ABCC1 p.His1486Tyr
Predicted by SNAP2: | A: D (85%), C: D (85%), D: D (91%), E: D (91%), F: D (91%), G: D (85%), I: D (91%), K: D (85%), L: D (91%), M: D (85%), N: D (80%), P: D (91%), Q: D (80%), R: D (85%), S: D (80%), T: D (85%), V: D (85%), W: D (91%), Y: D (85%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Hydrogen-bond formation of the residue in H-loop o... Biochim Biophys Acta. 2007 Feb;1768(2):324-35. Epub 2006 Nov 18. Yang R, Chang XB
Hydrogen-bond formation of the residue in H-loop of the nucleotide binding domain 2 with the ATP in this site and/or other residues of multidrug resistance protein MRP1 plays a crucial role during ATP-dependent solute transport.
Biochim Biophys Acta. 2007 Feb;1768(2):324-35. Epub 2006 Nov 18., [PMID:17187755]
Abstract [show]
MRP1 couples ATP binding/hydrolysis to solute transport. We have shown that ATP binding to nucleotide-binding-domain 1 (NBD1) plays a regulatory role whereas ATP hydrolysis at NBD2 plays a crucial role in ATP-dependent solute transport. However, how ATP is hydrolyzed at NBD2 is not well elucidated. To partially address this question, we have mutated the histidine residue in H-loop of MRP1 to either a residue that prevents the formation of hydrogen-bonds with ATP and other residues in MRP1 or a residue that may potentially form these hydrogen-bonds. Interestingly, substitution of H827 in NBD1 with residues that prevented formation of these hydrogen-bonds had no effect on the ATP-dependent solute transport whereas corresponding mutations in NBD2 almost abolished the ATP-dependent solute transport completely. In contrast, substitutions of H1486 in H-loop of NBD2 with residues that might potentially form these hydrogen-bonds exerted either full function or partial function, implying that hydrogen-bond formation between the residue at 1486 and the gamma-phosphate of the bound ATP and/or other residues, such as putative catalytic base E1455, together with S769, G771, T1329 and K1333, etc., holds all the components necessary for ATP binding/hydrolysis firmly so that the activated water molecule can efficiently hydrolyze the bound ATP at NBD2.
Comments [show]
None has been submitted yet.
No. Sentence Comment
43 In addition, the following mutations as shown in Fig. 5A (H827D, H1486D, H827D/ H1486D, H827N, H1486N, H827N/H1486N, H827E, H1486E, H827E/ H1486E, H827Q, H1486Q, H827Q/H1486Q, H827Y, H1486Y, H827Y/ H1486Y, H827W, H1486W and H827W/H1486W) were also introduced into the full length MRP1 cDNA by using the following primers: H827D/forward, 5'-CGG ATC TTG GTC ACG GAC AGC ATG AGC TAC TTG-3'; H827D/ reverse, 5'-CAA GTA GCT CAT GCT GTC CGT GAC CAA GAT CCG-3'; H1486D/forward, 5'-GTC CTC ACC ATC GCC GAC CGG CTC AAC ACC ATC-3'; H1486D/reverse, 5'-GAT GGT GTT GAG CCG GTC GGC GAT GGT GAG GAC-3'; H827N/forward, 5'-CGG ATC TTG GTC ACG AAC AGC ATG AGC TAC TTG-3'; H827N/reverse, 5'-CAA GTA GCT CAT GCT GTT CGT GAC CAA GAT CCG-3'; H1486N/forward, 5'-GTC CTC ACC ATC GCC AAC CGG CTC AAC ACC ATC-3'; H1486N/reverse, 5'-GAT GGT GTT GAG CCG GTT GGC GAT GGT GAG GAC-3'; H827E/forward, 5'-CGG ATC TTG GTC ACG GAG AGC ATG AGC TAC TTG-3'; H827E/reverse, 5'-CAA GTA GCT CAT GCT CTC CGT GAC CAA GAT CCG-3'; H1486E/forward, 5'-GTC CTC ACC ATC GCC GAG CGG CTC AAC ACC ATC-3'; H1486E/reverse, 5'-GAT GGT GTT GAG CCG CTC GGC GAT GGT GAG GAC-3'; H827Q/forward, 5'- CGG ATC TTG GTC ACG CAG AGC ATG AGC TAC TTG-3'; H827Q/ reverse, 5'-CAA GTA GCT CAT GCT CTG CGT GAC CAA GAT CCG-3'; H1486Q/forward, 5'-GTC CTC ACC ATC GCC CAG CGG CTC AAC ACC ATC-3'; H1486Q/reverse, 5'-GAT GGT GTT GAG CCG CTG GGC GAT GGT GAG GAC-3'; H827Y/forward, 5'-CGG ATC TTG GTC ACG TAC AGC ATG AGC TAC TTG-3'; H827Y/reverse, 5'-CAA GTA GCT CAT GCT GTA CGT GAC CAA GAT CCG-3'; H1486Y/forward, 5'-GTC CTC ACC ATC GCC TAC CGG CTC AAC ACC ATC-3'; H1486Y/reverse, 5'-GAT GGT GTT GAG CCG GTA GGC GAT GGT GAG GAC-3'; H827W/forward, 5'-CGG ATC TTG GTC ACG TGG AGC ATG AGC TAC TTG-3'; H827W/reverse, 5'-CAA GTA GCT CAT GCT CCA CGT GAC CAA GAT CCG-3'; H1486W/forward, 5'-GTC CTC ACC ATC GCC TGG CGG CTC AAC ACC ATC-3'; H1486W/reverse, 5'-GAT GGT GTT GAG CCG CCA GGC GAT GGT GAG GAC-3'.
X
ABCC1 p.His1486Tyr 17187755:43:183
status: NEWX
ABCC1 p.His1486Tyr 17187755:43:198
status: NEWX
ABCC1 p.His1486Tyr 17187755:43:1521
status: NEWX
ABCC1 p.His1486Tyr 17187755:43:1588
status: NEW164 In order to test this hypothesis, H827D, H1486D, H827D/H1486D, H827N, H1486N, H827N/H1486N, H827E, H1486E, H827E/H1486E, H827Q, H1486Q, H827Q/H1486Q, H827Y, H1486Y, H827Y/ H1486Y, H827W, H1486W and H827W/H1486W mutations (Fig. 5A) were introduced into full length of MRP1 cDNA in pNUT/MRP1/His and expressed in BHK cells at 37 °C.
X
ABCC1 p.His1486Tyr 17187755:164:157
status: NEWX
ABCC1 p.His1486Tyr 17187755:164:172
status: NEW210 In contrast, mutations in NBD2, such as H1486L, H1486F, H1486D, H1486N, H1486E, H1486Q, H1486Y and H1486W, have variant effects on the ATP-dependent LTC4 transport (Figs. 1C, 4B and 5C)).
X
ABCC1 p.His1486Tyr 17187755:210:88
status: NEW215 The only difference between H1486F and H1486Y is that H1486Y has an extra hydroxyl group on the benzene ring.
X
ABCC1 p.His1486Tyr 17187755:215:39
status: NEWX
ABCC1 p.His1486Tyr 17187755:215:54
status: NEW216 H1486F mutation almost abolished the ATP-dependent LTC4 transport activity completely (Figs. 1C and 4B), whereas H1486Y mutation retained ~41% of wild-type LTC4 transport activity (Fig. 5C), presumably the hydroxyl group on the benzene ring of tyrosine provides a possibility to form hydrogen-bond with the γ-phosphate of the bound ATP.
X
ABCC1 p.His1486Tyr 17187755:216:113
status: NEW