin, sedimentation rate, total IgG, and cholesterol were determined. Serum Zn was compared with a local healthy control group (Van Biervliet et al., Biol Trace Elem Res 94:33-40, 2003) and with literature data (Hotz C, et al. Am J Clin Nutr 78:756-764, 2003). RESULTS: 101 patients (median age 16 years) were included. There was no difference in serum Zn concentration between CF patients and controls. In CF patients no difference in serum Zn concentration between pancreatic-sufficient or pancreatic-insufficient patients was seen. Serum Zn was not associated to nutritional status or height z-score. A significant association serum Zn to serum albumin (p < 0.0005) and to vit A (p < 0.01) was seen. No associations of serum Zn to serum vit E, RBP, cholesterol, or CFTR were present, but there is a significant association serum Zn to forced vital capacity (p < 0.01). Serum Zn was not associated to inflammatory parameters or chronic Pseudomonas infection. CONCLUSION: Comparison of CF patients with local controls revealed no significant differences. However, because persisting steatorrhea increases Zn loss (Easley et al., J Pediatr Gastroenterol Nutr 26:136-139, 1998) and 12.6% of our population has a serum Zn below the p value of 2.5 of the NHANES II study (Hotz C, et al. Am J Clin Nutr 78:756-764, 2003), there could remain an increased risk of Zn deficiency in some CF patients. Furthermore, the association with pulmonary function needs more investigation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
73 Table 1 Genotype of the 101 CF Patients: Details of the CF Mutations and Classification into Two Groups Genotype Groups Genotype No of Patients A ΔF508/ΔF508 47 ΔF508/E60X 1 ΔF508/G542X 7 ΔF508/N1303K 3 ΔF508/Q493X 1 ΔF508/1717-1G→A 1 ΔF508/Y1092X 1 ΔF508/394delTT 1 ΔF508/R785X 1 ΔF508/R553X 1 ΔF508/ΔI507 1 394delTT/394delTT 1 N1303K/N1303K 2 B ΔF508/3849+10kbC-T 1 ΔF508/306ΔTAGA 1 ΔF508/S1251N 8 ΔF508/L927P 1 G458V/1717-1G→A 1 ΔF508/I336K 2 G542X/622-2 A→C 1 ΔF508/G970R 3 ΔF508/3272-26A→G 2 ΔF508/R117H 2 ΔF508/2789+5G→A 2 1717-1G->A/S1251N 1 G542X/G970R 1 394delTT/Y913C 1 N1303K/deletion exon 19 1 Unidentified/unidentified 2 3600+2insTA/2005 del T 1 ΔF508/1898+1G→A 1 Deletion exon 2/del exon 2 1 There was no difference according to gender or age.
X
ABCC7 p.Gly458Val 17914215:73:529
status: NEW[hide] Do common in silico tools predict the clinical con... Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan XW, Corey M, Tsui LC, Zielenski J, Durie P
Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?
Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6., [PMID:20059485]
Abstract [show]
Computational methods are used to predict the molecular consequences of amino-acid substitutions on the basis of evolutionary conservation or protein structure, but their utility in clinical diagnosis or prediction of disease outcome has not been well validated. We evaluated three popular computer programs, namely, PANTHER, SIFT and PolyPhen, by comparing the predicted clinical outcomes for a group of known CFTR missense mutations against the diagnosis of cystic fibrosis (CF) and clinical manifestations in cohorts of subjects with CF-disease and CFTR-related disorders carrying these mutations. Owing to poor specificity, none of tools reliably distinguished between individual mutations that confer CF disease from mutations found in subjects with a CFTR-related disorder or no disease. Prediction scores for CFTR mutations derived from PANTHER showed a significant overall statistical correlation with the spectrum of disease severity associated with mutations in the CFTR gene. In contrast, PolyPhen- and SIFT-derived scores only showed significant differences between CF-causing and non-CF variants. Current computational methods are not recommended for establishing or excluding a CF diagnosis, notably as a newborn screening strategy or in patients with equivocal test results.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Mutations in the CFTR gene grouped by clinical category Cystic fibrosis CFTR-related disease No disease T338I D614G L320V V920L L90S M470V H199R S1251N I203M G550R P111A I148T Q1291H R560K L1388Q L183I R170H I1027T S549R D443Y P499A L1414S T908N R668C S549N A455E E1401K Q151K G27E I1234L Y563N R347P C866R S1118C P1290S R75Q A559T V520F P841R M469V E1401G P67L G85E S50Y E1409K R933G G458V G178R Y1032C R248T I980K G85V V392G L973P L137H T351S R334W I444S V938G R792G R560T R555G L1339F D1305E P574H V1240G T1053I D58G G551D L1335P I918M F994C S945L L558S F1337V R810G D1152H G1247R P574S R766M D579G W1098R H949R F200I R352Q L1077P K1351E M244K L206W M1101K D1154G L375F N1303K R1066C E528D D110Y R347H R1070Q A800G P1021S S549K A1364V V392A damaging` (is supposed to affect protein function or structure) and 'probably damaging` (high confidence of affecting protein function or structure).
X
ABCC7 p.Gly458Val 20059485:64:385
status: NEW[hide] CFTR! Am J Physiol. 1992 Aug;263(2 Pt 1):C267-86. Fuller CM, Benos DJ
CFTR!
Am J Physiol. 1992 Aug;263(2 Pt 1):C267-86., [PMID:1381146]
Abstract [show]
Cystic fibrosis (CF) is a fatal genetic disease primarily affecting Caucasians, although cases have been reported from other ethnic groups. CF has a complex etiology, but it is chiefly a disease of electrolyte transport and is characterized by defects in fluid secretion by several epithelia, including the sweat duct, exocrine pancreas, and the pulmonary airways. The link between CF and a defect in cAMP-mediated Cl- transport in secretory epithelia was established in the early 1980s. Since then, numerous electrophysiological studies have focused on the characterization and regulation of individual Cl- channels underlying the macroscopic Cl- currents of secretory epithelia in the airways, sweat ducts, and gut. In this review the results of these studies in the light of current knowledge of the function of the CF gene product, the CF transmembrane conductance regulator (CFTR) protein, will be analyzed. The CFTR protein is a member of a family of ATP-binding proteins that act as unidirectional solute pumps. These proteins are membrane spanning, are found in both prokaryotic and eukaryotic cells, and have two ATP-binding domains. The family includes the p-glycoproteins that are involved with the expression of multidrug resistance in certain tumor cells. The majority of CF chromosomes (70%) have a single codon deletion that translates to a missing phenylalanine residue at position 508 (delta F508) of the protein. Unique for this family of proteins, the CFTR protein possesses an additional highly charged domain (the R domain) containing several consensus polypeptide sequences for kinase phosphorylation. Although CFTR bears structural resemblance to this family of ATP-dependent pumps, overexpression of the protein in a variety of different cell types is associated with the appearence of a cAMP-sensitive Cl- channel. We critically examine current information concerning the structure-function relationships of the CFTR protein obtained from both electrophysiological and biochemical approaches. We also summarize recent evidence suggesting that the CFTR protein may act as a pump and a channel, a hypothesis in keeping with the multifaceted nature of the disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
366 AF508/AF508 G551D/G551D G542X/G458V G542X/G542X R553X/W1316X N369X/unknown R553X/R553X G551S/G551S G368Xlunknown AF508/R117H PI PI PI PI PI PI PI PS PS PS Severe 116 Severe 181 Severe 49 Mild 49 Mild 50 Mild 102 Moderate-Severe 13 Mild 181 Mild 102 Mild 55 Comparison of genotype with phenotype for some CF-associated mutations.
