ABCC6 p.Arg1138Gln
ClinVar: |
c.3413G>A
,
p.Arg1138Gln
D
, Pathogenic
c.3412C>T , p.Arg1138Trp D , Pathogenic |
LOVD-ABCC6: |
p.Arg1138Pro
D
p.Arg1138Trp D p.Arg1138Gln D |
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (75%), Q: D (66%), S: D (95%), T: D (95%), V: D (95%), W: D (85%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Pseudoxanthoma elasticum: mutations in the MRP6 ge... Proc Natl Acad Sci U S A. 2000 May 23;97(11):6001-6. Ringpfeil F, Lebwohl MG, Christiano AM, Uitto J
Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):6001-6., 2000-05-23 [PMID:10811882]
Abstract [show]
Pseudoxanthoma elasticum (PXE), the prototypic heritable connective tissue disorder affecting the elastic structures in the body, manifests with cutaneous, ophthalmologic, and cardiovascular findings, with considerable morbidity and mortality. The molecular basis of PXE has remained unknown, but the disease locus has recently been mapped to an approximately 500-kb interval on chromosome 16p13.1, without evidence for locus heterogeneity. In this study, we report pathogenetic mutations in MRP6, a member of the ABC transporter gene family, in eight kindreds with PXE. The mutation detection strategy consisted of heteroduplex scanning of coding sequences in the MRP6 gene, which were amplified by PCR by using genomic DNA as template, followed by direct nucleotide sequencing. A total of 13 mutant MRP6 alleles were disclosed in the eight probands with PXE. These genetic lesions consisted of either single base pair substitutions resulting in missense, nonsense, or splice site mutations, or large deletions resulting in allelic loss of the MRP6 locus. Examination of clinically unaffected family members in four multiplex families identified heterozygous carriers, consistent with an autosomal recessive inheritance pattern. Collectively, identification of mutations in the MRP6 gene provides the basis to examine the pathomechanisms of PXE and allows development of DNA-based carrier detection, prenatal testing, and preimplantation genetic diagnosis in families with a history of this disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 MRP6 mutations in families with PXE Family Age and sex of proband Mutation Exon Consequence Verification* 1 53 F 3421C 3 T 24 R1141X BsiYI 3803G 3 A 27 R1268Q BstXI 2 29 F 3412C 3 T 24 R1138W MspI 3 40 F 3421C 3 T 24 R1141X BsiYI Partial deletion 24† Allelic loss D16S2720 MRP6 D16B9622 4 53 F 3736-1G 3 A 27 Altered splicing of exon 27 AciI Partial deletion 27† Allelic loss D16S2720 MRP6 D16B9622 5 60 M 3413G 3 A 24 R1138Q MspI 3803G 3 A 27 R1268Q BstXI 6 28 F 3421C 3 T 24 R1141X BsiYI 7 41 M 3803G 3 A 27 R1268Q BstXI 8 25 F 3421C 3 T 24 R1141X BsiYI *Mutations were verified in the proband and his/her family members by digestion with restriction enzyme, or in case of deletion, by microsatellite markers indicated.
X
ABCC6 p.Arg1138Gln 10811882:77:433
status: NEW142 Evaluation of their DNA revealed that the patient in family 5 was compound heterozygous for nucleotide substitutions 3413G3A and 3803G3A in exons 24 and 27, which resulted in the amino acid substitutions R1138Q and R1268Q, respectively. In families 6-8, heterozygous nucleotide substitutions were discovered, resulting in the mutations R1141X (families 6 and 8), and R1268Q (family 7).
X
ABCC6 p.Arg1138Gln 10811882:142:204
status: NEW[hide] Molecular genetics of pseudoxanthoma elasticum: a ... Trends Mol Med. 2001 Jan;7(1):13-7. Uitto J, Pulkkinen L, Ringpfeil F
Molecular genetics of pseudoxanthoma elasticum: a metabolic disorder at the environment-genome interface?
Trends Mol Med. 2001 Jan;7(1):13-7., [PMID:11427982]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a relatively rare heritable disorder affecting the skin, eyes and cardiovascular system, with considerable morbidity and mortality. The disease affects the elastic fibers of affected organs, which become progressively calcified. Thus, PXE has been considered as a prototypic heritable connective tissue disorder affecting the elastic fiber system. Recently, PXE has been linked to mutations in the MRP6/ABCC6 gene, a member of the ABC transporter family, expressed primarily in the liver and the kidneys. This information, together with clinical observations suggesting environmental, hormonal and/or dietary modulation of the disease, raises the intriguing possibility that PXE is a primary metabolic disorder at the environment-genome interface.
Comments [show]
None has been submitted yet.
No. Sentence Comment
75 Thisraisesthequestionoftherelationshipbetweenthe MRP6mutationsandthemanifestationsinPXE affectingtheelasticfibersinvariousorgans.Itmaywell Opinion CR1339C G1345R TRENDS in Molecular Medicine 10 kb NBF2NBF1 0.5 kb Extracellular Intracellular GS 5' 3' R1138Q R1164X R1141X R1138W 2787+1G T A455P R518Q R1114P R1314W (a) (b) (c) EcoRI SmaI SmaI SmaI SacI SacI SmaI N GS 2542delG 1944del22 4220insAGAA 3775delT 3736-1G A Fig. 3.
X
ABCC6 p.Arg1138Gln 11427982:75:250
status: NEW[hide] A spectrum of ABCC6 mutations is responsible for p... Am J Hum Genet. 2001 Oct;69(4):749-64. Epub 2001 Aug 31. Le Saux O, Beck K, Sachsinger C, Silvestri C, Treiber C, Goring HH, Johnson EW, De Paepe A, Pope FM, Pasquali-Ronchetti I, Bercovitch L, Marais AS, Viljoen DL, Terry SF, Boyd CD
A spectrum of ABCC6 mutations is responsible for pseudoxanthoma elasticum.
Am J Hum Genet. 2001 Oct;69(4):749-64. Epub 2001 Aug 31., [PMID:11536079]
Abstract [show]
To better understand the pathogenetics of pseudoxanthoma elasticum (PXE), we performed a mutational analysis of ATP-binding cassette subfamily C member 6 (ABCC6) in 122 unrelated patients with PXE, the largest cohort of patients yet studied. Thirty-six mutations were characterized, and, among these, 28 were novel variants (for a total of 43 PXE mutations known to date). Twenty-one alleles were missense variants, six were small insertions or deletions, five were nonsense, two were alleles likely to result in aberrant mRNA splicing, and two were large deletions involving ABCC6. Although most mutations appeared to be unique variants, two disease-causing alleles occurred frequently in apparently unrelated individuals. R1141X was found in our patient cohort at a frequency of 18.8% and was preponderant in European patients. ABCC6del23-29 occurred at a frequency of 12.9% and was prevalent in patients from the United States. These results suggested that R1141X and ABCC6del23-29 might have been derived regionally from founder alleles. Putative disease-causing mutations were identified in approximately 64% of the 244 chromosomes studied, and 85.2% of the 122 patients were found to have at least one disease-causing allele. Our results suggest that a fraction of the undetected mutant alleles could be either genomic rearrangements or mutations occurring in noncoding regions of the ABCC6 gene. The distribution pattern of ABCC6 mutations revealed a cluster of disease-causing variants within exons encoding a large C-terminal cytoplasmic loop and in the C-terminal nucleotide-binding domain (NBD2). We discuss the potential structural and functional significance of this mutation pattern within the context of the complex relationship between the PXE phenotype and the function of ABCC6.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 PXE Mutations The most-prevalent mutations detected in the ABCC6 gene were missense substitutions (21 [58.3%] mutations, Table 1 ABCC6 Mutations in a Cohort of Patients with PXE CHANGE IN STATUS a ORIGIN(S)b EXON(S)c REFERENCE(S)Amino Acid Nucleotide … 179-195del ht Belgium 2 Present study … 938-939insT ch, ht SA, UK 8 Present study N411K 1233TrG ht US 10 Present study A455P 1363GrC Nd Nd 11 Uitto et al. (2001) R518Q 1553GrA ch, ht Belgium 12 Present study, Uitto et al. (2001) F568S 1703TrC ch US 13 Present study … ABCC6del15 hm SA 15 Present study … 1944del22 ht Holland 16 Bergen et al. (2000) … 1995delG ht Germany 16 Present study L673P 2018TrC ch SA 16 Present study R765Q 2294GrA ht Germany 18 Present study Y768X 2304CrA ch, ht SA 18 Present study … 2322delC ht US 18 Present study … 2542delG Nd Nd 19 Uitto et al. (2001) … IVS21ϩ1GrT ch US, Germany i-21 Present study, Uitto et al. (2001) R1030X 3088CrT ht SA, UK 23 Present study R1114P 3341GrC hm UK 24 Present study S1121W 3362CrG ch Germany 24 Present study R1138W 3412CrT hm Nd 24 Ringpfeil et al. (2000) R1138P 3413GrC ch Germany 24 Present study R1138Q 3413GrA ch UK, US 24 Present study, Ringpfeil et al. (2000) R1141X 3421CrT All All 24 Present study and othersd R1164X 3490CrT ch Germany, UK 24 Ringpfeil et al. (2001) G1203D 3608GrA ch Germany 25 Present study … IVS26-1GrA ch Belgium i-26 Present study, Ringpfeil et al. (2000, 2001) Q1237X 3709CrT ch Belgium 26 Present study … 3775delT ht, hm SA, US, Holland 27 Present study, Bergen et al. (2000) V1298F 3892GrT ht US 28 Present study T1301I 3902CrT ch Belgium 28 Present study G1302R 3904GrA hm US 28 Present study A1303P 3907GrC ch Belgium 28 Present study R1314W 3940CrT hm US 28 Present study R1314Q 3941GrA ch Germany 28 Present study G1321S 3961GrA ht US 28 Present study R1339C 4015CrT All SA, US 28 Present study, Struk et al. (2000) Q1347H 4041GrC hm US 28 Present study D1361N 4081GrA ch Germany 29 Present study … 4104delC ch Belgium 29 Present study R1398X 4192CrT ch Belgium 29 Present study … ABCC6del23-29 ch US 23-29 Present study, Ringpfeil et al. (2001) … 4220insAGAA ht Holland 30 Bergen et al. (2000) I1424T 4271TrC ht US 30 Present study … ABCC6del ht Holland all Bergen et al. (2000) a Nd p not determined; hm p homozygote; ht p heterozygote; ch p compound heterozygote.
X
ABCC6 p.Arg1138Gln 11536079:85:1181
status: NEW94 Although most of the mutations reported here appear to be unique, a few disease-causing variants have been found to occur frequently in apparently unrelated individuals; R1141X was found at Table 2 Frequencies of Mutant Alleles Found in a Cohort of 101 Unrelated Patients with PXE MUTATION a OVERALL EUROPE UNITED STATES No. of Alleles Frequency (%) No. of Alleles Frequency (%) No. of Alleles Frequency (%) R1141X 38 18.8 33 28.4 3 4.1 ABCC6del23-29 26 12.9 5 4.3 21 28.4 IVS21ϩ1GrT 7 3.5 4 3.4 3 4.1 G1302R 4 2.0 0 .0 4 5.4 A1303P 4 2.0 3 2.6 1 1.4 R1314W 3 1.5 0 .0 3 4.1 R518Q* 3 1.5 1 .9 1 1.4 3775delT* 3 1.5 2 1.7 0 .0 R1138Q 2 1.0 1 .9 1 1.4 V1298F 2 1.0 0 .0 2 2.7 R1339C 2 1.0 0 .0 2 2.7 Q1347H 2 1.0 0 .0 2 2.7 4104delC* 2 1.0 1 .9 0 .0 179-195del 1 .5 1 .9 0 .0 938-939insT* 1 .5 0 .0 0 .0 N411K 1 .5 0 .0 1 1.4 F568S 1 .5 0 .0 1 1.4 1995delG 1 .5 1 .9 0 .0 R765Q 1 .5 1 .9 0 .0 2322delC 1 .5 0 .0 1 1.4 R1030X* 1 .5 0 .0 0 .0 R1114P 1 .5 1 .9 0 .0 S1121W 1 .5 1 .9 0 .0 R1138P 1 .5 1 .9 0 .0 G1203D 1 .5 1 .9 0 .0 IVS26-1GrA 1 .5 1 .9 0 .0 Q1237X 1 .5 1 .9 0 .0 W1241C 1 .5 1 .9 0 .0 T1301I 1 .5 1 .9 0 .0 R1314Q 1 .5 1 .9 0 .0 D1361N 1 .5 1 .9 0 .0 R1398X 1 .5 1 .9 0 .0 G1321S 1 .5 0 .0 1 1.4 I1424T 1 .5 0 .0 1 1.4 ?
X
ABCC6 p.Arg1138Gln 11536079:94:635
status: NEW[hide] Nucleotide binding and nucleotide hydrolysis prope... Biochemistry. 2002 Jun 25;41(25):8058-67. Cai J, Daoud R, Alqawi O, Georges E, Pelletier J, Gros P
Nucleotide binding and nucleotide hydrolysis properties of the ABC transporter MRP6 (ABCC6).
