ABCC7 p.Leu719*
ClinVar: |
c.2156T>A
,
p.Leu719*
?
, not provided
|
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Type I, II, III, IV, and V cystic fibrosis transme... Curr Opin Pulm Med. 2000 Nov;6(6):521-9. Choo-Kang LR, Zeitlin PL
Type I, II, III, IV, and V cystic fibrosis transmembrane conductance regulator defects and opportunities for therapy.
Curr Opin Pulm Med. 2000 Nov;6(6):521-9., [PMID:11100963]
Abstract [show]
Recent advances in cellular and molecular biology have furthered the understanding of several genetic diseases, including cystic fibrosis. Mutations that cause cystic fibrosis are now understood in terms of the specific molecular consequences to the cystic fibrosis transmembrane conductance regulator (CFTR) protein expression and function. This knowledge has spawned interest in the development of therapies aimed directly at correcting the defective CFTR itself. In this article, we review the molecular defect underlying each recognized class of CFTR mutation and the potential therapies currently under investigation. Opportunities for protein-repair therapy appear to be vast and range from naturally occurring compounds, such as isoflavonoids, to pharmaceuticals already in clinical use, including aminoglycoside antibiotics, butyrate analogues, phosphodiesterase inhibitors, and adenosine nucleotides. Future therapies may resemble designer compounds like benzo[c]quinoliziniums or take the form of small peptide replacements. Given the heterogeneity and progressive nature of cystic fibrosis, however, optimal benefit from protein-repair therapy will most likely require the initiation of combined therapies early in the course of disease to avoid irreparable organ damage.
Comments [show]
None has been submitted yet.
No. Sentence Comment
22 The nonsense mutations G542X, W1282X, R553X, Q39X, E60X, R75X, L719X, Y1092X, and S1196X significantly reduce the levels of mutant CFTR mRNA to 5 to 30% of wild-type levels [28].
X
ABCC7 p.Leu719* 11100963:22:63
status: NEW[hide] DHPLC screening of cystic fibrosis gene mutations. Hum Mutat. 2002 Apr;19(4):374-83. Ravnik-Glavac M, Atkinson A, Glavac D, Dean M
DHPLC screening of cystic fibrosis gene mutations.
Hum Mutat. 2002 Apr;19(4):374-83., [PMID:11933191]
Abstract [show]
Denaturing high performance liquid chromatography (DHPLC) using ion-pairing reverse phase chromatography (IPRPC) columns is a technique for the screening of gene mutations. In order to evaluate the potential utility of this assay method in a clinical laboratory setting, we subjected the PCR products of 73 CF patients known to bear CFTR mutations to this analytic technique. We used thermal denaturation profile parameters specified by the MELT program tool, made available by Stanford University. Using this strategy, we determined an initial analytic sensitivity of 90.4% for any of 73 known CFTR mutations. Most of the mutations not detected by DHPLC under these conditions are alpha-substitutions. This information may eventually help to improve the MELT algorithm. Increasing column denaturation temperatures for one or two degrees above those recommended by the MELT program allowed 100% detection of CFTR mutations tested. By comparing DHPLC methodology used in this study with the recently reported study based on Wavemaker 3.4.4 software (Transgenomic, Omaha, NE) [Le Marechal et al., 2001) and with previous SSCP analysis of CFTR mutations [Ravnik-Glavac et al., 1994] we emphasized differences and similarities in order to refine the DHPLC system and discuss the relationship to the alternative approaches. We conclude that the DHPLC method, under optimized conditions, is highly accurate, rapid, and efficient in detecting mutations in the CFTR gene and may find high utility in screening individuals for CFTR mutations. Hum Mutat 19:374-383, 2002. Published 2002 Wiley-Liss, Inc.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 The following mutations have been studied: exon 3: W57G, R74W, R75Q, G85E, 394delTT, 405+ 1G>A; exon 4: E92X, P99L, 441delA, 444delA, 457TAT>G, D110H, R117C, R117H, A120T, 541delC, 544delCA, Q151X, 621+1G>T, 662- 2A>C; exon 7: 1078delT, F331L, R334W, I336K, R347C, R347P, A349V, R352Q, 1221delCT; exon 10: S492F, Q493X, 1609delCA, deltaI507, deltaF508; exon 11: G542X, S549N, G551D, R553X, A559T, R560K, R560T; exon 13: K716X, Q685X, G628R, L719X; exon 17b: H1054D, G1061R, 3320ins5, R1066H, R1066L, R1070Q, 3359delCT, L1077P, H1085R, Y1092X; exon 19: R1162X, 3659delC, 3662delA, 3667del4, 3737delA, I1234V, S1235R, 3849G>A; exon 20: 3860ins31,S1255X,3898insC,3905insT,D1270N, W1282X, Q1291R; and exon 21: N1303H, N1303K, W1316X.