X
ABCC7 p.Gly458Val 1381146:366:30
status: NEW418 Interestingly, an individual homozygous for the G542X mutation had milder clinical symptoms than a relative with severe CF who was heterozygous [G542X, G458V (49)].
X
ABCC7 p.Gly458Val 1381146:418:152
status: NEW[hide] Structure-function analysis of the histidine perme... J Biol Chem. 1991 Oct 5;266(28):18714-9. Shyamala V, Baichwal V, Beall E, Ames GF
Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations.
J Biol Chem. 1991 Oct 5;266(28):18714-9., [PMID:1717452]
Abstract [show]
Traffic ATPases constitute a superfamily of transporters that include prokaryotic permeases and medically important eukaryotic proteins, such as the multidrug resistance P-glycoprotein and the cystic fibrosis gene product. We present a structure-function analysis of a member of this superfamily, the prokaryotic histidine permease, using mutations generated both in vitro and in vivo, and assaying several biochemical functions. The analysis supports a previously predicted structural model and allows the assignment of specific functions to several predicted structural features. Mutations in the secondary structure features which form the nucleotide-binding pocket in general cause the loss of ATP binding activity. Mutations in the helical domain retain ATP binding activity. Several mutations have been identified which may affect the signaling mechanism between ATP hydrolysis and membrane translocation. We relate our findings to those emerging from the recent biochemical and genetic analyses of cystic fibrosis mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
159 A few mutations are located in the nucleotide-binding pocket, A455E,G458V, and P574H, and may be tolerated because they may have maintained partial activity, especially the two that are not located insites defined as critical for ATP binding by the HisPanalysis.
X
ABCC7 p.Gly458Val 1717452:159:68
status: NEW[hide] Modeling of nucleotide binding domains of ABC tran... J Bioenerg Biomembr. 1997 Oct;29(5):503-24. Bianchet MA, Ko YH, Amzel LM, Pedersen PL
Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR).
J Bioenerg Biomembr. 1997 Oct;29(5):503-24., [PMID:9511935]
Abstract [show]
Members of the ABC transporter superfamily contain two nucleotide binding domains. To date, the three dimensional structure of no member of this super-family has been elucidated. To gain structural insight, the known structures of several other nucleotides binding proteins can be used as a framework for modeling these domains. We have modeled both nucleotide binding domains of the protein CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) using the two similar domains of mitochondrial F1-ATPase. The models obtained, provide useful insights into the putative functions of these domains and their possible interaction as well as a rationale for the basis of Cystic Fibrosis causing mutations. First, the two nucleotide binding domains (folds) of CFTR are each predicted to span a 240-250 amino acid sequence rather than the 150-160 amino acid sequence originally proposed. Second, the first nucleotide binding fold, is predicted to catalyze significant rates of ATP hydrolysis as a catalytic base (E504) resides near the y phosphate of ATP. This prediction has been verified experimentally [Ko, Y.H., and Pedersen, P.L. (1995) J. Biol. Chem. 268, 24330-24338], providing support for the model. In contrast, the second nucleotide binding fold is predicted at best to be a weak ATPase as the glutamic acid residue is replaced with a glutamine. Third, F508, which when deleted causes approximately 70% of all cases of cystic fibrosis, is predicted to lie in a cleft near the nucleotide binding pocket. All other disease causing mutations within the two nucleotide binding domains of CFTR either reside near the Walker A and Walker B consensus motifs in the heart of the nucleotide binding pocket, or in the C motif which lies outside but near the nucleotide binding pocket. Finally, the two nucleotide binding domains of CFTR are predicted to interact, and in one of the two predicted orientations, F508 resides near the interface. This is the first report where both nucleotide binding domains of an ABC transporter and their putative domain-domain interactions have been modeled in three dimensions. The methods and the template used in this work can be used to analyze the structures and function of the nucleotide binding domains of all other members of the ABC transporter super-family.
Comments [show]
None has been submitted yet.
No. Sentence Comment
34 Other missense mutations are found in or near the motif GX4GK[T/S], i.e., A455E and G458V.
X
ABCC7 p.Gly458Val 9511935:34:84
status: NEW360 The CFTR NBD1 model that results (Fig. 6) gathers the disease causing mutations in three different clusters: (1) mutations affecting the nucleotide binding pocket and the putative general base: A455E, G458V, E504Q AI507 AF508 P574H; (2) mutations in motif C which are probably related to an interaction with region D: S549[R,N,I] G551[S,D], R553Q; and (3) mutations within or near motif B, L558S, A559T, R560T, Y563N and mutations S492F and G480C.
X
ABCC7 p.Gly458Val 9511935:360:201
status: NEW[hide] Sensitivity of single-strand conformation polymorp... Hum Mol Genet. 1994 May;3(5):801-7. Ravnik-Glavac M, Glavac D, Dean M
Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene.