Biochemistry. 2002 Jun 25;41(25):8058-67., 2002-06-25 [PMID:12069597]
Abstract [show]
Mutations in the MRP gene family member MRP6 cause pseudoxanthoma elasticum (PXE) in humans, a disease affecting elasticity of connective tissues. The normal function of MRP6, including its physiological substrate(s), remains unknown. To address these issues, recombinant rat Mrp6 (rMrp6) was expressed in the methylotrophic yeast Pichia pastoris. The protein was expressed in the membrane fraction as a stable 170 kDa protein. Its nucleotide binding and hydrolysis properties were investigated using the photoactive ATP analogue 8-azido-[alpha-(32)P]ATP and compared to those of the drug efflux pump MRP1. rMrp6 can bind 8-azido-[alpha-(32)P]ATP in a Mg(2+)-dependent and EDTA-sensitive fashion. Co(2+), Mn(2+), and Ni(2+) can also support 8-azido-[alpha-(32)P]ATP binding by rMrp6 while Ca(2+), Cd(2+), and Zn(2+) cannot. Under hydrolysis conditions (at 37 degrees C), the phosphate analogue beryllium fluoride (BeF(x)()) can stimulate trapping of the 8-azido-[alpha-(32)P]adenosine nucleotide in rMrp6 (and in MRP1) in a divalent cation-dependent and temperature-sensitive fashion. This suggests active ATPase activity, followed by trapping and photo-cross-linking of the 8-azido-[alpha-(32)P]ADP to the protein. By contrast to MRP1, orthovanadate-stimulated nucleotide trapping in rMrp6 does not occur in the presence of Mg(2+) but can be detected with Ni(2+) ions, suggesting structural and/or functional differences between the two proteins. The rMrp6 protein can be specifically photolabeled by a fluorescent photoactive drug analogue, [(125)I]-IAARh123, with characteristics similar to those previously reported for MRP1 (1), and this photolabeling of rMrp6 can be modulated by several structurally unrelated compounds. The P. pastoris expression system has allowed demonstration of ATP binding and ATP hydrolysis by rMrp6. In addition to providing large amounts of active protein for detailed biochemical studies, this system should also prove useful to identify potential rMrp6 substrates in [(125)I]-IAARh123 photolabeling competition studies, as well as to study the molecular basis of PXE mutations, which are most often found in the NBD2 of MRP6.
Comments [show]
None has been submitted yet.
No. Sentence Comment
55 Interestingly, most of the single amino acid substitutions mapped in NBD2 of MRP6 (R1114P, R1138Q/ W, R1314W, W1259G, R1268Q) with none in NBD1.
X
ABCC6 p.Arg1138Gln 12069597:55:91
status: NEW[hide] Evidence for a founder effect for pseudoxanthoma e... Hum Genet. 2002 Oct;111(4-5):331-8. Epub 2002 Sep 7. Le Saux O, Beck K, Sachsinger C, Treiber C, Goring HH, Curry K, Johnson EW, Bercovitch L, Marais AS, Terry SF, Viljoen DL, Boyd CD
Evidence for a founder effect for pseudoxanthoma elasticum in the Afrikaner population of South Africa.
Hum Genet. 2002 Oct;111(4-5):331-8. Epub 2002 Sep 7., [PMID:12384774]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a heritable elastic tissue disorder recently shown to be attributable to mutations in the ABCC6 ( MRP6) gene. Whereas PXE has been identified in all ethnic groups studied to date, the prevalence of this disease in various populations is uncertain, although often assumed to be similar. A notable exception however is the prevalence of PXE among South African Afrikaners. A previous report has suggested that a founder effect may explain the higher prevalence of PXE in Afrikaners, a European-derived population that first settled in South Africa in the 17th century. To investigate this hypothesis, we performed haplotype and mutational analysis of DNA from 24 South African families of Afrikaner, British and Indian descent. Among the 17 Afrikaner families studied, three common haplotypes and six different disease-causing variants were identified. Three of these mutant alleles were missense variants, two were nonsense mutations and one was a single base-pair insertion. The most common variant accounted for 53% of the PXE alleles, whereas other mutant alleles appeared at lower frequencies ranging from 3% to 12%. Haplotype analysis of the Afrikaner families showed that the three most frequent mutations were identical-by-descent, indicating a founder origin of PXE in this population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
52 Other ABCC6 mutant alleles included two missense mutations, R1138Q and L673P, which occurred at frequencies of 8.8% (3 out of 34 alleles) and 2.9% (1 out of 34 alleles), respectively.
X
ABCC6 p.Arg1138Gln 12384774:52:60
status: NEW59 The remaining R1141X mutations, characterized in Family 224 (Afrikaner) and Family 212 (British ancestry) were found in different haplotypes indicating that 333 Table 1 ABCC6 mutations identified in a cohort of South African PXE patients of Afrikaner and other ancestries (nt nucleotide, aa amino acid, ni not identified, UK United Kingdom, Black black South Africans) Family Allele 1 Allele 2 Ancestry nt change aa change Exon Haplotype nt change aa change Exon Haplotype 201 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 203 4015C→T R1339C 28 I 3413G→A R1138Q 24 III Afrikaner 205 3413G→A R1138Q 24 III 2304C→A Y768X 18 II Afrikaner 206 4015C→T R1339C 28 I 3421C→T R1141X 24 Other Afrikaner 208 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 209 4015C→T R1339C 28 I 2018T→C L673P 16 Other Afrikaner 211 4015C→T R1339C 28 I 3413G→A R1138Q 24 III Afrikaner 222 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 223 4015C→T R1339C 28 I 2304C→A Y768X 18 II Afrikaner 225 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 226 4015C→T R1339C 28 I 2304C→A Y768X 18 II Afrikaner 228 4015C→T R1339C 28 I 2304C→A Y768X 18 II Afrikaner 229 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 213 939insT Frameshift 8 Other ni ni ni Other Afrikaner 214 4015C→T R1339C 28 I ni ni ni Other Afrikaner 224 3421C→T R1141X 24 Other ni ni ni Other Afrikaner 204 ni ni Other ni ni ni Other Afrikaner 212 3421C→T R1141X 24 Other 939insT Frameshift 8 Other UK 215 3775delT Frameshift 27 Other 4104delC Frameshift 29 Other UK 217 ABCC6del15 Frameshift 15 Other ABCC6del15 Frameshift 15 Other Indian 207 3088C→T R1030X 23 Other ni ni ni Other UK 216 3421C→T R1141X 24 Other ni ni ni Other UK 219 1553G→A R518Q 12 Other ni ni ni Other UK 221 ni ni Other ni ni ni Other Black Table 2 Frequencies of mutant ABCC6 alleles found in a cohort of PXE patients of Afrikaner and other ancestries (?
X
ABCC6 p.Arg1138Gln 12384774:59:587
status: NEWX
ABCC6 p.Arg1138Gln 12384774:59:630
status: NEWX
ABCC6 p.Arg1138Gln 12384774:59:938
status: NEW60 unidentified alleles, MDR mutation detection rate) Mutation Overall Afrikaner ancestries Others ancestries Allele Allele Allele Allele Allele Allele count frequency (%) count frequency (%) count frequency (%) R1339C 18 37.5 18 52.9 0 0 Y768X 4 8.3 4 11.8 0 0 R1141X 4 8.3 2 5.9 2 14.3 R1138Q 3 6.3 3 8.8 0 0 939insT 2 4.2 1 2.9 1 7.1 ABCC6del15 2 4.2 0 0.0 2 14.3 L673P 1 2.1 1 2.9 0 0.0 R1030X 1 2.1 0 0.0 1 7.1 R518Q 1 2.1 0 0.0 1 7.1 3775delT 1 2.1 0 0.0 1 7.1 4104delC 1 2.1 0 0.0 1 7.1 ?
X
ABCC6 p.Arg1138Gln 12384774:60:285
status: NEW66 Three major haplotypes, with some variation at single markers, encompassing the PXE locus (located between markers D16S405 and D16S764; Le Saux et al. 1999; Cai et al. 2000) were identified (Fig.1) and three disease alleles (R1339C, Y768X, R1138Q) were found to be strictly associated with these three haplotypes (referred to as types I, II and III; Fig.1).
X
ABCC6 p.Arg1138Gln 12384774:66:240
status: NEW95 No variants were found to co-segregate with the two other founder alleles R1138Q and Y768X.
X
ABCC6 p.Arg1138Gln 12384774:95:74
status: NEW104 Discussion The present study describes the identification of three PXE disease alleles, R1339C, Y768X and R1138Q, which are associated with three conserved haplotypes (types I, II and III) and which account for 74% of the PXE disease alleles among South African Afrikaners.
X
ABCC6 p.Arg1138Gln 12384774:104:106
status: NEW[hide] ABCC6/MRP6 mutations: further insight into the mol... Eur J Hum Genet. 2003 Mar;11(3):215-24. Hu X, Plomp A, Wijnholds J, Ten Brink J, van Soest S, van den Born LI, Leys A, Peek R, de Jong PT, Bergen AA
ABCC6/MRP6 mutations: further insight into the molecular pathology of pseudoxanthoma elasticum.
Eur J Hum Genet. 2003 Mar;11(3):215-24., [PMID:12673275]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a hereditary disease characterized by progressive dystrophic mineralization of the elastic fibres. PXE patients frequently present with skin lesions and visual acuity loss. Recently, we and others showed that PXE is caused by mutations in the ABCC6/MRP6 gene. However, the molecular pathology of PXE is complicated by yet unknown factors causing the variable clinical expression of the disease. In addition, the presence of ABCC6/MRP6 pseudogenes and multiple ABCC6/MRP6-associated deletions complicate interpretation of molecular genetic studies. In this study, we present the mutation spectrum of ABCC6/MRP6 in 59 PXE patients from the Netherlands. We detected 17 different mutations in 65 alleles. The majority of mutations occurred in the NBF1 (nucleotide binding fold) domain, in the eighth cytoplasmatic loop between the 15th and 16th transmembrane regions, and in NBF2 of the predicted ABCC6/MRP6 protein. The R1141X mutation was by far the most common mutation identified in 19 (32.2%) patients. The second most frequent mutation, an intragenic deletion from exon 23 to exon 29 in ABCC6/MRP6, was detected in 11 (18.6%) of the patients. Our data include 11 novel ABCC6/MRP6 mutations, as well as additional segregation data relevant to the molecular pathology of PXE in a limited number of patients and families. The consequences of our data for the molecular pathology of PXE are discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
38 Table 2 Summary of ABCC6/MRP6 mutations associated with PXE known today: our data combined with those of the literature Mutation Protein alteration Nucleotide substitution Location Reference Nonsense Q378X 1132C > T Exon 9 19,20 R518X 1552C > T Exon 2 41 Q749X 2247C > T Exon 17 This study Y768X 2304C > A Exon 18 22 R1030X 3088C > T Exon 23 22 R1141X 3421C > T Exon 24 12,20,22,38,39, this study R1164X 3490C > T Exon 24 12,41 Q1237X 3709C > T Exon 26 22 R1398X 4192C >T Exon 29 22 T364R Missense N411K 1091C > G Exon 9 20 A455P 1233T > G Exon 10 22 R518Q 1363G > C Exon 11 38 F568S 1553G > A Exon 12 22,38 L673P 1703T > C Exon 13 22 R765Q 2018T > C Exon 16 22 R1114P 2294G > A Exon 18 22, this study R1114H 3341G > C Exon 24 22 S1121W 3341G > A Exon 24 This study T1130M 3362C > G Exon 24 22 R1138W 3390C > T Exon 24 This study R1138Q 3412C > T Exon 24 12 R1138P 3413G > A Exon 24 12,22 G1203D 3413G > C Exon 24 22 R1221C 3608G > A Exon 25 22 V1298F 3663C > T Exon 26 This study T1301I 3892G > T Exon 28 22 G1302R 3902C > T Exon 28 22 A1303P 3904G > A Exon 28 22, this study R1314W 3907G > C Exon 28 22, this study R1314Q 3940C > T Exon 28 22 G1321S 3941G > A Exon 28 22 R1339C 3961G > A Exon 28 22 Q1347H 4015C > T Exon 28 22,39 G1354R 4041G > C Exon 28 22 D1361N 4060G > C Exon 29 20,38 K1394N 4081G > A Exon 29 22 I1424T 4182G > T Exon 29 This study R1459C 4271T > C Exon 30 22 4377C > T Exon 30 This study Frameshift IVS17-12delT T Intron 17 This study IVS21+1G>T Intron 21 22,38 IVS26-1G>A Intron 26 12,21,22 179del 9 Exon 2 20 179-195del Exon 2 22 960del C Exon 8 41 1944del22 Exon 16 This study 1995delG Exon 16 22 2322delC Exon 18 22 2542delG Exon 19 41 3775delT Exon 27 This study 4104delC Exon 29 22 4182delG Exon 29 This study 938-939insT Exon 8 22 4220insAGAA Exon 30 This study Large deletion Exons 23-29 21, This study Exon 15 22 ABCC1, ABCC6 41, this study Mutation types The mutation types found in this study are summarized in Table 1.
X
ABCC6 p.Arg1138Gln 12673275:38:830
status: NEW[hide] Pseudoxanthoma elasticum: a clinical, histopatholo... Surv Ophthalmol. 2003 Jul-Aug;48(4):424-38. Hu X, Plomp AS, van Soest S, Wijnholds J, de Jong PT, Bergen AA
Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update.