X
ABCC7 p.Leu719* 11933191:42:441
status: NEW[hide] Haplotype analysis of 94 cystic fibrosis mutations... Hum Mutat. 1996;8(2):149-59. Morral N, Dork T, Llevadot R, Dziadek V, Mercier B, Ferec C, Costes B, Girodon E, Zielenski J, Tsui LC, Tummler B, Estivill X
Haplotype analysis of 94 cystic fibrosis mutations with seven polymorphic CFTR DNA markers.
Hum Mutat. 1996;8(2):149-59., [PMID:8844213]
Abstract [show]
We have analyzed 416 normal and 467 chromosomes carrying 94 different cystic fibrosis (CF) mutations with polymorphic genetic markers J44, IVS6aGATT, IVS8CA, T854, IVS17BTA, IVS17BCA, and TUB20. The number of mutations found with each haplotype is proportional to its frequency among normal chromosomes, suggesting that there is no preferential haplotype in which mutations arise and thus excluding possible selection for specific haplotypes. While many common mutations in the worldwide CF population showed absence of haplotype variation, indicating their recent origins, some mutations were associated with more than one haplotype. The most common CF mutations, delta F508, G542X, and N1303K, showed the highest number of slippage events at microsatellites, suggesting that they are the most ancient CF mutations. Recurrence was probably the case for 9 CF mutations (R117H, H199Y, R347YH, R347P, L558S, 2184insA, 3272-26A-->G, R1162X, and 3849 + 10kbC-->T). This analysis of 94 CF mutations should facilitate mutation screening and provides useful data for studies on population genetics of CF.
Comments [show]
None has been submitted yet.
No. Sentence Comment
106 (1992) Dork et al. (1994a) Malone et al. (personal communication) Claustreset al. (1992) Ferec et al. (1992) Fanen et al. (1992) lvaschenko et al. (1991) T. Dork (personal communication) Dean et al. (1990) Dork et al. (1994a) Ferec et al. (1992) Bozon et al. (1994) Costes et al. (personal communication) Fanen et al. (1992) Audrezet et al. (personal communication) Zielenski et al. (1991a) Zielenski et al. (1991a) Granell et al. (1992) Highsmith et al. (1990) Mercier et al. (1993b) Vidaud et al. (1990) Fanen et al. (1992) Fanen et al. (1992) Dork et al. (1994b) (continued) HAPLOTYPESFOR 94 CF MUTATIONS TABLE2. CFTR HaplotvpesforDiallelic and Multiallelic DNA Markers for 94 CF Mutations"(Continued) ~~ ~ J44-GAIT- 8CA-17BTA- No. of TSU-TUB20 17BCA Mutation chromosomes % Normal Laboratory Reference 1-6-1-2 (9.1%) 1-6-2-2 (8.9%) 1-7-1-2 (3.4%) 1-7-2-2 (2.6%) 2-7-1-1 (1.2%) 2-7-2-2 (0.7%) 17-7-16 16-7-18 16-7-17 15-7-17 24-31-13 23-52-13 23-34-13 23-33-14 23-33-13 23-32-13 23-31-13 23-30-13 23-21-19 23-18-13 22-35-13 22-31-13 22-30-13 21-31-13 19-33-13 18-45-13 