Hum Mol Genet. 1994 May;3(5):801-7., [PMID:7521710]
Abstract [show]
The gene responsible for cystic fibrosis (CF) contains 27 coding exons and more than 300 independent mutations have been identified. An efficient and optimized strategy is required to identify additional mutations and/or to screen patient samples for the presence of known mutations. We have tested several different conditions for performing single-stranded conformation polymorphism (SSCP) analysis in order to determine the efficiency of the method and to identify the optimum conditions for mutation detection. Each exon and corresponding exon boundaries were amplified. A panel of 134 known CF mutations were used to test the efficiency of detection of mutations. The SSCP conditions were varied by altering the percentage and cross-linking of the acrylamide, employing MDE (an acrylamide substitute), and by adding sucrose and glycerol. The presence of heteroduplexes could be detected on most gels and in some cases contributed to the ability to distinguish certain mutations. Each analysis condition detected 75-98% of the mutations, and all of the mutations could be detected by at least one condition. Therefore, an optimized SSCP analysis can be used to efficiently screen for mutations in a large gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
121 1078delT (35), L327R (Ravnik-Glavac a al., unpublished), R334W (36), D36K (31), R347L (26), R347P (14), A349V (26), R352Q (30), 1221delCT (34); Exon 8: W401X (31), 1342-1G-C (25); Exon 9: G458V (37), 1525 -1G-A (38); Exon 10: S492F (34), Q493X (39), 1609delCA (40,17), deltaI507 (39,41), deltaF5O8 (3), 1717-1G-A (39,42); Exon 11: G542X (39), S549N, G551D, R553X (43), R553Q (44), A559T (43), R560K (Fine et al., pers. comm.), R560T (39); Exon 12: Y563N (39), 1833delT (Schwartz et al., pers. comm.), P574H (39), 1898 + 1G-C (31), 1898+3A-G (Ferrari et al., pers. comm.); Exon 13: G628R(G-C) (31), Q685X (Firec et al., pers. comm.), K716X (26), L719X (Dork etal., pers. comm.), 2522insC (15), 2556insAT (45), E827X (34); Exon 14a: E831X (Ffrec et al., pers. comm.), R851X (29), 2721delll (31), C866Y (Audrezet et al., pers. comm.); Exon 14b: 2789+5G-A (Highsmith et al., pers. comm.); Exon 15: 2907denT (21), 2991del32 (Dark and TQmmler, pers. comm.), G970R (31); Exon 16: S977P, 3100insA (D6rk et al., pers. comm.); Exon 17a: I1005R (Dork and TQmmler, pers. comm.), 3272-1G-A (46); Exon 17b: H1054D (F6rec et al., pers. comm.), G1061R (Fdrec et al., pers. comm.), 332Oins5, R1066H, A1067T (34), R1066L (Fe"rec etal., pers. comm.), R1070Q (46), E1104X (Zielenski el al., pers. comm.), 3359delCT (46), L1077P (Bozon « a/., pers. comm.), H1085R (46), Y1092X (Bozon etal., pers. comm.), W1098R, M1101K (Zielenski et al., pers. comm.); Exon 18: D1152H (Highsmith et al., pers. comm.); Exon 19:R1162X (36), 3659delC (39), 3662delA (25), 3667del4 (Chillon et al., pers. comm.), 3737ddA (35), 3821ddT (15), I1234V (35), S1235R (31), Q1238X (26), 3849G-A (25), 385O-3T-G (38); Exon20:3860ins31 (Chillon etal., pers. comm.), S1255X (47), 3898insC (26), 3905insT (Malik et al., pers. comm.), D127ON (48), W1282X (49), Q1291R (Dork et al., pers. comm.), Exon 21: N1303H (35), N13O3K (50), W1316X (43); Exon 22: 11328L/4116delA (Dork and TQmmler, pers. comm.), E1371X (25); Exon 23: 4374+ 1G-T (38); Exon 24: 4382delA (Claustres et al., pers. comm.).
X
ABCC7 p.Gly458Val 7521710:121:188
status: NEW[hide] CFTR haplotype backgrounds on normal and mutant CF... Hum Mol Genet. 1994 Apr;3(4):607-14. Cuppens H, Teng H, Raeymaekers P, De Boeck C, Cassiman JJ
CFTR haplotype backgrounds on normal and mutant CFTR genes.
Hum Mol Genet. 1994 Apr;3(4):607-14., [PMID:7520797]
Abstract [show]
Ten polymorphic loci, located in a 1 Mb interval across the cystic fibrosis locus, were analyzed on normal and mutant CFTR genes. A different distribution of haplotype backgrounds among normal and mutant CFTR genes was observed. With exception of the D7S8 locus, the three most common mutations, delta F508, G542X and N1303K, were found on an identical haplotype background. In agreement with the observed linkage equilibrium between the Q1463Q and D7S8 loci, both alleles at the D7S8 locus were found on delta F508 CFTR genes. However, the G542X and N1303K mutations, which have been estimated to be at least 35000 years old, were found to be associated with a single allele at the D7S8 locus. Absence of recombination between the D7S8 and Q1463Q loci was also observed on normal CFTR genes with this haplotype background. At the Tn locus in intron 8, allele 9 known to result in very efficient splicing was associated with the most frequent mutations. At the M470V locus, located in a conserved region of the first nucleotide binding fold, the amino acid methionine was found to be associated with the frequent mutations, in particular with mutations located in one of the two nucleotide binding folds which are generally known as severe mutations with regard to exocrine pancreatic function. On mutant CFTR gene, this locus was in complete association with the centromeric D9 locus, in the absence of a complete association with the intervening loci.(ABSTRACT TRUNCATED AT 250 WORDS)
Comments [show]
None has been submitted yet.
No. Sentence Comment
34 Distribution of alleles at 10 polymorphic loci Locus Allele Normal Mutant Mutations XV2c KM19 D9 1 2 1 2 1 2 58 (0.492) 60 (0.508) 84 (0.622) 51 (0.378) 78 (0.586) 55 (0.414) 146 (0.918) 13 (0.082) 19(0.109) 156 (0.891) 15 (0.085) 161 (0.915) 1001 + llC/T Tn 115 (0.927) R 9 (0.073) 5 7 (0.057) 7 102 (0.836) 9 13 (0.107) M470V C 62 (0.496) R 63 (0.504) 1898+15 2T/A C 84(0.641) R 47 (0.359) T854T Q1463Q D7S8 C 82 (0.636) R 47 (0.364) C 90 (0.692) R 40 (0.308) 1 38 (0.317) 2 82 (0.683) 33 (0.192) 139 (0.808) 0 (0.000) 32 (0.190) 136 (0.810) 156 (0.902) 17 (0.098) 163 (0.926) 13 (0.074) 162 (0.926) 13 (0.074) 162 (0.931) 12 (0.069) 91 (0.569) 69 (0.431) E60X, 622-2A-C, A455E, AF508 (98.3%), 1717-1G-A, G542X, 0.479 63.54 G628R(G-C)/S1235R,2183AA-G, G970R, W1282X, N1303K p<10~ G458V, AI5O7, AF508 (1.7%), 1898 + 1G-C, E73OX, 3272-26A-G, W1310X, 4218insT, UA, UB, UC I336K, W401X, 2T2ldelll, Y1092X, 3659delC, S1251N: not included (5%) E60X, 622-2A-C, W401X, G458V, AF5O8 (1.6%), 1898+ 1G-C, -0.541 90.63 G628R(G-Q/S1235R, E730X, G970R, 3272-26A-G (50.0%), p<10" Y1092X, 3659delC, S1251N, W1310X, UB, UTC A455E, AI507, AF5O8 (98.4%), 1717- 1G-A, G542X, 2183AA-G, 3272-26A-G (50.0%), W1282X, N13O3K, 4218insT, UA 1336K, 2721delU: not included (1%) E60X, 622-2A-C, W401X, G458V, 1898 +1G-C, E730X, G970R, -0.541 90.46 Y1092X, 3659delC, S1251N, W1310X, UB, UC p<10" A455E, AI507, AF508, 1717- 1G-A, G542X, G628R(G-Q/S1235R, 2183AA-G, 3272-26A-G, W1282X, N13O3K, 4218insT, UA I336K, 2721delll: not included (1%) E60X, 622-2A-C, I336K, W401X, G458V, AI507, 1717- 1G-A, -0.726 155.94 1898 + 1G-C, G628R(G-C)/S1235R, 2183AA-G, E730X, 2721delll, p< 10" G970R, 3272-26A-G, Y1092X, 3659delC, S1251N, W1282X, W1310X, 4218insT, UA, UB, UC A455E, AF5O8, G542X, N13O3K E60X, 622-2A-C, I336K, W401X, G458V, AI507, 1717-1G-A, 1898 + 1G-C, G628R(G-C)/S1235R, 2183AA-G, E730X, 2721delll, G970R, 3272-26A-G, Y1092X, 3659delC, S1251N, W1282X, W1310X, 4218insT, UA, UB, UC A455E, AF5O8, G542X, N13O3K A455E, AI5O7, AF508, 1717-1G-A, G542X, G628R(G-Q/S1235R, 2183AA-G, 3272-26A-G, W1282X, N13O3K, 4218insT, UA E60X, 622-2A-C, W401X, G458V, 1898 + 1G-C, E730X, G970R, Y1092X, 3659delC, S1251N, W1310X, UB, UC 1336K, midclll: not included (1%) E60X, 622-2A-C, W401X, A455E, G458V, AF508 (99.2%), G542X, 1898 + 1G-C, 2183AA-G, E730X, G970R, Y1092X, 3659delC, S1251N, N1303K, W1310X, UB, UC AI507, AF5O8 (0.8%), 1717-1G-A, G628R(G-Q/S1235R, 3272-26A-G, W1282X, 4218insT, UA I336K, 2721delU: not included (1%) E60X, 622-2A-C, W401X, A455E, G458V, AF508 (99.2%), G542X, 1898+1G-C, 2183AA-G, E730X, G970R, Y1092X, 3659delC,S1251N, N13O3K, W1310X, UB, UC AI507, AF508 (0.8%), 1717-1G-A, G628R(G-C)/S1235R, 3272-26A-G, W1282X, 4218insT, UA 1336K, midelll: not included (1%) E60X, 622-2A-C, W401X, A455E, G458V, AF5O8 (99.2%), G542X, G628R(G-Q/S1235R, 2183AA-G, E730X, G970R, Y1092X, 3659delC, S1251N,N1303K, W1310X, UC AI507, AF5O8 (0.8%), 1717-1G-A, 1898 + 1G-C, 3272-26A-G, W1282X, 4218insT 1336K, 2721del11.