Surv Ophthalmol. 2003 Jul-Aug;48(4):424-38., [PMID:12850230]
Abstract [show]
Pseudoxanthoma elasticum is an autosomally inherited disorder that is associated with the accumulation of mineralized and fragmented elastic fibers in the skin, Bruch's membrane in the retina, and vessel walls. The ophthalmic and dermatologic expression of pseudoxanthoma elasticum and its vascular complications are heterogeneous, with considerable variation in phenotype, progression, and mode of inheritance. Using linkage analysis and mutation detection techniques, mutations in the ABCC6 gene were recently implicated in the etiology of pseudoxanthoma elasticum. ABCC6 encodes the sixth member of the ATP-binding cassette transporter and multidrug resistance protein family (MRP6). In humans, this transmembrane protein is highly expressed in the liver and kidney. Lower expression was found in tissues affected by pseudoxanthoma elasticum, including skin, retina, and vessel walls. So far, the substrates transported by the ABCC6 protein and its physiological role in the etiology of pseudoxanthoma elasticum are not known. A functional transport study of rat MRP6 suggests that small peptides such as the endothelin receptor antagonist BQ123 are transported by MRP6. Similar molecules transported by ABCC6 in humans may be essential for extracellular matrix deposition or turnover of connective tissue at specific sites in the body. One of these sites is Bruch's membrane. This review is an update on etiology of pseudoxanthoma elasticum, including its clinical and genetic features, pathogenesis, and biomolecular basis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
193 TABLE 3 Summary of ABCC6 Mutations in PXE Patients Mutation Protein Alteration Nucleotide Substitution Location Reference Nonsense Q378X 1132C Ͼ T Exon 9 16,107 R518X 1552C Ͼ T Exon 12 88 Y768X 2304C Ͼ A Exon 18 67 R1030X 3088C Ͼ T Exon 23 67 R1141X 3421C Ͼ T Exon 24 12,45,67,107,111,112,133 R1164X 3490C Ͼ T Exon 24 88,112 Q1237X 3709C Ͼ T Exon 26 67 R1398X 4192C Ͼ T Exon 29 67 Missense T364R 1091C Ͼ G Exon 9 107 N411K 1233T Ͼ G Exon 10 67 A455P 1363G Ͼ C Exon 11 142 R518Q 1553G Ͼ A Exon 12 67,142 F568S 1703T Ͼ C Exon 13 67 L673P 2018T Ͼ C Exon 16 67 R765Q 2294G Ͼ A Exon 18 67 R1114P 3341G Ͼ C Exon 24 67 S1121W 3362C Ͼ G Exon 24 67 R1138W 3412C Ͼ T Exon 24 111 R1138Q 3413G Ͼ A Exon 24 67,111 R1138P 3413G Ͼ C Exon 24 67 G1203D 3608G Ͼ A Exon 25 67 V1298F 3892G Ͼ T Exon 28 67 T13011 3902C Ͼ T Exon 28 67 G1302R 3904G Ͼ A Exon 28 67 A1303P 3907G Ͼ C Exon 28 67 R1314W 3940C Ͼ T Exon 28 67 R1314Q 3941G Ͼ A Exon 28 67 G1321S 3961G Ͼ A Exon 28 67 R1339C 4015C Ͼ T Exon 28 67,133 Q1347H 4041G Ͼ C Exon 28 67 G1354R 4060G Ͼ C Exon 29 107,142 D1361N 4081G Ͼ A Exon 29 67 11424T 4271T Ͼ C Exon 30 67 Frameshift Splicing IVS21 ϩ 1G ϾT Intron 21 67,142 IVS26-1G ϾA Intron 26 67,111,112 Deletion 179del9 Exon 2 107 179-195del Exon 2 67 960delC Exon 8 88 1944del22 Exon 16 12 1995delG Exon 16 67 2322delC Exon 18 67 2542delG Exon 19 67 3775delT Exon 27 12,67 4101delC Exon 29 67 Insertion 938-939insT Exon 8 67 4220insAGAA Exon 30 12 Intragenic deletion Exon 23-29 67,112 Exon 15 67 Intergenic deletion ABCC6 12,88 LOCAL RETINAL TRANSPORT FUNCTION OF ABCC6 ABCC6 Expression in the Retina Bergen et al detected ABCC6 expression in various tissues in man.12 Low expression levels of ABCC6 were observed in the retina as well as other tissues usually affected by PXE, including skin and vessel wall.
X
ABCC6 p.Arg1138Gln 12850230:193:777
status: NEW[hide] Novel ABCC6 mutations in pseudoxanthoma elasticum. J Invest Dermatol. 2004 Mar;122(3):608-13. Chassaing N, Martin L, Mazereeuw J, Barrie L, Nizard S, Bonafe JL, Calvas P, Hovnanian A
Novel ABCC6 mutations in pseudoxanthoma elasticum.
J Invest Dermatol. 2004 Mar;122(3):608-13., [PMID:15086542]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a heritable connective tissue disorder caused by mutations in an ABC (ATP-Binding Cassette) transporter gene (ABCC6), which manifests with cutaneous, ophthalmologic, and cardiovascular findings. We studied a cohort of 19 families with PXE, and identified 16 different mutations, nine of which were novel variants. The mutation detection rate was about 77%. We found that arginine codon 518 was, with the previously described R1141X and EX23_29del, a recurrently mutated amino acid (11.5% of the mutations detected for each variant R518Q and R518X). No clear delineation of genotype/phenotype correlation was identified, and marked intra-familial variability of the disease was seen in one family. One family with pseudodominant inheritance displayed three distinct ABCC6 mutations, providing further evidence for the probable exclusive recessive transmission of PXE. These data contribute to the expanding database of ABCC6 mutations, to the description of phenotypic variability, and inheritance in PXE, and should be helpful for genetic counselling.
Comments [show]
None has been submitted yet.
No. Sentence Comment
32 2 2 1 15 France F 50 R391G 1171A4G 9 1 0 0 A999_S1403del EX23_29del 23-29 16 France M 42 R1138Q 3413G4A 24 1 0 0 R1138Q 3413G4A 24 17 France F 35 R518X/?
X
ABCC6 p.Arg1138Gln 15086542:32:89
status: NEWX
ABCC6 p.Arg1138Gln 15086542:32:113
status: NEW[hide] ABCC6 mutations in Italian families affected by ps... Hum Mutat. 2004 Nov;24(5):438-9. Gheduzzi D, Guidetti R, Anzivino C, Tarugi P, Di Leo E, Quaglino D, Ronchetti IP
ABCC6 mutations in Italian families affected by pseudoxanthoma elasticum (PXE).
Hum Mutat. 2004 Nov;24(5):438-9., [PMID:15459974]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a genetic disorder, characterized by cutaneous, ocular and cardiovascular clinical symptoms, caused by mutations in a gene (ABCC6) that encodes for MRP6 (Multidrug Resistance associated Protein 6), an ATP-binding cassette membrane transporter. The ABCC6 gene was sequenced in 38 unrelated PXE Italian families. The mutation detection rate was 82.9%. Mutant alleles occurred in homozygous, compound heterozygous and heterozygous forms, however the great majority of patients were compound heterozygotes. Twenty-three different mutations were identified, among which 11 were new. Fourteen were missense (61%); five were nonsense (22%); two were frameshift (8.5%) and two were putative splice site mutations (8.5%). The great majority of mutations were located from exon 24 to 30, exon 24 being the most affected. Among the others, exons 9 and 12 were particularly involved. Almost all mutations were located in the intracellular site of MRP6. A positive correlation was observed between patient's age and severity of the disorder, especially for eye alterations. The relevant heterogeneity in clinical manifestations between patients with identical ABCC6 mutations, even within the same family, seems to indicate that, apart from PXE causative mutations, other genes and/or metabolic pathways might influence the clinical expression of the disorder.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 Exon 24 was affected by other types of mutations [c.3340C>T (p.R1114C), c.3380C>T (p.M1127T), c.3389C>T (p.T1130M), c.3413G>A (R1138Q)] in four families, for a total of 17 out of 38 families (44.7%) and for a total of 24 alleles over the 76 examined (31.6%).
X
ABCC6 p.Arg1138Gln 15459974:77:127
status: NEW64 PXE-causative Mutations Recognized (on one and both alleles) in Italian Patients Family/ Proband Affected subjects Age / gender Clinical score Tot Mutations* Allele 1 Allele 2 Mutation type 001 32 F S2,E2 4 p.R518Q p.T1130MI-3097 002 36 M S3,E2,V2,C2 9 p.R518Q p.T1130M I-3013 001 46 F S1,E3 4 p.R1339C None found I-3094 001 57 F S2,E2 4 p.C440G p.P1346S I-3103 001 57 M E2 2 p.V810M p.R1114C I-3076 001 57 F S2,E4,V3 9 p.R1339C p.R1339C I-3016 001 69 F S3,E2,V2 7 p.N411K p.R1138Q missense I-3082 001 23 M S1,E2 3 p.R518Q p.R1141X I-3074 001 27 F S2,E2 4 p.T364R p.R518X I-3015 001 27 F S2,E3 5 p.Q378X p.R600G I-3062 001 45 M S2,E4,V2 8 p.R1141X p.E1400K 001 50 F S1 1 p.R1275X p.E1400K 002 60 F S3,E3 6 p.R1275X p.E1400K I-3067 003 66 F S2,E2 4 p.R1275X p.E1400K 001 61 F S3,E2 4 p.R518Q p.R1141XI-3027 002 63 F S3,E4,V3 10 p.R518Q p.R1141X missense + nonsense 001 23 F S3,E2 5 p.R1141X p.R1141XI-3056** 002 32 M S2,E2 4 p.R1141X p.R1141X 001 27 F S1,E2 3 p.R1141X p.R1141XI-3057** 002 31 M S3,E2 5 p.R1141X p.R1141X 001 28 M S1,E2 3 p.R1141X None foundI-3045 002 32 F S3,E2,V1 6 p.R1141X None found I-3107 001 29 M S2,E1 3 p.R1030X p.R1141X I-3073 001 31 F S3,E2 5 p.R1141X p.R1141X I-3111 001 32 F S1,E2 3 p.R1141X p.R1141X I-3090 001 34 F S2,E1 3 p.R1141X p.R1141X I-3001 001 37 F S3,E2,V2 7 p.R1030X None found 001 40 F S2,E2 4 p.R1141X p.R1141XI-3007** 002 48 F S1,E2 3 p.R1141X p.R1141X I-3114 001 40 M S2,E2,V3,C1,G2 10 p.R518X p.R518X I-3054 001 44 F S2,E3 5 p.R518X p.R518X 001 47 F S3,E4,C2,G1 10 p.R1141X p.R1141XI-3055** 002 50 F S3,E3 6 p.R1141X p.R1141X 001 50 F S3,E4,V3,C2 12 p.R518X p.R1030X 002 52 F S3,E4,V3 10 p.R518X p.R1030X I-3017 003 55 F S3,E2 5 p.R518X p.R1030X I-3100 001 52 M S3,E3 6 p.Q378X p.Q378X I-3051 001 53 F S3,E4,V2 9 p.R1141X p.R1141X I-3034 001 53 M S3,E4,V3 10 p.R1141X p.R1141X I-3093 001 57 F S3,E3,V2,C3 11 p.R518X None found I-3087 001 57 F S3,E4,V2,C2 11 p.Q378X p.Q378X I-3040 001 60 F S3,E4,V2 9 p.R1141X None found I-3033 001 62 F S3,E4 7 p.R1141X p.R1141X nonsense I-3026 001 36 F S3,E2,G1 6 p.R518X c.2248-2_2248- 1del I-3024 001 40 F S1,E2,V3 6 p.R518X p.L1182PfsX96 I-3072 001 41 F S2,E2,C2 6 p.M1127T c.3736-1G>A I-3002 001 50 F S3,E2 5 p.A820P c.3736-1G>A others Family/ Proband Affected subjects Age / gender Clinical score Tot Mutations* Allele 1 Allele 2 Mutation type 002 57 F S2,E4 6 p.A820P c.3736-1G>A I-3008 001 53 F S2,E2,C1 5 p.M1440CfsX24 p.M1440CfsX24 Patients are identified by an international code: I = Italian, 3001 = family number (European patients are numerated from 3000), 001 = subject number.
X
ABCC6 p.Arg1138Gln 15459974:64:475
status: NEW72 ABCC6/MRP6 Mutations Found in Italian PXE Patients Number of families INTRON EXON cDNA* PROTEIN* References 1 9 c.1091C>G p.T364R Pulkkinen et al., 2001 3 9 c.1132C>T p.Q378X Pulkkinen et al., 2001; Cai et al., 2001 1 10 c.1318T>G p.C440G Present study 1 10 c.1233T>G p.N411K Le Saux et al., 2001 7 12 c.1552C>T p.R518X Meloni et al., 2001; Chassaing et al., 2004 3 12 c.1553G>A p.R518Q Le Saux et al., 2001; Chassaing et al., 2004 1 14 c.1798C>T p.R600G Present study 1 17 c.2248-2_2248- 1del - Present study 1 19 c.2428G>A p.V810M Present study 1 19 c.2458G>C p.A820P Present study 3 23 c.3088C>T p.R1030X Le Saux et al., 2001 1 24 c.3340C>T p.R1114C Present study 1 24 c.3380C>T p.M1127T Present study 1 24 c.3389C>T p.T1130M Chassaing et al., 2004; Gotting et al., 2004 1 24 c.3413G>A p.R1138Q Le Saux et al., 2000; Ringpfeil et al., 2000; Le Saux et al., 2001 13 24 c.3421C>T p.R1141X Bergen et al., 2000; Germain et al., 2000; Ringpfeil et al., 2000; Le Saux et al., 2001; Pulkkinen et al., 2001; Uitto et al., 2001; Hu et al., 2003 ; Gotting et al., 2004 1 25 c.3544_3544dupC p.L1182PfsX96 Present study 2 26 c.3736-1G>A - Ringpfeil et al., 2000; Le Saux et al., 2001 1 27 c.3823C>T p.R1275X Present study 2 28 c.4015C>T p.R1339C Le Saux et al., 2001 1 28 c.4036C>T p.P1346S Present study 2 29 c.4198G>A p.E1400K Chassaing et al., 2004 1 30 c.4318_4318delA p.M1440CfsX24 Present study The number of families in which a specific mutation was found (in heterozygous and in homozygous state) is reported.
X
ABCC6 p.Arg1138Gln 15459974:72:791
status: NEW[hide] Pseudoxanthoma elasticum and nephrolithiasis. J Eur Acad Dermatol Venereol. 2005 Mar;19(2):212-5. Fabre B, Bayle P, Bazex J, Durand D, Lamant L, Chassaing N
Pseudoxanthoma elasticum and nephrolithiasis.