18-37-13 18-35-13 17-57-11 17-55-13 17-55-11 17-54-11 17-53-11 17-52-11 17-51-11 17-33-13 16-46-13 16-45-13 16-44-13 16-42-13 16-35-13 16-30-13 16-30-13 16-7-17 16-21-19 L107% L1077P 24ldelAT L719X A1507 3849+10kbC-T 2184insA 2991de132 G551D 1154insTC V520F R560T 4114ATA+lT 3667de14 435insA Q414X C225R Q39X N1303K R1162X H199Y G542X G542X w1204x R347H G542X AF50gb N1303K 2143delT 3849f 10kbC-T N1303K 681delC R347H A455E N1303K A120T 621+1 h T 574delA 1221delCT F311L R560K R553X R533X R553X Q552X R553X Q552X R116W R553X 1898+5 h T 3272-26A-G 1717-1hA 1342-2A-C A1507 2869insG 2869insG E92X 4374+1 h T 2183AA-G R117H 1609delCA I336K W1063X 1 1 1 1 6 1 3 1 1 22 17 1 1 1 1 1 1 1 1 1 1 1 1 1 17 1 1 4 157 7 1 2 2 1 1 2 2 1 9 1 1 1 1 1 1 6 1 1 1 2 1 3 2 1 3 1 1 1 4 2 4 1 1 - - 10.33 1.45 - - 0.48 1.45 - 0.24 1.45 0.24 - - - - 0.24 0.48 - - - - - - 0.49 0.48 - 0.24 0.24 0.24 - - - - - 0.72 0.24 0.72 - t h fP h b.fb,fP h b,fp.t t h b.fb.fp,h,t b.fb.fp,h,t t t t h b h h fP h fP fb b fP b.fb,fP,h.t fP fb b,fP,t b.fb,fp,h,t b.fb,h h h h,t t fb t b b b.fb.t fP fb fb tb h fP h h t t b h t h b b h h b,fb,h fP.h b h fP fP Bozon et al. (1994) Fanen et al. (1992) Dork et al. (1994a) Kerem et al. (1990) Dork et al. (1994~) Cutting et al. (1990) Kerem et al. (1990) lannuui et d.
X
ABCC7 p.Leu719* 8844213:106:1265
status: NEW[hide] Detection of more than 50 different CFTR mutations... Hum Genet. 1994 Nov;94(5):533-42. Dork T, Mekus F, Schmidt K, Bosshammer J, Fislage R, Heuer T, Dziadek V, Neumann T, Kalin N, Wulbrand U, et al.
Detection of more than 50 different CFTR mutations in a large group of German cystic fibrosis patients.
Hum Genet. 1994 Nov;94(5):533-42., [PMID:7525450]
Abstract [show]
We have conducted a comprehensive study of the molecular basis of cystic fibrosis (CF) in 350 German CF patients. A screening approach based on single-strand conformation analysis and direct sequencing of genomic polymerase chain reaction products has allowed us to detect the molecular defects on 95.4% of the CF chromosomes within the coding region and splice sites of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The spectrum of sequence changes comprises 54 different mutations, including 17 missense mutations, 14 nonsense mutations, 11 frameshift mutations, 10 splice site variants and two amino acid deletions. Eleven of these mutations have not previously been described. Our results reflect the marked mutational heterogeneity of CF in a large sample of patients from a non-isolated population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 (3) L719X was detected in a 4-year-old female who is compound heterozygous for AF508 and L719X.