X
ABCC7 p.Gly458Val 7520797:34:782
status: NEWX
ABCC7 p.Gly458Val 7520797:34:963
status: NEWX
ABCC7 p.Gly458Val 7520797:34:1274
status: NEWX
ABCC7 p.Gly458Val 7520797:34:1542
status: NEWX
ABCC7 p.Gly458Val 7520797:34:1789
status: NEWX
ABCC7 p.Gly458Val 7520797:34:2115
status: NEWX
ABCC7 p.Gly458Val 7520797:34:2254
status: NEWX
ABCC7 p.Gly458Val 7520797:34:2517
status: NEWX
ABCC7 p.Gly458Val 7520797:34:2777
status: NEW35 UA, UB: not included (2%) A455E, AF508 (61.2%), 1717-1G-A (66.7%), G542X, G628R(G-C)/S1235R, 3272-26A-G, S1251N, W1282X, W1310X E60X, 622-2A-C, W401X, G458V, AJ507, AF5O8 (38.8%), 1717- 1G-A (33.3%), 1898 +1G-C, 2183AA-G, E730X, G970R, Y1092X, 3659delC, N13O3K, 4218insT, UA, UB, UC 1336K, 2721delll: not included (1%) -0.694 139.81 p<10~ 0.452 60.83 p<10" 0.355 38.77 p<10" 0.360 39.44 p<10~7 0.314 29.91 0.250 17.54 p<10"4 The observed CFTR genes associated with a particular allele are given, proportions are given between brackets. Not all the mutations were informative for each of the tested loci, which were therefore not included. For the Tn locus the standardized linkage disequilibrium coefficient was calculated for the group of the non-T9 alleles and the T9 alleles.
X
ABCC7 p.Gly458Val 7520797:35:151
status: NEW72 Extragenic (XV2c/KM19/D9) haplotypes Haplotype Normal Mutant Mutations 111 211 121 112 212 122 222 23 (0.204) 43 (0.381) 2 (0.018) 6 (0.053) 0 (0.000) 22 (0.195) 17 (0.150) 4 (0.026) E60X, 622-2A-C, G970R 6 (0.039) G458V, 1898+1G-C, E73OX, W1310X, UB, UC 0 (0.000) 3 (0.019) AF5O8 (1.7%), G628R(G-Q/S1235R 1 (0.006) 3272-26A-G (50.0%) 134 (0.870) A455E, AF508 (96.5%), 1717-1G-A, G542X, 2183AA-G, W1282X, N13O3K 6 (0.039) AI507, AF508 (1.8%), 3272-26A-G (50.0%), 4218insT, UA p<10"3 p<10"7 p<10~7 p<10"2 The observed CFTR genes associated with a particular haplotype are given, proportions are given between brackets.
X
ABCC7 p.Gly458Val 7520797:72:215
status: NEW103 CFTR haplocypes I II ma mb rv V VI Haplotype C7RCCC 211C7RCCC1 111C7RCCC1 /11C7RCCC1 211C7RCCC2 111C7RCCC2 /11C7RCCC2 122C7RCCC2 121C7RCCC2 C5CRRR 122C5CRRR1 211C5CRRR2 222C5CRRR2 C7CRRR 122C7CRRR1 222C7CRRR1 212C7CRRR1 122C7CRRR2 222C7CRRR2 122C7CRRR/ C9CRRR 211C9CRRR1 R9CCCC 122R9CCCC1 222R9CCCC1 /22R9CCCC1 112R9CCCC1 122R9CCCC2 222R9CCCC2 112R9CCCC2 R9CRRR 122R9CRRR1 C7CRRC 112C7CRRC1 112C7CRRC2 C9CRRC 211C9CRRC1 C7CCCC 211C7CCCC1 222C7CCCC1 122C7CCCC2 C7RCCR 211C7RCCR2 Normal 0.524 (43) 0.085 0.073 0.195 0.146 0.012 0.012 0.049 (4) 0.012 0.024 0.012 0.220 (18) 0.024 0.073 0.000 0.073 0.049 0.012 (1) 0.012 0.073 (6) 0.000 0.000 0.000 0.061 0.012 0.000 0.000 (0) 0.000 0.061 (5) 0.000 0.061 0.012 (1) 0.012 0.037 (3) 0.012 0.024 0.000 0.012 (1) 0.012 Mutant 0.080 (IS) 0.005 0.000 0.020 0.015 0.020 0.020 0.000 0.000 0.000 (0) 0.000 0.000 0.000 Mutations p<10"7 W1310X S1251N G458V, E730X, UC E60X, 622-2A-C, G970R W401X, Y1092X, 3659delC 0.055 (9) p<10"2 0.017 0.005 0.005 0.008 0.010 0.010 0.000 (0) 0.000 1717-1G-A (66.7%) 50.0% of 3272-26A-G 50.0% of 3272-26A-G 1717-1G-A(33.3%) AI507, 4218insT W1282X 0.819 (130) p<10~7 0.466 0.007 0.010 0.007 0.312 0.007 0.007 0.005 (1) 0.005 0.005 (1) 0.005 0.000 0.000 (0) 0.000 0.010 (2) 0.000 0.000 0.010 0.005 (1) 0.005 56.7% of AF508, G542X 1% of AF5O8 A455E 1% of AF5O8 38.1% of AF508, N1303K 1.0% of AF5O8 1% of AF508 1% of AF508 G628R(G-Q/S1235R 2183AA-G 1898+1G-C The proportion of CFTR genes associated with a particular haplotype, and the mutations found to be associated with that haplotype are given.
