ABCC7 p.Ser341Ala

ClinVar: c.1021T>C , p.Ser341Pro D , Pathogenic
CF databases: c.1021T>C , p.Ser341Pro D , CF-causing ; CFTR1: This homozygous mutation was identified in two sister siblings with CF.
Predicted by SNAP2: A: D (71%), C: D (80%), D: D (91%), E: D (85%), F: D (85%), G: D (71%), H: D (85%), I: D (85%), K: D (85%), L: D (91%), M: D (85%), N: D (75%), P: D (91%), Q: D (80%), R: D (91%), T: D (53%), V: D (85%), W: D (85%), Y: D (85%),
Predicted by PROVEAN: A: N, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: N, P: D, Q: D, R: D, T: N, V: D, W: D, Y: D,

[switch to compact view]
Comments [show]
Publications
[hide] Frelet A, Klein M
Insight in eukaryotic ABC transporter function by mutation analysis.
FEBS Lett. 2006 Feb 13;580(4):1064-84. Epub 2006 Jan 19., 2006-02-13 [PMID:16442101]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Walsh KB, Long KJ, Shen X
Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel.
Br J Pharmacol. 1999 May;127(2):369-76., [PMID:10385235]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zhang ZR, Zeltwanger S, McCarty NA
Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes.
J Membr Biol. 2000 May 1;175(1):35-52., 2000-05-01 [PMID:10811966]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Kogan I, Ramjeesingh M, Huan LJ, Wang Y, Bear CE
Perturbation of the pore of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibits its atpase activity.
J Biol Chem. 2001 Apr 13;276(15):11575-81. Epub 2000 Dec 21., 2001-04-13 [PMID:11124965]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gupta J, Evagelidis A, Hanrahan JW, Linsdell P
Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region.
Biochemistry. 2001 Jun 5;40(22):6620-7., 2001-06-05 [PMID:11380256]

Abstract [show]
Comments [show]
Sentences [show]

[hide] McCarty NA, Zhang ZR
Identification of a region of strong discrimination in the pore of CFTR.
Am J Physiol Lung Cell Mol Physiol. 2001 Oct;281(4):L852-67., [PMID:11557589]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gong X, Burbridge SM, Cowley EA, Linsdell P
Molecular determinants of Au(CN)(2)(-) binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl(-) channel pore.
J Physiol. 2002 Apr 1;540(Pt 1):39-47., 2002-04-01 [PMID:11927667]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Chen JH, Chang XB, Aleksandrov AA, Riordan JR
CFTR is a monomer: biochemical and functional evidence.
J Membr Biol. 2002 Jul 1;188(1):55-71., 2002-07-01 [PMID:12172647]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gong X, Burbridge SM, Lewis AC, Wong PY, Linsdell P
Mechanism of lonidamine inhibition of the CFTR chloride channel.
Br J Pharmacol. 2002 Nov;137(6):928-36., [PMID:12411425]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gupta J, Lindsell P
Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore.
Mol Membr Biol. 2003 Jan-Mar;20(1):45-52., [PMID:12745925]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Ramjeesingh M, Kidd JF, Huan LJ, Wang Y, Bear CE
Dimeric cystic fibrosis transmembrane conductance regulator exists in the plasma membrane.
Biochem J. 2003 Sep 15;374(Pt 3):793-7., 2003-09-15 [PMID:12820897]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gong X, Linsdell P
Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore.
J Gen Physiol. 2003 Dec;122(6):673-87. Epub 2003 Nov 10., [PMID:14610019]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Caci E, Caputo A, Hinzpeter A, Arous N, Fanen P, Sonawane N, Verkman AS, Ravazzolo R, Zegarra-Moran O, Galietta LJ
Evidence for direct CFTR inhibition by CFTR(inh)-172 based on Arg347 mutagenesis.
Biochem J. 2008 Jul 1;413(1):135-42., 2008-07-01 [PMID:18366345]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zhou JJ, Li MS, Qi J, Linsdell P
Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore.
J Gen Physiol. 2010 Mar;135(3):229-45. Epub 2010 Feb 8., [PMID:20142516]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Dawson DC, Smith SS, Mansoura MK
CFTR: mechanism of anion conduction.
Physiol Rev. 1999 Jan;79(1 Suppl):S47-75., [PMID:9922376]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Gadsby DC, Nairn AC
Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis.
Physiol Rev. 1999 Jan;79(1 Suppl):S77-S107., [PMID:9922377]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Schultz BD, Singh AK, Devor DC, Bridges RJ
Pharmacology of CFTR chloride channel activity.
Physiol Rev. 1999 Jan;79(1 Suppl):S109-44., [PMID:9922378]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cui G, Song B, Turki HW, McCarty NA
Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers.
Pflugers Arch. 2012 Mar;463(3):405-18. Epub 2011 Dec 13., [PMID:22160394]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Linsdell P, Tabcharani JA, Hanrahan JW
Multi-Ion mechanism for ion permeation and block in the cystic fibrosis transmembrane conductance regulator chloride channel.
J Gen Physiol. 1997 Oct;110(4):365-77., [PMID:9379169]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Linsdell P, Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW
Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions.
J Gen Physiol. 1997 Oct;110(4):355-64., [PMID:9379168]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cheung M, Akabas MH
Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment.
Biophys J. 1996 Jun;70(6):2688-95., [PMID:8744306]

Abstract [show]
Comments [show]
Sentences [show]

[hide] McDonough S, Davidson N, Lester HA, McCarty NA
Novel pore-lining residues in CFTR that govern permeation and open-channel block.
Neuron. 1994 Sep;13(3):623-34., [PMID:7522483]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Zhang ZR, McDonough SI, McCarty NA
Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
Biophys J. 2000 Jul;79(1):298-313., [PMID:10866956]

Abstract [show]
Comments [show]
Sentences [show]

[hide] Cebotaru L, Woodward O, Cebotaru V, Guggino WB
Transcomplementation by a truncation mutant of cystic fibrosis transmembrane conductance regulator (CFTR) enhances DeltaF508 processing through a biomolecular interaction.
J Biol Chem. 2013 Apr 12;288(15):10505-12. doi: 10.1074/jbc.M112.420489. Epub 2013 Mar 5., [PMID:23463513]

Abstract [show]
Comments [show]
Sentences [show]