J Eur Acad Dermatol Venereol. 2005 Mar;19(2):212-5., [PMID:15752294]
Abstract [show]
We report the case of a 42-year-old man with pseudoxanthoma elasticum (PXE) and recurrent bilateral nephrolithiasis. Diagnosis of PXE was made by yellow papules on the neck and ophthalmologic angioid streaks. This diagnosis was confirmed by a skin biopsy (Von Kossa stain) and by genotyping analysis of ABCC6 (homozygous mutation R1138Q). Nephrolithiasis was recurrent and biological investigations showed hypophosphoraemia, hyperphosphaturia, hypercalciuria, normocalcaemia, normal serum parathyroid hormone value, high 1,25-dihydroxy vitamin D value and a renal calcium oxalate stone. ABCC6 encodes for MRP6, a multidrug resistant protein strongly expressed in the liver and kidney. The substrates of the MRP6 remain unknown. As PXE is characterized by calcification of elastic fibres and this patient presents important phosphocalcic anomalies, we discuss the possible implications of MRP6 in the phosphocalcic metabolism.
Comments [show]
None has been submitted yet.
No. Sentence Comment
5 This diagnosis was confirmed by a skin biopsy (Von Kossa stain) and by genotyping analysis of ABCC6 (homozygous mutation R1138Q).
X
ABCC6 p.Arg1138Gln 15752294:5:121
status: NEW25 Analysis of the ABCC6 gene revealed homozygosity for the previously described missense mutation R1138Q.
X
ABCC6 p.Arg1138Gln 15752294:25:96
status: NEW33 Discussion Our patient presented all the main diagnostic criteria defined by the consensus conference of Philadelphia in 1992, which enabled confirmation of the PXE diagnosis: characteristic cutaneous lesions, typical histopathological manifestation, and characteristic ocular disease.1 The identification of the missense R1138Q mutation in the homozygous state of the ABCC6 gene in our patient therefore confirmed the diagnosis.2 His parent`s DNA was not available for the study and a deletion of one allele of the ABCC6 gene could not be ruled out.
X
ABCC6 p.Arg1138Gln 15752294:33:322
status: NEW[hide] Pseudoxanthoma elasticum: a clinical, pathophysiol... J Med Genet. 2005 Dec;42(12):881-92. Epub 2005 May 13. Chassaing N, Martin L, Calvas P, Le Bert M, Hovnanian A
Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations.
J Med Genet. 2005 Dec;42(12):881-92. Epub 2005 May 13., [PMID:15894595]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is an inherited systemic disease of connective tissue primarily affecting the skin, retina, and cardiovascular system. It is characterised pathologically by elastic fibre mineralisation and fragmentation (so called "elastorrhexia"), and clinically by high heterogeneity in age of onset and the extent and severity of organ system involvement. PXE was recently associated with mutations in the ABCC6 (ATP binding cassette subtype C number 6) gene. At least one ABCC6 mutation is found in about 80% of patients. These mutations are identifiable in most of the 31 ABCC6 exons and consist of missense, nonsense, frameshift mutations, or large deletions. No correlation between the nature or location of the mutations and phenotype severity has yet been established. Recent findings support exclusive recessive inheritance. The proposed prevalence of PXE is 1/25,000, but this is probably an underestimate. ABCC6 encodes the protein ABCC6 (also known as MRP6), a member of the large ATP dependent transmembrane transporter family that is expressed predominantly in the liver and kidneys, and only to a lesser extent in tissues affected by PXE. The physiological substrates of ABCC6 remain to be determined, but the current hypothesis is that PXE should be considered to be a metabolic disease with undetermined circulating molecules interacting with the synthesis, turnover, or maintenance of elastic fibres.
Comments [show]
None has been submitted yet.
No. Sentence Comment
378 Interestingly, among the 49 different missense mutations in ABCC6 (42 previously published and seven new ones in the present study), the majority (43) replace critical amino acids in intracellular domains (seven and 19 mutations are located in I1424T R1459C 4220insAGAA 4318delA G1354R D1361N K1394N E1400K R1298X 410delC 418delG 3775delT R1275X R1221C D1238H W1223X Q1237X IVS26-1G→A R1114C R1114H R1114P S1121W M1127T T1130M R1138P R1138Q R1138W R1141X R1164X R765Q A766D Y768X A781V 2322delC IVS19-2delAG T364R R391G Q378X Q363_R373del 938_939insT 960delC IVS8+2delTG G199X Y227X 179_195del 179_187del G226R V74del Q749X IVS17-12delTT IVS14-5T→G IVS13-29T→A R600G V1298F G1299S T1301I G1302R A1303P S1307P R1314Q R1314W G1321S L1335P R1339C P1346S Q1347H R1030X F1048del R807Q V810M A820P 254delG L673P 1944_1966del 1995delG R518Q R518X K502M A455P G992R IVS21+1G→T G1203DF568SN411K C440G IVS25-3C→A 3544dupC Ex23_29del 30 Ex15del ABCC6del 252015105 Figure 10 Position of the mutations in the ABCC6 gene.
X
ABCC6 p.Arg1138Gln 15894595:378:441
status: NEW379 Table 2 ABCC6 mutations Nucleotide variation Protein alteration Location (gene ) Location (protein) Reference Missense 676 GRA G226R Exon 7 CL 3 This study 1091 CRG T364R Exon 9 TS 7 63, 78 1171 ARG R391G Exon 9 CL 4 88 1233 TRG N411K Exon 10 CL 4 63, 90 1318 TRG C440G Exon 10 TS 8 63 1363 GRC A455P Exon 11 TS 9 86 1505 ART K502M Exon 12 CL 5 This study 1553 GRA R518Q Exon 12 CL 5 63, 86, 88, 90 1703 TRC F568S Exon 13 ECL 5 90 1798 CRT R600G Exon 14 CL 6 63 2018 TRC L673P Exon 16 NBF 1 90 2294 GRA R765Q Exon 18 NBF 1 87, 90 2297 CRA A766D Exon 18 NBF 1 88 2342 CRT A781V Exon 18 NBF 1 This study 2420 GRA R807Q Exon 19 NBF 1 This study 2428 GRA V810M Exon 19 NBF1 63 2458 GRC A820P Exon 19 NBF1 63 2965 GRC G992R Exon 22 ECL 6 This study 3340 CRT R1114C Exon 24 CL 8 63 3341 GRA R1114H Exon 24 CL 8 87 3341 GRC R1114P Exon 24 CL 8 90 3362 CRG S1121W Exon 24 CL 8 90 3380 CRT M1127T Exon 24 CL 8 63 3389 CRT T1130M Exon 24 CL 8 63, 87, 88 3412 CRT R1138W Exon 24 CL 8 17 3413 GRC R1138P Exon 24 CL 8 90 3413 GRA R1138Q Exon 24 CL 8 17, 63, 88, 90 3608 GRA G1203D Exon 25 TS17 90 3663 CRT R1221C Exon 26 COOH 87 3712 GRC D1238H Exon 26 COOH 88 3892 GRT V1298F Exon 28 NBF 2 90 3895 GRA G1299S Exon 28 NBF 2 This study 3902 CRT T1301I Exon 28 NBF 2 90 3904 GRA G1302R Exon 28 NBF 2 87, 90 3907 GRC A1303P Exon 28 NBF 2 87, 90 3919 TRC S1307P Exon 28 NBF 2 This study 3940 CRT R1314W Exon 28 NBF 2 90 3941 GRA R1314Q Exon 28 NBF 2 90 3961 GRA G1321S Exon 28 NBF 2 90 4004 TRC L1335P Exon 28 NBF 2 88 4015 CRT R1339C Exon 28 NBF 2 18, 63, 90 4036 CRT P1346S Exon 28 NBF 2 63 4041 GRC Q1347H Exon 28 NBF 2 90 4060 GRC G1354R Exon 29 NBF 2 78, 86 4081 GRA D1361N Exon 29 NBF 2 90 4182 GRT K1394N Exon 29 NBF 2 87 4198 GRA E1400K Exon 29 NBF 2 63, 88 4271 TRC I1424T Exon 30 NBF 2 90 4377 CRT R1459C Exon 30 NBF 2 87 Nonsense 595 CRT G199X Exon 5 89 681 CRG Y227X Exon 7 84 1132 CRT Q378X Exon 9 63, 78, 83 1552 CRT R518X Exon 12 63, 84, 88 2245 CRT Q749X Exon 17 87 2304 CRA Y768X Exon 18 90 3088 CRT R1030X Exon 23 63, 90 3421 CRT R1141X Exon 24 15, 17, 18, 63, 78, 85, 87, 88, 90 3490 CRT R1164X Exon 24 84, 85, 88 3668 GRA W1223X Exon 26 88 3709 CRT Q1237X Exon 26 90 3823 CRT R1275X Exon 27 63 4192 CRT R1398X Exon 29 90 Splicing alteration IVS8+2delTG Intron 8 This study IVS13-29 TRA Intron 13 This study IVS14-5 TRG Intron 14 This study IVS17-12delTT Intron 17 87 IVS18-2delAG Intron 17 63 IVS21+1 GRT Intron 21 86, 90 IVS25-3 CRA Intron 25 88 IVS26-1 GRA Intron 26 17, 63, 90 Insertion 938_939insT Frameshift Exon 8 90 3544dupC Frameshift Exon 25 63 4220insAGAA Frameshift Exon 30 15, 87 Small deletion 179_187del Frameshift Exon 2 78 179_195del Frameshift Exon 2 90 Pseudoxanthoma elasticum www.jmedgenet.com NBF1 and NBF2, respectively), four are located in transmembrane domains, and only two mutations have been identified in extracellular domains.
X
ABCC6 p.Arg1138Gln 15894595:379:1017
status: NEW[hide] Analysis of sequence variations in the ABCC6 gene ... J Vasc Res. 2005 Sep-Oct;42(5):424-32. Epub 2005 Aug 26. Schulz V, Hendig D, Schillinger M, Exner M, Domanovits H, Raith M, Szliska C, Kleesiek K, Gotting C
Analysis of sequence variations in the ABCC6 gene among patients with abdominal aortic aneurysm and pseudoxanthoma elasticum.
J Vasc Res. 2005 Sep-Oct;42(5):424-32. Epub 2005 Aug 26., [PMID:16127278]
Abstract [show]
Abdominal aortic aneurysm (AAA) is characterized by dilatation of arterial walls, which is accompanied by degradation of elastin and collagen molecules. Biochemical and environmental factors are known to be relevant for AAA development, and familial predisposition is well recognized. A connective tissue disorder that is also associated with fragmentation of elastic fibers is Pseudoxanthoma elasticum (PXE). PXE is caused by mutations in the ABCC6 gene and mainly affects dermal, ocular and all vascular tissues. To investigate whether variations in ABCC6 are found in AAA patients and to determine mutations in PXE patients, we analyzed seven selected ABCC6 exons of 133 AAA and 54 PXE patients subjected to mutational analysis. In our cohort of AAA patients, we found five ABCC6 alterations, which result in missense or silent amino acid variants. The allelic frequencies of these sequence variations were not significantly different between AAA patients and healthy controls. Therefore, we suggest that alterations in ABCC6 are not a genetic risk factor for AAA. Mutational screening of the PXE patients revealed 19 different ABCC6 variations, including two novel PXE-causing mutations. These results expand the ABCC6 mutation database in PXE.
Comments [show]
This is erroneously identified as a reported sequence variant. In the cited article E18L is the name of a PCR primer.
aranyi on 2012-05-05 13:15:49
aranyi on 2012-05-05 13:15:49
No. Sentence Comment
109 In addition, we detected a silent variation (p.V725V) and 14 missense mutations (p.R724K, p.I742V, p.M751K, p.R760W, p.R765Q, p.R1114C, p.R1114H, p.T1130M, p.R1138Q, p.T1301I, p.G1311E, p.R1314Q, p.R1314W and p.S1403R) in their heterozygous, compound heterozygous and homozygous forms in 17 PXE patients.
X
ABCC6 p.Arg1138Gln 16127278:109:158
status: NEW[hide] Mutation detection in the ABCC6 gene and genotype-... J Med Genet. 2007 Oct;44(10):621-8. Epub 2007 Jul 6. Pfendner EG, Vanakker OM, Terry SF, Vourthis S, McAndrew PE, McClain MR, Fratta S, Marais AS, Hariri S, Coucke PJ, Ramsay M, Viljoen D, Terry PF, De Paepe A, Uitto J, Bercovitch LG
Mutation detection in the ABCC6 gene and genotype-phenotype analysis in a large international case series affected by pseudoxanthoma elasticum.
J Med Genet. 2007 Oct;44(10):621-8. Epub 2007 Jul 6., [PMID:17617515]
Abstract [show]
BACKGROUND: Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder with considerable phenotypic variability, mainly affects the eyes, skin and cardiovascular system, characterised by dystrophic mineralization of connective tissues. It is caused by mutations in the ABCC6 (ATP binding cassette family C member 6) gene, which encodes MRP6 (multidrug resistance-associated protein 6). OBJECTIVE: To investigate the mutation spectrum of ABCC6 and possible genotype-phenotype correlations. METHODS: Mutation data were collected on an international case series of 270 patients with PXE (239 probands, 31 affected family members). A denaturing high-performance liquid chromatography-based assay was developed to screen for mutations in all 31 exons, eliminating pseudogene coamplification. In 134 patients with a known phenotype and both mutations identified, genotype-phenotype correlations were assessed. RESULTS: In total, 316 mutant alleles in ABCC6, including 39 novel mutations, were identified in 239 probands. Mutations were found to cluster in exons 24 and 28, corresponding to the second nucleotide-binding fold and the last intracellular domain of the protein. Together with the recurrent R1141X and del23-29 mutations, these mutations accounted for 71.5% of the total individual mutations identified. Genotype-phenotype analysis failed to reveal a significant correlation between the types of mutations identified or their predicted effect on the expression of the protein and the age of onset and severity of the disease. CONCLUSIONS: This study emphasises the principal role of ABCC6 mutations in the pathogenesis of PXE, but the reasons for phenotypic variability remain to be explored.