X
ABCC7 p.Gly458Val 7520797:103:886
status: NEW152 The G458V mutation, which is also located in exon 9 of the CFTR gene, carried 7 T nucleotides in its poly-T tract.
X
ABCC7 p.Gly458Val 7520797:152:4
status: NEW153 A major difference between these two mutations is that G458V is considered as a severe mutation (23), while A455E is known as a mild mutation with regard to pancreatic involvement (10).
X
ABCC7 p.Gly458Val 7520797:153:55
status: NEW[hide] Exon 9 of the CFTR gene: splice site haplotypes an... Hum Genet. 1994 Jan;93(1):67-73. Dork T, Fislage R, Neumann T, Wulf B, Tummler B
Exon 9 of the CFTR gene: splice site haplotypes and cystic fibrosis mutations.
Hum Genet. 1994 Jan;93(1):67-73., [PMID:7505767]
Abstract [show]
The alternatively spliced exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene codes for the initial part of the amino-terminal nucleotide-binding fold of CFTR. A unique feature of the acceptor splice site preceding this exon is a variable length polymorphism within the polypyrimidine tract influencing the extent of exon 9 skipping in CFTR mRNA. We investigated this repeat for its relationship to CFTR mutations and intragenic markers on 200 chromosomes from German patients with cystic fibrosis (CF). Four frequent length variations were strongly associated with the four predominant haplotypes previously defined by intragenic marker dimorphisms. One of these alleles displayed absolute linkage disequilibrium to the major CF mutation delta F508. Other frequent CFTR mutations were linked to one particular splice site haplotype indicating that differential exon 9 skipping contributes little to the clinical heterogeneity among CF patients with an identical mutation. We also identified a novel missense mutation (V456F) and a novel nonsense mutation (Q414X) within the coding region of exon 9. The missense mutation V456F adjacent to Walker motif A was present in a pancreas-sufficient CF patient. In contrast, the pancreas-insufficient Q414X/delta F508 compound heterozygote suffered from a severe form of the disease, indicating that alternative splicing of exon 9 does not overcome the deleterious effect of a stop codon with this exon.
Comments [show]
None has been submitted yet.
No. Sentence Comment
115 Early evidence for a crucial role of exon 9 sequences came from the findings that mutations 71 within or adjacent to the Walker motif A produce a CF phenotype in vivo (A455E, G458V; Kerem et al. 1990; Cuppens et al. 1990) and in vitro (K464A; Anderson and Welsh 1992).
X
ABCC7 p.Gly458Val 7505767:115:175
status: NEW[hide] Detection of 98.5% of the mutations in 200 Belgian... Genomics. 1993 Dec;18(3):693-7. Cuppens H, Marynen P, De Boeck C, Cassiman JJ
Detection of 98.5% of the mutations in 200 Belgian cystic fibrosis alleles by reverse dot-blot and sequencing of the complete coding region and exon/intron junctions of the CFTR gene.
Genomics. 1993 Dec;18(3):693-7., [PMID:7508414]
Abstract [show]
We have previously shown that about 85% of the mutations in 194 Belgian cystic fibrosis alleles could be detected by a reverse dot-blot assay. In the present study, 50 Belgian chromosomes were analyzed for mutations in the cystic fibrosis transmembrane conductance regulator gene by means of direct solid phase automatic sequencing of PCR products of individual exons. Twenty-six disease mutations and 14 polymorphisms were found. Twelve of these mutations and 3 polymorphisms were not described before. With the exception of one mutant allele carrying two mutations, these mutations were the only mutations found in the complete coding region and their exon/intron boundaries. The total sensitivity of mutant CF alleles that could be identified was 98.5%. Given the heterogeneity of these mutations, most of them very rare, CFTR mutation screening still remains rather complex in our population, and population screening, whether desirable or not, does not appear to be technically feasible with the methods currently available.
Comments [show]
None has been submitted yet.
No. Sentence Comment
43 TABLE 1 Mutations (and Their Frequencies) Identified in This Study Predicted amino Mutation Nucleotide change~ acid change Location Frequencyb Reference E60X G --~ T at 310 (TAGATAGCT) Glu --~ Stop at 60 Malone et al. in (21); this study G --~ A at 482 (GAACACTCT) (8) A --~ C at 622-2 (TTTTCGACT) This study T --~ A at 1139 (AAAAAATTC) This study G --~ A at 1335 (TCTGAGAGG) This study C --~ A at 1496 (TTGGAGGTT) (14) G -~ T at 1505 (GCTGTATCC) (6) Deletion of ATC from 1651 (14); Schwarz et al. (TATC_TTTG) in (21) Deletion of CTT from 1653 145 (13) (TCAT_TGGT) G --~ A at 1717-1 (AATAAGACA) G --~ T at 1756 (TCTTTGAGA) G --~ C at 1898 + 1 (AAAGCTATG) G --~ C at 2014 (TTATCGGAC Deletion of A at 2184; A --~ G at 2183 (AAAAG CAAT) G --~ T at 2320 (TGATTAGCC Deletion of 11 nucleotides from 2721 (TGCT_TAGT) G --~ C at 3040 (AGCACGTAC A --~ G at 3272-26 (TGCAGTGTT) C --~ A at 3408 (TGTAACTGT) Deletion of C at 3659 (CCTA_CAAG) T --~ G at 3837 (TAAGGCCTG G --* A at 3884 (AAGAATACT G --~ A at 3978 (AGTGAAGGA' C --~ G at 4041 (AAAAGTTGG G -~ A at 4061 (CAGTAGAGT Insertion of T after 4218 (CAGTTAAGG) R117H 622-2A --~ C I336K W401X A455E G458V AI507 AF508 1717-1G -~ A G542X 1898+ 1G-~C G628R(G -~ C) 2184delA plus A -~ G at 2183 E730X 2721de111 G970R 3272-26A --~ G Y1092X 3659delc $1235R $1251N W1282X N1303K W1310X 4218insT Exon 3 2 (1.0%) Arg --~ His at 117 Exon 4 c 3' splice signal Intron 4 1 (0.5%) Ile -~ Lys at 336 Exon 7 1 (0.5%) Trp --~ Stop at 401 Exon 8 2 (1.0%) Ala --~ Glu at 455 Exon 9 2 (1.0%) Gly --* Val at 458 Exon 9 1 (0.5%) Deletion of Ile 507 Exon 10 1 (0.5%) Deletion of Phe 508 Exon 10 (72.5%) 3' splice signal Intron 10 5 (2.5%) Gly --* Stop at 542 Exon 11 11 (5.5%) 5' splice signal Intron 12 1 (0.5%) Gly -~ Arg at 628 Exon 13 1 (0.5%) Frameshift Exon 13 2 (1.0%) Glu --~ Stop at 730 Exon 13 1 (0.5%) Frameshift Exon 14a I (0.5%) Gly --~ Arg at 970 Exon 15 1 (0.5%) 5' splice signal?