X
ABCC7 p.Leu719* 7525450:74:4
status: NEWX
ABCC7 p.Leu719* 7525450:74:89
status: NEW78 (*) 1833delT Deletion of T at 1833 Exon 12 1 (0.1%) C2 Schwartz et al. (*) L619S T-+C at 1988 Exon 13 1 (0.1%) D3 This study 2143delT Deletion ofT at 2143/2144 Exon 13 5 (0.7%) BI DOrk et al. (1992b) G673X G-->T at 2149 Exon 13 l (0.1%) C2 This study 2183AA---)G Deletion of A at 2184 and A--~G at 2183 Exon 13 4 (0.6%) D5, B5 Bozon et al. (1994) 2184delA Deletion of A at 2184 Exon 13 2 (0.3%) A2 Chevalier-Porst et al. 1994, this study 2184insA Insertion of A at 2184 Exon 13 4 (0.6%) C2, B3, D3 This study L719X T-->A at 2288 Exon 13 1 (0.1%) B3 This study 2789+5 G--+A G--+A at 2789+5 lntron 14b 6 (0.9%) D3, B3 Highsmith et al. (*) 2991de132 Deletion of 32 bp from 2991-3022 Exon 15 2 (0.3%) D3 D6rk et al. (1994b) 3100insA Insertion of A at 3100 Exon 16 1 (0.1%) C2 This study I1005R T--+G at 3146 Exon 17a 3 (0.4%) A2 This study 3272-26 A--~G A--+G at 3272-26 Intron 17a 6 (0.9%) D3, A2 Fanen et al. (1992) LI059X T-~G at 3308 Exon 17b 1 (0.1%) C2 This study R1066C C-->T at 3328 Exon 17b 2 (0.3%) B3 Fanen et al. (1992) LI077P T---~Cat 3362 Exon 17b 1 (0.1%) A3 Bozon et al. (1994) YI092X C--+A at 3408 Exon 17b 2 (0.3%) C2 Bozcm et al. (1994) R1162X C--~T at 3616 Exon 19 2 (0.3%) C2 Gasparini et al. (1991) 3659de1C Deletion of C at 3659 Exon 19 4 (0.6%) C2 Kerem et al. (1990) 3849+10 kB C---)T C--+T at 3839+10 kB lntron 19 7 (1.0%) B l, D3 Highsmith et al. (*) 3850-3 T--+G T-->G at 3850 3 lntron 19 1 (0.1%) A2 D6rk et al. (1993a) S 1251N G---~Aat 3884 Exon 20 2 (0.3 %) C2 Kfilin et al. (1992a), Mercier et al. (1993) 3905insT Insertion of T at 3905 Exon 20 1 (0.1%) n.p. Liechti-Gallati et al. (1992) WI282X G---~Aat 3978 Exon 20 5 (0.7%) B3 Vidaud et al. (1990) Q1291R A--+G at 4004 Exon 20 1 (0.1%) B3 This study N1303K C---~Gat 4041 Exon 21 16 (2.3%) BI,A1 Osborne et al. (1991) 4114 ATA--~TT Deletion of A and A--~T at 41144116 Exon 22 1 (0.1%) B3 D6rk et al. (1993d) 4374+1 G-+T G--+T at 4374+1 Intron 23 1 (0.1%) D5 D6rk et al. (1993a) Total 668 (95.4%) ~'Mutations are designated according to the suggested nomenclature (Beaudet and Tsui 1993) b Numbers of nucleotides refer to the cDNA sequence (Riordan et al. 1989) c Exon and intron numbers are described (Zielenski et al. (1991a) a Frequency data are given as number (relative fraction) of alleles among 700 German CF chromosomes e Haplotypes of extragenic and intragenic dimorphic markers (Esti- viii et al. 1987; D0rk et al. 1992a) were classified as listed in the appendix (see below), n.p., noninformative phase.
X
ABCC7 p.Leu719* 7525450:78:509
status: NEW[hide] Sensitivity of single-strand conformation polymorp... Hum Mol Genet. 1994 May;3(5):801-7. Ravnik-Glavac M, Glavac D, Dean M
Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene.