Comments [show]
None has been submitted yet.
No. Sentence Comment
254 Collectively, the mutations in exons 24 and 28, including the common mutations R1141X and del 23-29, accounted for 71.5% of all the 316 mutations identified in this study (table 2), and the 11 most prevalent mutations (R1141X, del23-29, R1339C, R1164X, 2787+1GRT, G1302R, R1138Q, R1138W, Q378X, R1314W, R518Q) accounted for 70% (223 of 316) of the mutant alleles identified (table 2).
X
ABCC6 p.Arg1138Gln 17617515:254:272
status: NEW262 Genotype-phenotype correlations The comparison of subjects whose mutations would probably have resulted in no functional protein with those whose mutations would probably have resulted in some functional Table 2 Distinct mutations identified in the international case series of 271 patients with PXE Nucleotide change*À Predicted consequenceÀ Frequency (alleles) Exon-intron location Domain affected` Mutant alleles (%) References1 c.105delA p.S37fsX80 2 2 0.6 28 c.177-185del9 p.R60_Y62del 1 2 0.3 9, 28 c.179del12ins3 p. R60_W64del L60_R61ins 1 2 0.3 c.220-1gRc SJ 1 IVS 2 0.3 c.724gRt p.E242X 1 7 0.3 c.938insT FS 1 8 0.3 25 c.998+2delT SJ 1 IVS 8 0.3 2, 21 c.998+2del2 SJ 1 IVS 8 0.3 18 c.951cRg p.S317R 2 9 TM6 0.6 28 c.1087cRt p.Q363X 1 9 0.3 c.1091gRa p.T364R 1 9 TM7 0.3 9, 19, 21, 28 c.1132cRt p.Q378X 4 9 1.2 9, 17-19, 28, 37 c.1144cRt p.R382W 2 9 IC4 0.6 c.1171aRg p.R391G 3 9 IC4 0.9 9, 18, 28, 37 c.1176gRc p.K392N 1 9 IC4 0.3 c.1388tRa p.L463H 1 11 TM9 0.3 c.1484tRa p.L495H 1 12 IC5 0.3 28 c.1552cRt p.R518X 2 12 0.6 18, 19, 27, 28, 37 c.1553gRa p.R518Q 4 12 IC5 1.2 18, 19, 24, 28, 31 c.1603tRc p.S535P 1 12 TM10 0.3 c.1703tRc p.F568S 1 13 TM11 0.3 24 c.1798cRt p.R600C 1 14 TM11 0.3 c.1857insC FS 1 14 0.3 c.1987gRt p.G663C 1 16 NBF1 0.3 c.1999delG FS 1 16 0.3 c.2070+5GRA SJ 2 IVS 16 0.6 c.2093aRc p.Q698P 2 17 NBF1 0.6 c.2097gRt p.E699D 1 17 NBF1 0.3 c.2177tRc p.L726P 1 17 NBF1 0.3 c.2237ins10 FS 2 17 0.6 c.2252tRa p.M751K 1 18 NBF1 0.3 20, 37 c.2263gRa p.G755R 2 18 NBF1 0.6 c.2278cRt p.R760W 3 18 NBF1 0.9 20, 28, 32, 37 c.2294gRa p.R765Q 2 18 NBF1 0.6 20-22, 25, 28, 32, 37 c.2329gRa p.D777N 1 18 NBF1 0.3 c.2359gRt p.V787I 1 18 NBF1 0.3 c.2432cRt p.T811M 1 19 IC6 0.3 6 c.2643gRt p.R881S 1 20 IC6 0.3 c.2787+1GRT SJ 9 IVS 21 2.8 17, 20, 24, 28, 31, 37 c.2814cRg p.Y938X 1 22 0.3 c.2820insC FS 1 22 0.3 c.2831cRt p.T944I 1 22 TM12 0.3 c.2848gRa p.A950T 1 22 TM12 0.3 c.2974gRc p.G992R 1 22 TM13 0.3 2, 42 c.3340cRt p.R1114C 2 24 IC8 0.6 19, 28, 32, 37, 41 c.3389cRt p.T1130M 3 24 IC8 0.9 18, 19, 21, 22, 28, 30, 32, 37, 41 c.3398gRc p.G1133A 1 24 IC8 0.3 c.3412gRa p.R1138W 7 24 IC8 2.2 28, 30, 37 c.3413cRt p.R1138Q 7 24 IC8 2.2 18, 19, 24, 25, 28, 30, 32, 37, 41 c.3415gRa p.A1139T 2 24 IC8 0.6 c.3415gRa & c.2070+5GRA* p.A1139T & SJ 1 24, IVS 16 IC8 0.3 c.3415gRa & c.4335delG* p.A1139T & FS 1 24, 30 IC8 0.3 c.3421cRt p.R1141X 92 24 29.3 5, 9, 15,18, 19, 21, 22, 24, 28, 30-32, 33, 37, 41 c.3427cRt p.Q1143X 1 24 0.3 c.3490cRt p.R1164X 15 24 4.7 18, 27, 28, 31, 33 c.3491gRa p.R1164Q 1 24 IC8 0.3 28 c.3661cRt p.R1221C 1 26 IC9 0.3 21, 22, 28, 29 c.3662gRa p.R1221H 2 26 IC9 0.6 40 c.3676cRa p.L1226I 1 26 IC9 0.3 c.3722gRa p.W1241X 2 26 0.6 c.3774insC FS 2 27 0.6 c.3775delT p.G1259fsX1272 3 27 0.9 15, 25, 28, 41 c.3880-3882del p.K1294del 1 27 0.3 c.3883-5GRA SJ 1 IVS 27 0.3 c.3892gRt p.V1298F 1 28 NBF2 0.3 25 c.3904gRa p.G1302R 7 28 NBF2 2.2 21, 22, 25, 28 c.3907gRc p.A1303P 1 28 NBF2 0.3 21, 22, 25, 28 c.3912delG FS 1 28 0.3 28 c.3940cRt p.R1314W 4 28 NBF2 1.2 24, 25, 32, 36 c.3941gRa p.R1314Q 1 28 NBF2 0.3 25, 28, 32, 36, 41 c.4004tRa p.L1335Q 1 28 NBF2 0.3 c.4015cRt p.R1339C 16 28 NBF2 5.0 19, 25, 28, 33 c.4016gRa p.R1339H 2 28 NBF2 0.6 c.4025tRc p.I1342T 1 28 NBF2 0.3 protein did not yield significant differences.
X
ABCC6 p.Arg1138Gln 17617515:262:2145
status: NEW[hide] Spectrum of genetic variation at the ABCC6 locus i... J Dermatol Sci. 2009 Jun;54(3):198-204. Epub 2009 Mar 31. Ramsay M, Greenberg T, Lombard Z, Labrum R, Lubbe S, Aron S, Marais AS, Terry S, Bercovitch L, Viljoen D
Spectrum of genetic variation at the ABCC6 locus in South Africans: Pseudoxanthoma elasticum patients and healthy individuals.
J Dermatol Sci. 2009 Jun;54(3):198-204. Epub 2009 Mar 31., [PMID:19339160]
Abstract [show]
BACKGROUND: Pseudoxanthoma elasticum (PXE) is an autosomal recessive metabolic disorder with ectopic mineralization in the skin, eyes and cardiovascular system. PXE is caused by mutations in ABCC6. OBJECTIVE: To examine 54 unrelated South African PXE patients for ABCC6 PXE causing mutations. METHODS: Patients were screened for mutations in ABCC6 using two strategies. The first involved a comprehensive screening of all the ABCC6 exons and flanking regions by dHPLC or sequencing whereas the second involved screening patients only for the common PXE mutations. The ABCC6 gene was screened in ten white and ten black healthy unrelated South Africans in order to examine the level of common non-PXE associated variation. RESULTS: The Afrikaner founder mutation, R1339C, was present in 0.41 of white ABCC6 PXE alleles, confirming the founder effect and its presence in both Afrikaans- (34/63 PXE alleles) and English-speakers (4/28). Eleven mutations were detected in the white patients (of European origin), including two nonsense mutations, 6 missense mutations, two frameshift mutations and a large deletion mutation. The five "Coloured" patients (of mixed Khoisan, Malay, European and African origin) included three compound heterozygotes with R1339C as one of the mutations. The three black patients (sub-Saharan African origin) were all apparent homozygotes for the R1314W mutation. Blacks showed a trend towards a higher degree of neurtral variation (18 variants) when compared to whites (12 variants). CONCLUSION: Delineation of the ABCC6 mutation profile in South African PXE patients will be used as a guide for molecular genetic testing in a clinical setting and for genetic counselling.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 Exons 12, 18 and 24 were PCR amplified and sequenced to detect the R518Q, Y768X, R1141X and R1138Q mutations and the common del23-29 mutation was detected as previously described [16].
X
ABCC6 p.Arg1138Gln 19339160:80:92
status: NEW98 The next three more common mutations are R1141X (0.09), Y768X (0.08) and R1138Q (0.06).
X
ABCC6 p.Arg1138Gln 19339160:98:73
status: NEW121 of alleles with mutation Frequency R1339C c.4015C>T 28 NBF2 18 0.375 21 0.447 0.411 (39) [30-32] R1138Q c.3413G>A 24 CL8 5 0.104 1 0.021 0.063 (6) [3,7,32] Y768X c.2304C>A 18 NBF1 5 0.104 3 0.064 0.084 (8) [31] R1141X c.3421C>T 24 CL8 4 0.083 5 0.106 0.095 (9) [3,6,13] R518Q c.1553G>A 12 CL5 2 0.042 1 0.021 0.032 (3) [31-33] Deletion ABCC6del23-29 23-29 - 1 0.021 2 0.043 0.032 (3) [6,16,31,32] L1335P c.4004T>C 28 NBF2 2 0.042 - - Other = 0.063 (6) [3] G1302R c.3904G>A 28 NBF2 1 0.021 - - [31] L726P c.2177T>C 17 NBF1 1 0.021 - - This Study Frameshift c.3775delT 27 CL9 1 0.021 - - [6] Frameshift c.4104delC 29 NBF2 1 0.021 - - [31] Unknown - - - 7 0.146 14 0.298 0.221 (21) - Total 48 47 Mutation detection rate 0.855 0.702 0.717 a ''Coloured``, black and Indian patients are excluded from the table because of the small sample size.
X
ABCC6 p.Arg1138Gln 19339160:121:97
status: NEW145 Mutation Afrikaans-speakersa English-speakersa No. Frequency No. Frequency R1339C 34 0.54 4 0.14 R1138Q 5 0.08 1 0.04 Y768X 5 0.08 3 0.11 R1141X 5 0.08 4 0.14 R518Q 1 0.02 2 0.07 del23-29 0 - 3 0.11 Other 0 - 4 0.14 Unknown 13 0.21 7 0.25 Total no. alleles 63 28 a Only 2 families were bilingual Afrikaans/English speaking and not included in this table.
X
ABCC6 p.Arg1138Gln 19339160:145:97
status: NEW160 Three further mutations have frequencies above 0.06, namely R1138Q, Y768X and R1141X.
X
ABCC6 p.Arg1138Gln 19339160:160:60
status: NEW161 Of these, only the R1138Q mutation appeared to be more common among the Afrikaans-speakers.
X
ABCC6 p.Arg1138Gln 19339160:161:19
status: NEW195 It detects 79.2% of the PXE mutations in white South African patients including: R1339C, R1138Q, Y768X, R1141X, R518Q, del23-29, L1335P and G1302R (calculated according to detection Strategy 1, Table 1).
X
ABCC6 p.Arg1138Gln 19339160:195:89
status: NEW[hide] Pseudoxanthoma elasticum: a streamlined, ethnicity... Clin Transl Sci. 2010 Dec;3(6):295-8. doi: 10.1111/j.1752-8062.2010.00243.x. Larusso J, Ringpfeil F, Uitto J
Pseudoxanthoma elasticum: a streamlined, ethnicity-based mutation detection strategy.
Clin Transl Sci. 2010 Dec;3(6):295-8. doi: 10.1111/j.1752-8062.2010.00243.x., [PMID:21167005]
Abstract [show]
Pseudoxanthoma elasticum (PXE), an autosomal recessive multisystem disorder, is caused by mutations in the ABCC6 gene, and approximately 300 distinct mutations representing >1000 mutant alleles have been disclosed thus far. Few population-based studies have reported mutational hotspots in some geographic areas. In this study, we attempted to correlate recurring mutations with the individuals' ethnic origin. Specifically, we plotted our international database of 70 families from distinct or mixed ethnic backgrounds against their mutations. The frequent p.R1141X mutation was distributed widely across Europe, while deletion of exons 23-29 (del23-29) was encountered in Northern Europe and in Northern Mediterranean countries. p.R1138W may be a marker for French descent, evidenced by its presence also in French Canadians. The splice site transition mutation 3736-1G-->A was seen in the neighboring countries Greece and Turkey, whereas 2542 delG occurs only in the Japanese. Two mutations seem to be present worldwide without evidence of a founder effect, p.Q378X and p.R1339C, suggesting the presence of mutational hotspots. Knowledge of this distribution will allow us to streamline mutation screening through a targeted, stepwise approach when the ethnicity of a patient is known. This will facilitate the identification of individuals at risk, improving their care to prevent ophthalmological and vascular disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
52 Exon 24 also harbored other mutations (p.R1138Q, p.R1164X, and p.R1164Q) that did not appear to have a predilection for specific ethnicities.