X
ABCC7 p.Gly458Val 7508414:43:1140
status: NEW48 The G628R(G --~ C) and $1235R mutations were found on a single allele; the W1310X allele and one 2184delA (plus A --~ G at 2183) allele were found on a CFTR gene from Turkish descent.
X
ABCC7 p.Gly458Val 7508414:48:136
status: NEW49 For each type mutation, at least one allele was completely sequenced: 14 for AF508, 3 for G542X, 2 for 1717-1G -~ A, 1 for A455E, 1 for G458V, 1 for AI507, 1 for W1282X, 1 for N1303K, and for the remainder, the total number of alleles that were found in this study.
X
ABCC7 p.Gly458Val 7508414:49:136
status: NEW94 No additional mutations, except for some polymorphisms, in the CF patient homozygous for the G542X mutation, as well as in her CF cousin, who was a compound heterozygote for the G458V and G542X mutations (6), could be found.
X
ABCC7 p.Gly458Val 7508414:94:32
status: NEWX
ABCC7 p.Gly458Val 7508414:94:178
status: NEW95 One of the polymorphisms on the G458V allele was a valine at amino acid position 470 in exon 10.
X
ABCC7 p.Gly458Val 7508414:95:0
status: NEWX
ABCC7 p.Gly458Val 7508414:95:32
status: NEW96 G458V is located in exon 9 in one of the most important regions of the first nucleotide binding fold.
X
ABCC7 p.Gly458Val 7508414:96:0
status: NEW104 The G458V allele carried seven thymidines in its poly- (T) tract, which suggests that the proportion of 9- CFTR transcripts of this allele will not be very low.
X
ABCC7 p.Gly458Val 7508414:104:4
status: NEWX
ABCC7 p.Gly458Val 7508414:104:18
status: NEW105 The fact that the G458V/G542X individual has CF suggests that the alternatively spliced 9- CFTR mRNA transcript cannot compensate for the basic defect of the CFTR protein in this CF patient.
X
ABCC7 p.Gly458Val 7508414:105:18
status: NEW42 TABLE 1 Mutations (and Their Frequencies) Identified in This Study Predicted amino Mutation Nucleotide change~ acid change Location Frequencyb Reference E60X G --~ T at 310 (TAGATAGCT) Glu --~ Stop at 60 Malone et al. in (21); this study G --~ A at 482 (GAACACTCT) (8) A --~ C at 622-2 (TTTTCGACT) This study T --~ A at 1139 (AAAAAATTC) This study G --~ A at 1335 (TCTGAGAGG) This study C --~ A at 1496 (TTGGAGGTT) (14) G -~ T at 1505 (GCTGTATCC) (6) Deletion of ATC from 1651 (14); Schwarz et al. (TATC_TTTG) in (21) Deletion of CTT from 1653 145 (13) (TCAT_TGGT) G --~ A at 1717-1 (AATAAGACA) G --~ T at 1756 (TCTTTGAGA) G --~ C at 1898 + 1 (AAAGCTATG) G --~ C at 2014 (TTATCGGAC Deletion of A at 2184; A --~ G at 2183 (AAAAG CAAT) G --~ T at 2320 (TGATTAGCC Deletion of 11 nucleotides from 2721 (TGCT_TAGT) G --~ C at 3040 (AGCACGTAC A --~ G at 3272-26 (TGCAGTGTT) C --~ A at 3408 (TGTAACTGT) Deletion of C at 3659 (CCTA_CAAG) T --~ G at 3837 (TAAGGCCTG G --* A at 3884 (AAGAATACT G --~ A at 3978 (AGTGAAGGA' C --~ G at 4041 (AAAAGTTGG G -~ A at 4061 (CAGTAGAGT Insertion of T after 4218 (CAGTTAAGG) R117H 622-2A --~ C I336K W401X A455E G458V AI507 AF508 1717-1G -~ A G542X 1898+ 1G-~C G628R(G -~ C) 2184delA plus A -~ G at 2183 E730X 2721de111 G970R 3272-26A --~ G Y1092X 3659delc $1235R $1251N W1282X N1303K W1310X 4218insT Exon 3 2 (1.0%) Arg --~ His at 117 Exon 4 c 3' splice signal Intron 4 1 (0.5%) Ile -~ Lys at 336 Exon 7 1 (0.5%) Trp --~ Stop at 401 Exon 8 2 (1.0%) Ala --~ Glu at 455 Exon 9 2 (1.0%) Gly --* Val at 458 Exon 9 1 (0.5%) Deletion of Ile 507 Exon 10 1 (0.5%) Deletion of Phe 508 Exon 10 (72.5%) 3' splice signal Intron 10 5 (2.5%) Gly --* Stop at 542 Exon 11 11 (5.5%) 5' splice signal Intron 12 1 (0.5%) Gly -~ Arg at 628 Exon 13 1 (0.5%) Frameshift Exon 13 2 (1.0%) Glu --~ Stop at 730 Exon 13 1 (0.5%) Frameshift Exon 14a I (0.5%) Gly --~ Arg at 970 Exon 15 1 (0.5%) 5' splice signal?
X
ABCC7 p.Gly458Val 7508414:42:1140
status: NEW93 No additional mutations, except for some polymorphisms, in the CF patient homozygous for the G542X mutation, as well as in her CF cousin, who was a compound heterozygote for the G458V and G542X mutations (6), could be found.
X
ABCC7 p.Gly458Val 7508414:93:178
status: NEW103 The G458V allele carried seven thymidines in its poly- (T) tract, which suggests that the proportion of 9-CFTR transcripts of this allele will not be very low.
X
ABCC7 p.Gly458Val 7508414:103:4
status: NEW[hide] Effects of the delta F508 mutation on the structur... J Bioenerg Biomembr. 1993 Feb;25(1):11-9. Thomas PJ, Pedersen PL
Effects of the delta F508 mutation on the structure, function, and folding of the first nucleotide-binding domain of CFTR.
J Bioenerg Biomembr. 1993 Feb;25(1):11-9., [PMID:7680027]
Abstract [show]
The fatal autosomal recessive disease cystic fibrosis (CF) is caused by mutations in the gene which encodes the cystic fibrosis transmembrane conductance regulator (CFTR). Many of these disease-causing mutations, including the deletion of F508 (delta F508) which accounts for approximately 70% of the disease alleles, occur in one of the two consensus nucleotide binding sequences. Peptide studies have directly demonstrated that the N-terminal nucleotide binding sequences bind adenine nucleotides. Structurally, circular dichroism spectropolarimetry indicates that this region of CFTR assumes a beta-stranded structure in solution. The delta F508 mutation causes a diminution in the amount of beta-stranded structure and a concomitant increase in the amount of random coil structure present, indicating that either the mutant peptide has a different native structure or that the conformational equilibrium is shifted toward a more disordered form. Furthermore, the mutant peptide is more sensitive to denaturation, indicating that delta F508 is a stability, or protein-folding mutant. Here we review these results and discuss their implications for interpreting the behavior of delta F508 in situ and for the rational design of new CF drugs.
Comments [show]
None has been submitted yet.