Hum Mol Genet. 1994 May;3(5):801-7., [PMID:7521710]
Abstract [show]
The gene responsible for cystic fibrosis (CF) contains 27 coding exons and more than 300 independent mutations have been identified. An efficient and optimized strategy is required to identify additional mutations and/or to screen patient samples for the presence of known mutations. We have tested several different conditions for performing single-stranded conformation polymorphism (SSCP) analysis in order to determine the efficiency of the method and to identify the optimum conditions for mutation detection. Each exon and corresponding exon boundaries were amplified. A panel of 134 known CF mutations were used to test the efficiency of detection of mutations. The SSCP conditions were varied by altering the percentage and cross-linking of the acrylamide, employing MDE (an acrylamide substitute), and by adding sucrose and glycerol. The presence of heteroduplexes could be detected on most gels and in some cases contributed to the ability to distinguish certain mutations. Each analysis condition detected 75-98% of the mutations, and all of the mutations could be detected by at least one condition. Therefore, an optimized SSCP analysis can be used to efficiently screen for mutations in a large gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
69 (G-A at 1807), R560K (G-A at 1811) and mutations L719X (T-A), 2522insC, 2556insAT, E827X on exons 11 and 13, respectively, for all except one analysis condition (see Table 1).
X
ABCC7 p.Leu719* 7521710:69:49
status: NEW121 1078delT (35), L327R (Ravnik-Glavac a al., unpublished), R334W (36), D36K (31), R347L (26), R347P (14), A349V (26), R352Q (30), 1221delCT (34); Exon 8: W401X (31), 1342-1G-C (25); Exon 9: G458V (37), 1525 -1G-A (38); Exon 10: S492F (34), Q493X (39), 1609delCA (40,17), deltaI507 (39,41), deltaF5O8 (3), 1717-1G-A (39,42); Exon 11: G542X (39), S549N, G551D, R553X (43), R553Q (44), A559T (43), R560K (Fine et al., pers. comm.), R560T (39); Exon 12: Y563N (39), 1833delT (Schwartz et al., pers. comm.), P574H (39), 1898 + 1G-C (31), 1898+3A-G (Ferrari et al., pers. comm.); Exon 13: G628R(G-C) (31), Q685X (Firec et al., pers. comm.), K716X (26), L719X (Dork etal., pers. comm.), 2522insC (15), 2556insAT (45), E827X (34); Exon 14a: E831X (Ffrec et al., pers. comm.), R851X (29), 2721delll (31), C866Y (Audrezet et al., pers. comm.); Exon 14b: 2789+5G-A (Highsmith et al., pers. comm.); Exon 15: 2907denT (21), 2991del32 (Dark and TQmmler, pers. comm.), G970R (31); Exon 16: S977P, 3100insA (D6rk et al., pers. comm.); Exon 17a: I1005R (Dork and TQmmler, pers. comm.), 3272-1G-A (46); Exon 17b: H1054D (F6rec et al., pers. comm.), G1061R (Fdrec et al., pers. comm.), 332Oins5, R1066H, A1067T (34), R1066L (Fe"rec etal., pers. comm.), R1070Q (46), E1104X (Zielenski el al., pers. comm.), 3359delCT (46), L1077P (Bozon « a/., pers. comm.), H1085R (46), Y1092X (Bozon etal., pers. comm.), W1098R, M1101K (Zielenski et al., pers. comm.); Exon 18: D1152H (Highsmith et al., pers. comm.); Exon 19:R1162X (36), 3659delC (39), 3662delA (25), 3667del4 (Chillon et al., pers. comm.), 3737ddA (35), 3821ddT (15), I1234V (35), S1235R (31), Q1238X (26), 3849G-A (25), 385O-3T-G (38); Exon20:3860ins31 (Chillon etal., pers. comm.), S1255X (47), 3898insC (26), 3905insT (Malik et al., pers. comm.), D127ON (48), W1282X (49), Q1291R (Dork et al., pers. comm.), Exon 21: N1303H (35), N13O3K (50), W1316X (43); Exon 22: 11328L/4116delA (Dork and TQmmler, pers. comm.), E1371X (25); Exon 23: 4374+ 1G-T (38); Exon 24: 4382delA (Claustres et al., pers. comm.).
X
ABCC7 p.Leu719* 7521710:121:645
status: NEW