X
ABCC6 p.Arg1138Gln 21167005:52:41
status: NEW[hide] [Pseudoxanthoma elasticum]. Ophthalmologe. 2006 Jun;103(6):537-51; quiz 552-3. Ladewig MS, Gotting C, Szliska C, Issa PC, Helb HM, Bedenicki I, Scholl HP, Holz FG
[Pseudoxanthoma elasticum].
Ophthalmologe. 2006 Jun;103(6):537-51; quiz 552-3., [PMID:16763870]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is an inherited disorder that is associated with accumulation of mineralized and fragmented elastic fibers in the skin, vessel walls, and Bruch's membrane. Clinically, patients exhibit characteristic lesions of the skin (soft, ivory-colored papules in a reticular pattern that predominantly affect the neck), the posterior segment of the eye (peau d'orange, angioid streaks, choroidal neovascularizations), and the cardiovascular system (peripheral arterial occlusive disease, coronary occlusion, gastrointestinal bleeding). There is no causal therapy. Recent studies suggest that PXE is inherited almost exclusively as an autosomal recessive trait. Its prevalence has been estimated to be 1:25,000-100,000. The ABCC6 gene on chromosome 16p13.1 is associated with the disease. Mutations within the ABCC6 gene cause reduced or absent transmembraneous transport that leads to accumulation of substrate and calcification of elastic fibers. Although based on clinical features the diagnosis appears readily possible, variability in phenotypic expressions and the low prevalence may be responsible that the disease is underdiagnosed. This review covers current knowledge of PXE and presents therapeutic approaches.
Comments [show]
None has been submitted yet.
No. Sentence Comment
272 Internetadressen PXE-Selbsthilfegruppe Deutschland : http://www.pxe-groenblad.de PXE International: http://www.pxe.org Tabelle 5 PXE verursachende Mutationen imabcc6-Gen Klassifikation Lokalisation Gen Protein Missense Exon 9 Exon 9 Exon 10 Exon 10 Exon 11 Exon 12 Exon 13 Exon 14 Exon 16 Exon 18 Exon 18 Exon 18 Exon 18 Exon 19 Exon 19 Exon 19 Exon 22 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 25 Exon 26 Exon 26 Exon 26 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 29 Exon 29 Exon 29 Exon 29 Exon 29 Exon 30 Exon 30 Exon 30 c.1091CaG c.1171AaG c.1233TaG c.1318TaG c.1363GaC c.1553GaA c.1703TaC c.1798CaT c.2018TaC c.2252TaA c.2278CaT c.2294GaA c.2297CaA c.2428GaA c.2458GaC c.2552TaC c.2855TaG c.3340CaT c.3341GaA c.3341GaC c.3362CaG c.3380CaT c.3389CaT c.3412CaT c.3413GaA c.3413GaC c.3608GaA c.3661CaT c.3712GaC c.3715TaC c.3892GaT c.3902CaT c.3904GaA c.3907GaC c.3932GaA c.3940CaT c.3941GaA c.3961GaA c.3976GaA c.4004TaC c.4015CaT c.4036CaT c.4041GaC c.4060GaC c.4069CaT c.4081GaA c.4182GaT c.4198GaA c.4209CaA c.4271TaC c.4377CaT p.T364R p.R391G p.N411K p.C440G p.A455P p.R518Q p.F568S p.R600G p.L673P p.M751K p.R760W p.R765Q p.A766D p.V810M p.A820P p.L851P p.F952C p.R1114C p.R1114H p.R1114P p.S1121W p.M1127T p.T1130M p.R1138W p.R1138Q p.R1138P p.G1203D p.R1221C p.D1238H p.Y1239H p.V1298F p.T1301I p.G1302R p.A1303P p.G1311E p.R1314W p.R1314Q p.G1321S p.D1326N p.L1335P p.R1339C p.P1346S p.Q1347H p.G1354R p.R1357W p.D1361N p.K1394N p.E1400K p.S1403R p.I1424T p.R1459C Klassifikation Lokalisation Gen Protein Nonsense Exon 9 Exon 12 Exon 17 Exon 18 Exon 23 Exon 24 Exon 24 Exon 26 Exon 26 Exon 27 Exon 29 c.1132CaT c.1552CaT c.2247CaT c.2304CaA c.3088CaT c.3421CaT c.3490CaT c.3668GaA c.3709CaT c.3823CaT c.4192CaT p.Q378X p.R518X p.Q749X p.Y768X p.R1030X p.R1141X p.R1164X p.W1223X p.Q1237X p.R1275X p.R1398X Spleißstellen Intron 21 Intron 25 Intron 26 c.2787+1GaT c.3634-3CaA c.3736-1GaA Insertion Exon 8 Exon 25 Exon 30 c.938-939insT c.3544dupC c.4220insAGAA Deletion Exon 2 Exon 2 Exon 3 Exon 8 Exon 9 Exon 16 Exon 16 Exon 18 Exon 19 Exon 22 Exon 27 Exon 29 Exon 29 Exon 30 Exon 31 c.179del9 c.179-195del c.220-222del c.960delC c.1088-1120del c.1944del22 c.1995delG c.2322delC c.2542delG c.2835-2850del16 c.3775delT c.4101delC c.4182delG c.4318delA c.4434delA Intragenische Deletion Exon 15 Exon 18 Exon 23-29 delEx15 delEx18 delEx23-29 Intergenische Deletion ABCC6 delABCC6 Fazit für die Praxis Eine spezifische Behandlung der Grunderkrankung ist nicht bekannt.
X
ABCC6 p.Arg1138Gln 16763870:272:1337
status: NEW[hide] Mutational analysis of the ABCC6 gene and the prox... Hum Mutat. 2006 Aug;27(8):831. Schulz V, Hendig D, Henjakovic M, Szliska C, Kleesiek K, Gotting C
Mutational analysis of the ABCC6 gene and the proximal ABCC6 gene promoter in German patients with pseudoxanthoma elasticum (PXE).
Hum Mutat. 2006 Aug;27(8):831., [PMID:16835894]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a genetic disorder characterized by calcification of elastic fibers in dermal, ocular, and cardiovascular tissues. Recently, ABCC6 mutations were identified as causing PXE. In this follow-up study we report the investigation of 61 German PXE patients from 53 families, hitherto the largest cohort of German PXE patients screened for the complete ABCC6 gene. In addition, we characterized the proximal ABCC6 promoter of PXE patients according to mutation. In this study we identified 32 disease-causing ABCC6 variants, which had been described previously by us and others, and 10 novel mutations (eight missense mutations and two splice site alterations). The mutation detection rate among index patients was 87.7%. Frequent alterations were the PXE-mutations p.R1141X, Ex23,_Ex29del, and c.2787+1G > T. In the ABCC6 promoter we found the polymorphisms c.-127C > T, c.-132C > T, and c.-219A > C. The difference in the c.-219A > C frequencies between PXE patients and controls were determined as statistically significant. Interestingly, c.-219A > C is located in a transcriptional activator sequence of the ABCC6 promoter and occurred in a binding site for a transcriptional repressor, predominantly found in genes that participate in lipid metabolism. Obtaining these genetic data signifies our contribution to elucidating the pathogenetics of PXE.
Comments [show]
None has been submitted yet.
No. Sentence Comment
82 Summary of ABCC6/MRP6 mutations identified in German PXE patients Change in Number of Allelic frequency Exona nucleotideb Amino acid Statusc families in blood donorsd Referenceg i-1e c.37-1G>Af altered splicing hm 1 0 / 200 This study 2 c.113G>C p.W38S ht 1 0 / 200 This study i-3 c.346-6G>A altered splicing ht 2 Nd A, B 7 c.754C>T p.L252F ht 1 0 / 200 This study 9 c.1132C>T p.Q378X ht 4 Nd B, C 9 c.1171A>G p.R391G ht 1 Nd B, D 10 c.1244T>C p.V415A ht 1 0 / 200 This study 12 c.1460G>A p.R487Q ht 1 0 / 200 This study 12 c.1491C>A p.N497K ht 1 0 / 200 This study 12 c.1552C>T p.R518X ht 1 Nd B, E i-12 c.1574_1575insG p.L525fsX73 ht 1 0 / 200 This study 16 c.1995delG p.A667fsX20 ht 3 Nd A, F, G 18 c.2252T>A p.M751K ht 3 Nd F, G 18 c.2278C>T p.R760W ht 2 Nd B, F, G Change in Number of Allelic frequency Exona nucleotideb Amino acid Statusc families in blood donorsd Referenceg 18 c.2294G>A p.R765Q ht 2 Nd A, F, G, H 19 c.2552T>C p.L851P ht 1 Nd F i-21 c.2787+1G>T altered splicing ht 7 Nd B, C, F, I, J 22 c.2835_2850del16 p.P946fsX17 ht 1 Nd F 22 c.2855T>G p.F952C ht 1 Nd F 23 c.3145T>G p.S1049A ht 1 0 / 200 This study 23 c.3188T>G p.L1063R ht 1 0 / 200 This study 24 c.3340C>T p.R1114C ht 1 Nd B, K, G, L 24 c.3341G>A p.R1114H ht 1 Nd G, H, L, M 24 c.3389C>T p.T1130M ht 1 Nd B, D, G, H, K, L, M, N 24 c.3413G>A p.R1138Q ht 1 Nd A, B, D, J, K, L, N 24 c.3412C>T p.R1138W ht 1 Nd N 24 c.3421C>T p.R1141X hm, ht 26 Nd B, G, J, K, L, M, N, O, P, Q, R, S i-24 c.3505_3506+2delA GGT altered splicing ht 1 0 / 200 This study i-24 c.3507-3C>T altered splicing ht 2 Nd B 26 c.3715T>C p.Y1239H ht 1 Nd L 26 c.3723G>C p.W1241C ht 1 Nd A, L i-26 c.3736-1G>A altered splicing ht 1 Nd B, L, N 27 c.3775delT p.W1259fsX13 ht 1 Nd B, J, L, O i-27 c.3883-6G>A altered splicing ht 1 Nd B 28 c.3902C>T p.T1301I ht 1 Nd A, G, L 28 c.3932G>A p.G1311E ht 1 Nd L 28 c.3940C>T p.R1314W ht 1 Nd A, G, L 28 c.3941G>A p.R1314Q ht 1 Nd A, B, G, L 29 c.4182delG p.N1394fsX8 ht 2 Nd G, H, L 30 c.4209C>A p.S1403R ht 1 Nd F 31 c.4434delA p.R1479fsX25 hm 1 Nd F 23-29 Ex23_Ex29del p.A999_S1403del ht 5 Nd A, B, D, E, G, H, O, R a The exon that contains the ABCC6 sequence variation.
X
ABCC6 p.Arg1138Gln 16835894:82:1327
status: NEW89 Genotypes and phenotypes of the PXE patients analyzed in this study Phenotype Genotypeb No.a Sex, Age Age on diagnosis Organ involvement Mutations 1 M 36 11 E, S, G p.R1141X p.R1141X 2 F 44 39 E, S, G, A p.R1141X Ex23_Ex29del 3 F 41 7 E, S p.R1141X p.R1141X 4 F 46 19 E, S, A p.R1141X p.R1141X 5 F 59 55 E, S, A c.37-1G>A c.37-1G>A 6c F 63 16 E, S, H, V, A Ex23_Ex29del c.4182delG 7 F 24 15 E, S c.4434delA c.4434delA 8 M 60 23 E, S p.Q378X p.R1141X 9 F 79 65 E, S, A c.2787+1G>T p.R1141X 10 F 55 35 E, S, G, H, V, A p.Q378X c.2787+1G>T 11 F 47 14 S c.1995delG c.2787+1G>T 12c F 36 24 E, S c.2787+1G>T c.4182delG 13 F 56 8 E, S p.R1141X c.3507-3C>T 14 M 72 55 E, S, H, V p.R1141X 15 F 69 51 E, S c.1995delG p.R765Q 16 F 19 11 S p.R760W p.R1141X 17c F 59 50 E, S, H, V, A p.R1141X p.G1311E 18c M 54 32 E, S p.R1141X p.Y1239H 19-1 M 63 53 E, H p.L252F p.V415A p.R765Q 19-2 F 58 48 E, S p.L252F p.V415A p.R765Q 20 M 54 44 E, S, V, A c.3775delT c.346-6G>A 21 M 52 43 E, S, A p.R1141X c.3883-6G>A 22-1 M 47 36 E, S, G, H, V p.R518X 22-2 M 45 34 E, S, H p.R518X 23 F 35 22 E, S, A p.W38S 24 F 40 30 E c.346-6G>A 25-1 M 58 46 E, S, A p.R1141X c.3883-6G>A 25-2 M 19 10 S p.R1141X c.3883-6G>A 26-1 F 46 18 E, S, V p.R487Q c.3883-6G>A 27c F 62 30 E, S, A p.Q378X p.R1114H 28 F 59 49 E, A p.R1314Q c.3507-3C>T 29c F 30 10 E, S c.1995delG p.R1114C 30 M 67 52 E p.L1063R p.R1141X 31 F 50 46 E, S, V p.M751K p.R1141X 32 F 27 24 S Ex23_Ex29del 33c F 34 19 E, S Ex23_Ex29del p.T1130M 34 F 33 19 E, S c.2787+1G>T p.W1241C 35 M 47 15 E, S, G, H, V, A Ex23_Ex29del 36 M 72 63 E, S p.S1049A c.3736-1G>A p.S1403R 37 F 34 16 E, S c.2787+1G>T 38 F 42 8 E, S, V p.R1141X p.R1314W 39 F 37 20 E, S p.N497K 40 F 54 33 E, S, V, A p.M751K p.R1141X 41 M 53 49 E, S, G, H, V p.R1141X 42-1 F 52 38 E, S p.R391G p.R1141X 42-2 F 43 28 E, S p.R391G p.R1141X 43 F 64 58 S, A 44-1 F 51 27 E, S, A p.R1141X 44-2 F 18 9 E, S 44-3 F 54 26 E, S, V, A p.R1141X 45-1 F 64 49 E, S, G, V p.R1138Q 45-2 F 62 48 E, S, A p.R1138Q 46 M 56 25 E, S, V p.R1141X p.T1301I 47 F 34 23 E, S p.R760W c.2787+1G>T 48 M 47 24 E, S, V, A c.2835_2850del16 p.F952C p.R1141X 49 F 28 11 E, S, G, V p.M751K p.R1141X 50 F 39 25 E, S, V p.L851P p.R1141X c.3505_3506+2 delAGGT 51 F 61 16 E, S, H, A p.Q378X p.R1141X 52-1 F 40 20 E, S p.R1138W p.R1141X 52-2 F 43 23 E, S p.R1138W p.R1141X 53 M 68 66 E, H, V, G, A c.1574_1575insG p.R1141X F = female, M = male, wt = wild-type, hm = homozygote, ht = heterozygote, cht = compound heterozygote, nd = not determined, MSM = microsatellite marker, E = eyes, S = skin, G = gastrointestinum, H = heart, V = vascular tissue and A = arterial hypertension.