No. Sentence Comment
107 For example, the G458V (Cuppens et al., 1990) and G1244E (Devoto et al., 1991) mutations which change the first glycine residue in the Gx 4GKT sequence of the A homology region and the R560T (Kerem et al., 1990) mutation in the Rx6.sh4D sequence of the B homology region are known to cause CF.
X
ABCC7 p.Gly458Val 7680027:107:17
status: NEW[hide] The spectrum of cystic fibrosis mutations. Trends Genet. 1992 Nov;8(11):392-8. Tsui LC
The spectrum of cystic fibrosis mutations.
Trends Genet. 1992 Nov;8(11):392-8., [PMID:1279852]
Abstract [show]
Although the major mutation causing cystic fibrosis accounts for almost 70% of mutant chromosomes screened, almost 300 sequence alterations have been identified in the gene during the past two and a half years. At least 230 of these mutations are probably associated with disease. This rapid accumulation of data is in part due to the highly coordinated effort by members of the Cystic Fibrosis Genetic Analysis Consortium. The information is not only essential to genetic diagnosis, but also will aid in understanding the structure and function of the protein, and possibly in correlating genotype with phenotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
99 Most notable are the mutations identified at the glycine residues in the Walker motifs (regions highly conserved among ATP-binding proteins), namely, G458V and G551D in NBF1 (Refs 16, 10), and G1244E and G1349D at the corresponding residues in NBF2 (Refs 17, 18), suggesting that ATP binding is essential for CFTR function.
X
ABCC7 p.Gly458Val 1279852:99:150
status: NEW123 8 NO. 11 m []~EVIEWS G551D R553Q G551S I L558S aI~7 S5491 I I 1&559T A455F E5040 I&F508 V520F SS49NII IIR560T PS74H I G458V G480C $492F /" • ss,9 II III* oa. / III / NBF1 ~t ~t NBF2 I I I I I III I I I 11234V G1244E IS1255P D1270N II I Q1291H N1303K G1349D S1251N W1282R] F1286S N1303H Q1283M, FIG[] Cystic fibrosis (missense) mutations located within the two presumptive ATP-binding domains (NBF1 and NBF2) of CFTR.
X
ABCC7 p.Gly458Val 1279852:123:119
status: NEW[hide] Milestones in cystic fibrosis. Br Med Bull. 1992 Oct;48(4):717-37. Super M
Milestones in cystic fibrosis.
Br Med Bull. 1992 Oct;48(4):717-37., [PMID:1281032]
Abstract [show]
The study of cystic fibrosis (CF) provides a fascinating insight into developments in medicine in the 20th century. Milestones include the first clear clinical descriptions in the 1930s, discovery of a sweat electrolyte abnormality, establishing the autosomal recessive mode of inheritance and improvements in treatment. Microdissection experiments on sweat glands allowed the main defect to be delineated as one of chloride transport. Location of the gene to chromosome 7 made prenatal diagnosis feasible and carrier detection in siblings. The CF gene--its product being the cystic fibrosis transmembrane conductance regulator (CFTR), and its major mutation Delta F508 was discovered in 1989. World-wide collaboration has resulted in discovery of more than 150 further mutations. Incorporation of CFTR into non-chloride transporting insect cells by conferring chloride transport, proved it a chloride channel. CFTR incorporated into adenovirus results in correction of the chloride transport defect in airway cells, bringing gene therapy closer.
Comments [show]
None has been submitted yet.
No. Sentence Comment
164 Mutations encountered elsewhere in UK but not yet m N-W 1154insTC R347P A455E G458V Q493X C524X S549N R1283M Q1291H 199 (in the north-west group) 199 199 0 0 0 199 199 0 icant alteration in function appears to be worse than no CFTR being formed at all.
X
ABCC7 p.Gly458Val 1281032:164:78
status: NEW[hide] Regulation of cystic fibrosis transmembrane conduc... J Biol Chem. 1992 Sep 25;267(27):19299-305. Montrose-Rafizadeh C, Blackmon DL, Hamosh A, Oliva MM, Hawkins AL, Curristin SM, Griffin CA, Yang VW, Guggino WB, Cutting GR, et al.
Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium.
J Biol Chem. 1992 Sep 25;267(27):19299-305., [PMID:1382071]
Abstract [show]
Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18 cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells. The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA). During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative RNA splicing may also be a cellular mechanism to modulate CFTR function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
194 Furthermore, exon9 is the site of twomissense mutations known to causeclinical CF (A455E and G458V), emphasizing the functional importanceof this portionof NBFl (41,42).
X
ABCC7 p.Gly458Val 1382071:194:93
status: NEW[hide] Genetic determination of exocrine pancreatic funct... Am J Hum Genet. 1992 Jun;50(6):1178-84. Kristidis P, Bozon D, Corey M, Markiewicz D, Rommens J, Tsui LC, Durie P
Genetic determination of exocrine pancreatic function in cystic fibrosis.
Am J Hum Genet. 1992 Jun;50(6):1178-84., [PMID:1376016]
Abstract [show]
We showed elsewhere that the pancreatic function status of cystic fibrosis (CF) patients could be correlated to mutations in the CF transmembrane conductance regulator (CFTR) gene. Although the majority of CF mutations--including the most common, delta F508--strongly correlated with pancreatic insufficiency (PI), approximately 10% of the mutant alleles may confer pancreatic sufficiency (PS). To extend this observation, genomic DNA of 538 CF patients with well-documented pancreatic function status were analyzed for a series of known mutations in their CFTR genes. Only 20 of the 25 mutations tested were found in this population. They accounted for 84% of the CF chromosomes, with delta F508 being the most frequent (71%), and the other mutations accounted for less than 5% each. A total of 30 different, complete genotypes could be determined in 394 (73%) of the patients. The data showed that each genotype was associated only with PI or only with PS, but not with both. This result is thus consistent with the hypothesis that PI and PS in CF are predisposed by the genotype at the CFTR locus; the PS phenotype occurs in patients who have one or two mild CFTR mutations, such as R117H, R334W, R347P, A455E, and P574H, whereas the PI phenotype occurs in patients with two severe alleles, such as delta F508, delta I507, Q493X, G542X, R553X, W1282X, 621 + 1G----T, 1717-1G----A, 556delA, 3659delC, I148T, G480C, V520F, G551D, and R560T.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 Intron 4: 621 + 1G-T Exon 7: R334W ......... R347P ........... Exon 9: A455E .......... G458V .......... G480C .......... Exon 10: Q493X .......... A1507 ........... AF508 .......... VS2OF ..........
X
ABCC7 p.Gly458Val 1376016:57:88
status: NEW66 As shown in table 3, meconium ileus Table 2 1181 Table 3 Frequency of 25 CF Mutations in Chromosomes of the Toronto Study Population Mutation AF508 ...... G551D...... G542X...... 621 +1G-'T N1303K..... W1282X..... R1 17H...... 1717-1G-~A R560T...... A1507 ...... R553X...... V52OF ...... R334W ..... A455E...... I148T ...... Q493X...... P574H...... R347P ...... SS6delA ..... 3659delC .... G480C...... 444delA ..... D110H...... G458V...... S549R ...... Y563N......
X
ABCC7 p.Gly458Val 1376016:66:430
status: NEW[hide] Identification and developmental expression of the... Hum Mol Genet. 1992 May;1(2):77-82. Tucker SJ, Tannahill D, Higgins CF
Identification and developmental expression of the Xenopus laevis cystic fibrosis transmembrane conductance regulator gene.
Hum Mol Genet. 1992 May;1(2):77-82., [PMID:1284470]
Abstract [show]
An amphibian homologue of the human cystic fibrosis transmembrane conductance regulator (CFTR) gene has been isolated from Xenopus laevis by polymerase chain reaction (PCR) amplification. The 4455bp sequence encodes a predicted polypeptide of 1485 amino acids which has an overall homology at the amino acid level of 77% identity and 88% similarity with human CFTR. Comparison of these evolutionarily diverse CFTR sequences has structure-function implications. Investigation of the expression of the Xenopus gene during early stages of development (Stages 1-48), using RNAase protection assays and PCR analysis of total Xenopus RNA, shows CFTR mRNA to be present at the very earliest stages of development, including the oocyte and blastula stages, with increasing amounts during subsequent development. The identification of mRNA for a CFTR homologue in the Xenopus oocyte and early stages of development has implications for its biological role.
Comments [show]
None has been submitted yet.
No. Sentence Comment
115 Other missense mutations implicated in the disease, A455E and G458V (25)(26), also show conservation at these positions, supporting the view that they are functionally important.
X
ABCC7 p.Gly458Val 1284470:115:62
status: NEW[hide] Simultaneous screening for 11 mutations in the cys... Mol Cell Probes. 1992 Feb;6(1):33-9. Cuppens H, Buyse I, Baens M, Marynen P, Cassiman JJ
Simultaneous screening for 11 mutations in the cystic fibrosis transmembrane conductance regulator gene by multiplex amplification and reverse dot-blot.
Mol Cell Probes. 1992 Feb;6(1):33-9., [PMID:1372093]
Abstract [show]
An assay is described in which 11 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can be screened simultaneously. Six different exons of the CFTR gene are amplified in a single multiplex amplification. Biotinylated dUTP is incorporated into the different fragments during the amplification process. A sample of this mixture is then hybridized to 21 different poly-dT tailed oligonucleotide probes which are bound to a nylon membrane. In order to screen the different mutations in a single step hybridization, the length of the different oligonucleotides and the amount used in the assay were optimized. The detection is performed by binding avidin-alkaline phosphatase to the biotin, followed by a chemiluminescent reaction. By means of this fast and sensitive assay, about 85% of all the cystic fibrosis mutations in the Belgian population can be detected.
Comments [show]
None has been submitted yet.
No. Sentence Comment
35 Mutation Number of CF chromosomes with the mutation Reference AF508 138(71-1%) 3 G542X 11 (5 .7%) 9 N1303K 6(3-1%) 15 1717-1G--*A 5 (2.6%) 8, 9 A455E 2 (1 .0%) 9 W1282X 2 (1 .0%) 10 G458V 1 (0.5%) 4 A1507 1 (0.5%) 9 Unidentified 28 (14.4%) cation was carried out on a DNA Thermal Cycler (Perkin Elmer-Cetus Instruments) .
X
ABCC7 p.Gly458Val 1372093:35:182
status: NEW97 621 + IG-T A455E G458V A1507 AF508 1717-IG - A G542X G551D R553X WI282X N 1303 K 621+IG- .T A455E G458V A1507 AF508 1717-I G-> A G542X G551D R553X W1282X N1303K Fig. 2.
X
ABCC7 p.Gly458Val 1372093:97:17
status: NEWX
ABCC7 p.Gly458Val 1372093:97:98
status: NEW100 Hybridization of pooled PCR products containing the mutant type alleles, obtained by amplification with mutant oligonucleotide probes, for the 621 +1G-+T, A455E, 1717-1G-+A mutations (F), the G458V, R553X, W1282X mutations (G) and the A1507, C551 D mutations (H) .
X
ABCC7 p.Gly458Val 1372093:100:192
status: NEW101 A E M W Non-radioactive CF reverse dot-blot 37 B F M W C M W D M W G H 621 + IGT A455E G458V A1507 A F508 1717-IGA G542X G551D R553 X W1282X N1303K 621+IG-ߦT A455E G458V L 1507 AF508 1717-IG- A G542 X G551D R553X W1282X N 1303 K A F M W G B M W C H M W D M W E J M W Fig. 3.
X
ABCC7 p.Gly458Val 1372093:101:89
status: NEWX
ABCC7 p.Gly458Val 1372093:101:172
status: NEW103 Hybridization of PCR fragments obtained by multiplex amplification of G458V/G542X (A), AF508/AF508 (B), AF508/?
X
ABCC7 p.Gly458Val 1372093:103:70
status: NEW[hide] Newborn screening for cystic fibrosis in Alberta: ... Paediatr Child Health. 2010 Nov;15(9):590-4. Lilley M, Christian S, Hume S, Scott P, Montgomery M, Semple L, Zuberbuhler P, Tabak J, Bamforth F, Somerville MJ
Newborn screening for cystic fibrosis in Alberta: Two years of experience.
Paediatr Child Health. 2010 Nov;15(9):590-4., [PMID:22043142]
Abstract [show]
On April 1, 2007, Alberta became the first province in Canada to introduce cystic fibrosis (CF) to its newborn screening program. The Alberta protocol involves a two-tier algorithm involving an immunoreactive trypsinogen measurement followed by molecular analysis using a CF panel for 39 mutations. Positive screens are followed up with sweat chloride testing and an assessment by a CF specialist. Of the 99,408 newborns screened in Alberta during the first two years of the program, 221 had a positive CF newborn screen. The program subsequently identified and initiated treatment in 31 newborns with CF. A relatively high frequency of the R117H mutation and the M1101K mutation was noted. The M1101K mutation is common in the Hutterite population. The presence of the R117H mutation has created both counselling and management dilemmas. The ability to offer CF transmembrane regulator full sequencing may help resolve diagnostic dilemmas. Counselling and management challenges are created when mutations are mild or of unknown clinical significance.
Comments [show]
None has been submitted yet.
No. Sentence Comment
94 An affected sibling was identified as having F508del/G458V after CFTR full sequencing.
X
ABCC7 p.Gly458Val 22043142:94:53
status: NEW125 Predicted splice site mutation 14780 35 69 F508del R352W Rare, no clinical data published 17316 53/35 74 F508del L206W Variable, ranging from classic CF to isolated CBAVD (8) 16053 26/62 72 F508del 5T Associated with atypical CF and CBAVD (9) 21739 N/A 98 F508del G458V Associated with classic CF (17) 16229 31/32 62 F508del - N/A 16369 38/48 79 711+GT - N/A 12468 NSQ/30 103 F508del - N/A 5T 5 thymine; CBAVD Congenital bilateral absence of the vas deferens; CF Cystic fibrosis; IRT Immunoreactive trypsinogen; N/A Not available; NSQ Not sufficient quantity or absent phenotype, individuals with the R117H mutation may be underdiagnosed and the mutation frequency may be under-represented.
X
ABCC7 p.Gly458Val 22043142:125:264
status: NEW