X
ABCC6 p.Arg1138Gln 16835894:89:1945
status: NEWX
ABCC6 p.Arg1138Gln 16835894:89:1975
status: NEW[hide] Development of a rapid, reliable genetic test for ... J Mol Diagn. 2007 Feb;9(1):105-12. Shi Y, Terry SF, Terry PF, Bercovitch LG, Gerard GF
Development of a rapid, reliable genetic test for pseudoxanthoma elasticum.
J Mol Diagn. 2007 Feb;9(1):105-12., [PMID:17251343]
Abstract [show]
Mutations in the human ABCC6 gene cause pseudoxanthoma elasticum (PXE), a hereditary disorder that impacts the skin, eyes, and cardiovascular system. Currently, the diagnosis of PXE is based on physical findings and histological examination of a biopsy of affected skin. We have combined two simple, polymerase chain reaction (PCR)-based methods to develop a rapid, reliable genetic assay for the majority of known PXE mutations. After PCR amplification and heteroduplex formation, mutations in exon 24 and exon 28 of the ABCC6 gene were detected with Surveyor nuclease, which cleaves double-stranded DNA at any mismatch site. Mutations originating from deletion of a segment of the ABCC6 gene between exon 23 and exon 29 (ex23_ex29del) were detected by long-range PCR. Size analysis of digestion fragments and long-range PCR products was performed by agarose gel electrophoresis. The methods accurately identified mutations or the absence thereof in 16 affected individuals as confirmed by DNA sequencing. Fifteen patients had one or two point mutations, and two of these individuals carried the ex23_ex29del in their second allele. This mutation detection and mapping strategy provides a simple and reliable genetic assay to assist in diagnosis of PXE, differential diagnosis of PXE-like conditions, and study of PXE genetics.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 Because of the one base position difference between mutation c.3412CϾT (p.R1138W) and c.3413GϾA (p.R1138Q) in exon 24 and the 8- and 9-base position differences between the c.3413GϾA and c.3412CϾT mutations and the c.3421CϾT (p.R1141X) mutation in exon 24, the cleavage fragments from these mutations could not be distinguished by agarose gel electrophoresis.
X
ABCC6 p.Arg1138Gln 17251343:76:111
status: NEW82 Nuclease Digestion Fragment Sizes of Common Mutations in PXE Exon 24 and 28 Amino acid change Base change Fragment lengths (bp) p.T1130M c.3389CϾT 251,257/508 p.R1138W c.3412CϾT 274,234/508 p.R1138Q c.3413GϾA 275,233/508 p.R1141X c.3421CϾT 281,227/508 p.R1164X c.3490CϾT 352,156/508 p.G1302R c.3904GϾA 116,289/405 p.R1314Q c.3941GϾA 153,252/405 p.R1339C c.4015CϾT 227,178/405 The total lengths of the amplicons are listed after the slash.
X
ABCC6 p.Arg1138Gln 17251343:82:204
status: NEW[hide] Parameters of oxidative stress are present in the ... Biochim Biophys Acta. 2008 Jul-Aug;1782(7-8):474-81. Epub 2008 May 10. Garcia-Fernandez MI, Gheduzzi D, Boraldi F, Paolinelli CD, Sanchez P, Valdivielso P, Morilla MJ, Quaglino D, Guerra D, Casolari S, Bercovitch L, Pasquali-Ronchetti I
Parameters of oxidative stress are present in the circulation of PXE patients.
Biochim Biophys Acta. 2008 Jul-Aug;1782(7-8):474-81. Epub 2008 May 10., [PMID:18513494]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is an inherited disorder characterized by calcification of elastic fibres leading to dermatological and vascular alterations associated to premature aged features and to life threatening clinical manifestations. The severity of the disease is independent from the type of mutation in the ABCC6 gene, and it has been suggested that local and/or systemic factors may contribute to the occurrence of clinical phenotype. The redox balance in the circulation of 27 PXE patients and of 50 healthy subjects of comparable age was evaluated by measuring the advanced oxidation protein products (AOPP), the lipid peroxidation derivatives (LOOH), the circulating total antioxidant status (TAS), the thiol content and the extracellular superoxide dismutase activity (EC-SOD). Patients were diagnosed by clinical, ultrastructural and molecular findings. Compared to control subjects, PXE patients exhibited significantly lower antioxidant potential, namely circulating TAS and free thiol groups, and higher levels of parameters of oxidative damage, as LOOH and of AOPP, and of circulating EC-SOD activity. Interestingly, the ratio between oxidant and antioxidant parameters was significantly altered in PXE patients and related to various score indices. This study demonstrates, for the first time, that several parameters of oxidative stress are modified in the blood of PXE patients and that the redox balance is significantly altered compared to control subjects of comparable age. Therefore, in PXE patients the circulating impaired redox balance may contribute to the occurrence of several clinical manifestations in PXE patients, and/or to the severity of disease, thus opening new perspectives for their management.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 Table 1 Clinical data of patients Patients' gender/age Clinical scores Mutations Allele 1 Allele 2 M/10 S2E2 c.3413GNA (p.R1138Q) c.3413GNA (p.R1138Q) F/16 S1 c.1171ANG (p.R391G) c.1552CNT (p.R518X) F/18 S3E2V2 c.1484TNA (p.L495H) c.1484TNA (p.L495H) F/21 S2E2 c.2420GNA (p.R807Q) ND F/21 S2E2 c.184TNC (p.Y62H) c.2996_4208del (p.A999_S1403del) F/24 S2E2 c.1799GNA (p.R600H) c.2420GNA (p.R807Q) F/27 S3E2 c.184TNC (p.Y62H) c.2996_4208del (p.A999_S1403del) F/30 S2E2G1 c.2996_4208del (p.A999_S1403del) c.4198GNA (p.E1400K) F/30 S2E3 c.2996_4208del (p.A999_S1403del) c.4198GNA (p.E1400K) M/30 S2E1 c.3421CNT (p.R1141X) c.3735GNA F/32 S2 c.3421CNT (p.R1141X) c.3735GNA F/33 S3E2 c.1987GNA (p.G663S) ND F/33 S3E3 c.1609_1609delG (p.V537fsX26) c.1763_1769del ins56 F/36 S3E2V3 c.3421CNT (p.R1141X) ND F/36 S3E3V2G1 c.3421CNT (p.R1141X) c.3421CNT (p.R1141X) M/39 S1E2V2 c.1552CNT (p.R518X) c.2996_4208del (p.A999_S1403del) M/42 S1E3V2G1 c.1552CNT (p.R518X) c.2996_4208del (p.A999_S1403del) F/43 S3E3 c.1552CNT (p.R518X) c.1552CNT (p.R518X) F/44 S3E2 c.3341GNA (p.R1114H) c.3542GNA (p.G1181D) F/45 S3E3V2C1G1 c.3421CNT (p.R1141X) c.3421CNT (p.R1141X) F/48 S2E2V2 c.1553GNA (p.R518Q) ND M/51 S1E3 c.3662GNA (p.R1221H) ND F/52 S3E3V2 c.3088CNT (p.R1030X) c.3088CNT (p.R1030X) M/54 S1E2G1 c.1799GNA (p.R600H) c.3941GNA (p.R1314Q) F/56 S3E3V2 c.3662GNA (p.R1221H) ND F/60 S2E3V2C1G1 c.951CNA (p.S317R) c.3421CNT (p.R1141X) F/62 S2E3 c.1552CNT (p.R518X) c.3421CNT (p.R1141X) Scores describe the severity of clinical manifestations.
X
ABCC6 p.Arg1138Gln 18513494:74:122
status: NEWX
ABCC6 p.Arg1138Gln 18513494:74:143
status: NEW[hide] Fundus autofluorescence in Pseudoxanthoma elasticu... Retina. 2009 Nov-Dec;29(10):1496-505. Finger RP, Charbel Issa P, Ladewig M, Gotting C, Holz FG, Scholl HP
Fundus autofluorescence in Pseudoxanthoma elasticum.
Retina. 2009 Nov-Dec;29(10):1496-505., [PMID:19823106]
Abstract [show]
PURPOSE: Pseudoxanthoma elasticum (PXE) is an inherited multisystem disorder of the elastic tissue. Typical ocular manifestations include angioid streaks, peau d'orange, salmon spots, and choroidal neovascularization (CNV). Changes in Bruch membrane lead to progressive atrophy of the retinal pigment epithelium (RPE), secondary CNVs, and visual loss. The RPE-photoreceptor complex was studied in vivo using fundus autofluorescence (FAF) imaging. METHODS: Forty-six patients (92 eyes) with PXE were investigated using digital fundus photography, fluorescein angiography (FA), and FAF imaging. The diagnosis was confirmed by multisystem clinical examination, mutation analysis of the ABCC6 gene, and skin biopsy. RESULTS: The mean age of the patient cohort was 50 years (range, 13-74 years), and mean visual acuity was 20/125. Fundus changes typical for PXE were observed in all eyes. Angioid streaks were detected in all but six eyes. Peau d'orange was hardly detectable on FAF, whereas comet tail lesions were apparent. Retinal pigment epithelium atrophy typically was widespread and heterogeneous, located mostly adjacent to angioid streaks or CNVs. Pattern dystrophy-like changes were only found in patients with previous CNV formation in the same or the contralateral eye. CONCLUSION: Abnormalities of the RPE-photoreceptor complex detected by FAF imaging were more diverse and widespread than expected from conventional fundus imaging. The exhibition of pattern dystrophy-like changes may be a transitional state toward a neovascular event in a subgroup of patients. The extensive alteration of the RPE suggests an important role of pathologic RPE changes in the evolution of visual loss in PXE.
Comments [show]
None has been submitted yet.
No. Sentence Comment
47 of Mutations 1 46 F Positive CA c.3421CϾT (p.R1141X) c.3412CϾT (p.R1138W) 2 2 44 F Positive PA 0 3 39 M NA CA c.3421CϾT (p.R1141X) c.3421CϾT (p.R1141X) 2 4 47 F Positive CA c.3421CϾT (p.R1141X) Ex23-29del 2 5 49 F Positive PA c.3421CϾT (p.R1141X) 1 6 39 M Positive NA 7 57 F NA PA c.3421CϾT (p.R1141X) 1 8 56 F Positive NA 9 51 F Positive PA 0 10 47 M Positive NA 11 39 F NA PA 0 12 58 M NA CA c.3421CϾT (p.R1141X) c.3715TϾC (p.Y1239H) 2 13 24 M Positive CA c.3421CϾT (p.R1141X) Deletion of unknown size 2 14 59 M Positive PA c.3421CϾT (p.R1141X) 1 15 47 F Positive PA c.3421CϾT (p.R1141X) 1 16 41 M Positive CA c.3421CϾT (p.R1141X) IVS27-6 GϾA 2 17 35 F Positive PA 0 18 74 M NA CA c.3421CϾT (p.R1141X) c.3421CϾT (p.R1141X) 2 19 67 F Positive CA c.4182delG Ex23-29del 2 20 70 M Positive CA c.3421CϾT (p.R1141X) c.3188TϾG (p.L1063R) 2 21 46 M Positive CA c.3421CϾT (p.R1141X) c.3421CϾT (p.R1141X) 2 22 61 M Positive NA 23 61 F NA CA c.754CϾT (p.L252F) c.2294GϾA (p.R765Q) 2 24 58 F NA PA 0 25 54 F NA CA c.3421CϾT (p.R1141X) 1 26 50 M Positive NA 27 38 F Positive CA c.113GϾC (p.W38S) 1 28 54 M Positive PA 0 29 52 F Positive NA 30 45 F Positive PA 0 31 45 F NA CA c.3421CϾT (p.R1141X) c.3940CϾT (p.R1314W) 2 32 27 M NA PA c.3421CϾT (p.R1141X) 1 33 59 F Positive NA 34 65 F Positive NA 35 50 M Positive CA c.3421CϾT (p.R1141X) c.2835_2850del16, c.2855TϾG (p.F952C) 3 36 62 F Positive NA 37 48 M Positive NA 38 20 F Positive PA c.3421CϾT (p.R1141X) 1 39 65 F Positive PA c.3421CϾT (p.R1141X) 1 40 13 F Positive CA c.3421CϾT (p.R1141X) c.3421CϾT (p.R1141X) 2 41 65 F Positive PA c.3412CϾT (p.R1138W) 1 42 72 M NA CA c.3421CϾT (p.R1141X) c.1574_1575insG 2 43 39 F NA PA 0 44 67 F NA CA c.3413GϾA (p.R1138Q) 1 45 43 F Positive NA 46 66 F Positive NA *GenBank accession no.
X
ABCC6 p.Arg1138Gln 19823106:47:1912
status: NEW[hide] Transcriptional regulation of the ABCC6 gene and t... Front Genet. 2013 Mar 11;4:27. doi: 10.3389/fgene.2013.00027. eCollection 2013. Aranyi T, Bacquet C, de Boussac H, Ratajewski M, Pomozi V, Fulop K, Brampton CN, Pulaski L, Le Saux O, Varadi A
Transcriptional regulation of the ABCC6 gene and the background of impaired function of missense disease-causing mutations.
Front Genet. 2013 Mar 11;4:27. doi: 10.3389/fgene.2013.00027. eCollection 2013., [PMID:23483032]
Abstract [show]
The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein expressed primarily in the liver and to a lesser extent in the kidneys and the intestines. We review here the mechanisms of this restricted tissue-specific expression and the role of hepatocyte nuclear factor 4alpha which is responsible for the expression pattern. Detailed analyses uncovered further regulators of the expression of the gene pointing to an intronic primate-specific regulator region, an activator of the expression of the gene by binding CCAAT/enhancer-binding protein beta, which interacts with other proteins acting in the proximal promoter. This regulatory network is affected by various environmental stimuli including oxidative stress and the extracellular signal-regulated protein kinases 1 and 2 pathway. We also review here the structural and functional consequences of disease-causing missense mutations of ABCC6. A significant clustering of the missense disease-causing mutations was found at the domain-domain interfaces. This clustering means that the domain contacts are much less permissive to amino acid replacements than the rest of the protein. We summarize the experimental methods resulting in the identification of mutants with preserved transport activity but failure in intracellular targeting. These mutants are candidates for functional rescue by chemical chaperons. The results of such research can provide the basis of future allele-specific therapy of ABCC6-mediated disorders like pseudoxanthoma elasticum or the generalized arterial calcification in infancy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 Five missense mutations, V1298F and G1321S in the C-proximal ABC domain and R1138Q, R1314W, and R1339C at the transmission interface were included into the study.
X
ABCC6 p.Arg1138Gln 23483032:56:76
status: NEW64 R1138Q and R1314W were fully active in the transport assay.
X
ABCC6 p.Arg1138Gln 23483032:64:0
status: NEW73 R1138Q and R1314W showed mostly intracellular appearance, Table 1 | Function and intracellular localization of ABCC6 variants.
X
ABCC6 p.Arg1138Gln 23483032:73:0
status: NEW74 ABCC6 variant Stability in Sf9 MgATP-binding ATPase catalytic intermediate Transport activity (% of WT) Plasma membrane localization in MDCKII cells Plasma membrane localization in mouse liver Intracellular localization in mouse liver WT Stable Yes Yes 100 +++++ +++++ - DABCC6 Stable n.d. n.d. <10 - - +++++ R1138Q Stable Yes Yes ~85 ++++ ++ +++ V1298F Stable Yes No <10 +++++ +++++ - G1321S Stable Yes No <10 - - +++++ R1314W Stable Yes Yes ~90 - + ++++ (ER) R1339C Unstable n.a. n.a. n.a. - - +++++ n.d., not determined; n.a., not applicable; ER, mostly retained with the endoplasmic reticulum.
X
ABCC6 p.Arg1138Gln 23483032:74:309
status: NEW87 R1138Q and R1314W were tested, along with R1339C and the WT protein as non-functional and functional controls respectively.
X
ABCC6 p.Arg1138Gln 23483032:87:0
status: NEW[hide] Analysis of pseudoxanthoma elasticum-causing misse... J Invest Dermatol. 2014 Apr;134(4):946-53. doi: 10.1038/jid.2013.482. Epub 2013 Nov 11. Pomozi V, Brampton C, Fulop K, Chen LH, Apana A, Li Q, Uitto J, Le Saux O, Varadi A
Analysis of pseudoxanthoma elasticum-causing missense mutants of ABCC6 in vivo; pharmacological correction of the mislocalized proteins.
J Invest Dermatol. 2014 Apr;134(4):946-53. doi: 10.1038/jid.2013.482. Epub 2013 Nov 11., [PMID:24352041]
Abstract [show]
Mutations in the ABCC6 gene cause soft-tissue calcification in pseudoxanthoma elasticum (PXE) and, in some patients, generalized arterial calcification of infancy (GACI). PXE is characterized by late onset and progressive mineralization of elastic fibers in dermal, ocular, and cardiovascular tissues. GACI patients present a more severe, often prenatal arterial calcification. We have tested 10 frequent disease-causing ABCC6 missense mutants for the transport activity by using Sf9 (Spodoptera frugiperda) cells, characterized the subcellular localization in MDCKII (Madin-Darby canine kidney (cell line)) cells and in mouse liver, and tested the phenotypic rescue in zebrafish. We aimed at identifying mutants with preserved transport activity but with improper plasma membrane localization for rescue by the chemical chaperone 4-phenylbutyrate (4-PBA). Seven of the mutants were transport-competent but mislocalized in mouse liver. The observed divergence in cellular localization of mutants in MDCKII cells versus mouse liver underlined the limitations of this 2D in vitro cell system. The functionality of ABCC6 mutants was tested in zebrafish, and minimal rescue of the morpholino-induced phenotype was found. However, 4-PBA, a drug approved for clinical use, restored the plasma membrane localization of four ABCC6 mutants (R1114P, S1121W, Q1347H, and R1314W), suggesting that allele-specific therapy may be useful for selected patients with PXE and GACI.
Comments [show]
None has been submitted yet.
No. Sentence Comment
56 In addition to these, three other mutants, R1114P, R1138Q, and T1301I, were also found in the basolateral plasma membrane when expressed in polarized MDCKII cells (Figure 2, columns 1 and 3).
X
ABCC6 p.Arg1138Gln 24352041:56:51
status: NEW66 It is worth noting that R1114P and R1138Q mutants were found both intracellularly and in the plasma membrane.
X
ABCC6 p.Arg1138Gln 24352041:66:35
status: NEW82 No 4-PBA-induced plasma membrane rescue was observed for R1138Q and T1301I in mouse liver, whereas Extracellular Walker B Q-loop Signature Missense mutations Intercellular 140 ABCC6 wt V1298F G1321S R1114P R1138Q R1314W R1459C S1121W T1301I Q1347H delABCC6 120 100 80 60 40 20 0 LTC4 transport activity (%) TMD0 L0 TMD1 L1 TMD2 R1114P S1121W R1138Q T1301I R1314W G1321S R1339C R1459C Q1347H Figure 1.
X
ABCC6 p.Arg1138Gln 24352041:82:57
status: NEWX
ABCC6 p.Arg1138Gln 24352041:82:206
status: NEWX
ABCC6 p.Arg1138Gln 24352041:82:342
status: NEW113 MDCKII cell line in vitro Nonpolarized - 4-PBA 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m 20 &#b5;m Wild type R1114P S1121W R1138Q V1298F T1301I R1314W G1321S R1339C Q1347H R1459C deltaABCC6 - 4-PBA + 4-PBA + 4-PBA Not determined Polarized intended to correct their cellular localization, as described previously (Le Saux et al., 2011).
X
ABCC6 p.Arg1138Gln 24352041:113:471
status: NEW126 Mouse liver in vivo - 4-PBA Not determined Not determined Not determined Wild type R1114P S1121W R1138Q V1298F T1301I R1314W G1321S R1339C Q1347H R1459C deltaABCC6 + 4-PBA Figure 4.
X
ABCC6 p.Arg1138Gln 24352041:126:97
status: NEW150 Summary of the characterization and rescue of disease-causing ABCC6 mutants Localization in mouse liver Localization in MDCKII cell line Nonpolarized Polarized ABCC6 variant Sf9 transport activity Without treatment After 4-PBA treatment Without treatment After 4-PBA treatment Without treatment After 4-PBA treatment Zebrafish &#fe; mRNA rescue (%) Wild type Active PM1 PM PM PM PM PM 90.6 R1114P Active IC4PM PM (rescue) ICoPM PM (rescue) PM PM 0.0 S1121W Active IC4PM PM (rescue) PM PM PM PM 7.9 R1138Q Active IC4PM IC4PM (no effect) IC PM (rescue) PM PM 1.8 V1298F o20% PM ND PM PM PM ND 32.0 T1301I Active IC4PM IC4PM (no effect) IC4PM PM (rescue) PM PM 5.1 R1314W1 Active IC4PM PM (rescue) IC PM (rescue) IC4PM PM (rescue) 0.0 G1321S o20% IC ND IC4PM IC4PM (no effect) IC IC (no effect) 0.0 R1339C Not stable IC IC (no effect) IC IC (no effect) IC IC (no effect) 0.0 Q1347H Active IC4PM PM (rescue) IC4PM PM (rescue) IC &#bc; PM IC&#bc; PM (no effect) 0.8 R1459C Active PM ND IC &#bc; PM PM (rescue) ICoPM ICoPM (no effect) 0.0 delABCC6 o20% IC IC IC IC IC IC ND R1141X Stop ND ND ND ND ND ND 4.8 Abbreviations: IC, intracellular; ND, not determined; PM, plasma membrane.
X
ABCC6 p.Arg1138Gln 24352041:150:498
status: NEW[hide] Efficiency of exome sequencing for the molecular d... J Invest Dermatol. 2015 Apr;135(4):992-8. doi: 10.1038/jid.2014.421. Epub 2014 Sep 29. Hosen MJ, Van Nieuwerburgh F, Steyaert W, Deforce D, Martin L, Leftheriotis G, De Paepe A, Coucke PJ, Vanakker OM
Efficiency of exome sequencing for the molecular diagnosis of pseudoxanthoma elasticum.
J Invest Dermatol. 2015 Apr;135(4):992-8. doi: 10.1038/jid.2014.421. Epub 2014 Sep 29., [PMID:25264593]
Abstract [show]
The molecular etiology of pseudoxanthoma elasticum (PXE), an autosomal recessive connective tissue disorder, has become increasingly complex as not only mutations in ATP-binding cassette family C member 6 (ABCC6) but also ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and gamma-glutamyl carboxylase (GGCX) can cause resembling phenotypes. Identification of modifier genes, such as vascular endothelial growth factor A, has further contributed to the molecular heterogeneity of PXE. In such heterogeneous diseases, next-generation sequencing (NGS) allows to perform mutation screening of several genes in a single reaction. We explored whole-exome sequencing (WES) as an efficient diagnostic tool to identify the causal mutations in ABCC6, GGCX, ENPP1, and vitamin K epoxide reductase complex, subunit 1 (VKORC1) in 16 PXE patients. WES identified a causal ABCC6 mutation in 30 out of 32 alleles and one GGCX mutation, whereas no causal mutations in ENPP1 or VKORC1 were detected. Exomes with insufficient reads (20 depth) for the four genes and patients with single mutations were further evaluated by Sanger sequencing (SS), but no additional mutations were found. The potential of WES compared with targeted NGS is the ease to examine target genes and the opportunity to search for novel genes when targeted analysis is negative. Together with low cost, rapid and less laborious workflow, we conclude that WES complemented with SS can provide a tiered approach to molecular diagnostics of PXE.
Comments [show]
None has been submitted yet.
No. Sentence Comment
89 List of mutations found by WES and SS Gene Nucleotide change Protein change Patient ID Hom/Het WES SS Known/PUR Reference ABCC6 c.C118T p.(P40S) P10 Het O O PUR ABCC6 c.998 &#fe; 2 998 &#fe; 3del TG P8 Het O O PUR ABCC6 c.T1484A p.(L495H) P7 Het O O Known Miksch et al., 2005 ABCC6 c.G1553A p.(R518Q) P11 Hom O O Known Uitto et al., 2001 ABCC6 c.G1553A p.(R518Q) P12, P13, P14 Het O O Known Uitto et al., 2001 ABCC6 c.G2263A p.(G755R) P11 Het O O Known Pfendner et al., 2007 ABCC6 c.G2294A p.(R765Q) P3 Het O O Known Le Saux et al., 2001 ABCC6 del2860_2865 P12, P13,14 Het O O PUR ABCC6 c.T2911C p.(W971R) P11 Het O O PUR ABCC6 Ex23_24del P2 Hom O O Known Ringpfeil et al., 2001 ABCC6 c.T3032C p.(L1011P) P9 Hom O O PUR ABCC6 c.C3190T p.(A1064T) P7 Het O O Known Miksch et al., 2005 ABCC6 c.G3413A p.(R1138Q) P11 Het O O Known Le Saux O, 2011 ABCC6 c.C3421T p.(R1141X) P4 Hom O O Known Bergen et al., 2000 ABCC6 c.C3421T p.(R1141X) P52 , P8, P162 Het O O Known Bergen et al., 2000 ABCC6 c.C3490T p.(R1164X) P6, P15 Hom O O Known Struk et al., 2000 ABCC6 c.G4198A p.(E1400K) P10 Het O O Known Chassaing et al., 2004 ABCC6 c.C4216A p.(Q1406K) P3 Het O O PUR GGCX c.C1321T p.(R441C) P7 Het O O PUR Het, heterozygous; Hom, homozygous; PUR, previously unreported; SS, Sanger sequencing; WES, whole-exome sequencing.
X
ABCC6 p.Arg1138Gln 25264593:89:801
status: NEW