ABCC7 p.Phe494Leu
Predicted by SNAP2: | A: N (78%), C: N (72%), D: D (66%), E: N (53%), G: N (53%), H: N (66%), I: N (87%), K: N (57%), L: N (82%), M: N (72%), N: N (72%), P: D (66%), Q: N (61%), R: N (57%), S: N (66%), T: N (78%), V: N (93%), W: N (53%), Y: N (87%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, G: N, H: N, I: N, K: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Function, pharmacological correction and maturatio... J Cyst Fibros. 2015 Jan;14(1):34-41. doi: 10.1016/j.jcf.2014.06.008. Epub 2014 Jul 16. Sharma H, Jollivet Souchet M, Callebaut I, Prasad R, Becq F
Function, pharmacological correction and maturation of new Indian CFTR gene mutations.
J Cyst Fibros. 2015 Jan;14(1):34-41. doi: 10.1016/j.jcf.2014.06.008. Epub 2014 Jul 16., [PMID:25042876]
Abstract [show]
BACKGROUND: Cystic fibrosis (CF) is rare in India. Most CF mutations identified are not yet functionally characterized. Hence, genetic counseling and adoption of therapeutic approach are particularly difficult. Our aim was to study the function and maturation of a spectrum of eleven Indian CFTR mutations from classical CF and infertile male patients with CBAVD. METHODS: We used Western blot, pharmacology and iodide efflux to study CFTR maturation and chloride transport in BHK cells expressing pEGFP-CFTR constructs for L69H, F87I, S118P, G126S, H139Q, F157C, F494L, E543A, S549N, Y852F and D1270E. RESULTS: Among these CFTR mutants, only L69H is not processed as a c-band and not functional at 37 degrees C. However, the functions of L69H and S549N and the maturation of L69H are corrected at 27 degrees C and by the investigational drug VX809. CONCLUSION: These data should help in developing counseling and therapeutic approaches in India. We identified L69H as a novel class II CF mutation.
Comments [show]
None has been submitted yet.
No. Sentence Comment
4 Methods: We used Western blot, pharmacology and iodide efflux to study CFTR maturation and chloride transport in BHK cells expressing pEGFP-CFTR constructs for L69H, F87I, S118P, G126S, H139Q, F157C, F494L, E543A, S549N, Y852F and D1270E.
X
ABCC7 p.Phe494Leu 25042876:4:200
status: NEW33 Because the cellular and functional data on these mutations can improve CF genetic counseling, we examined here the functional and cellular consequences of eleven rare missense mutations, L69H, F87I, S118P, G126S, H139Q, F157C, F494L, E543A, S549N, Y852F and D1270E present in CFTR gene from both classical CF patients and CBAVD patients, which have been detected during molecular diagnosis of Indian CF patients (Fig. 1).
X
ABCC7 p.Phe494Leu 25042876:33:228
status: NEW44 The activation of nine CFTR mutants F87I, S118P, G126S, H139Q, F157C, F494L, E543A, Y852F and D1270E was not significantly different from WT-CFTR (Fig. 3A for example of traces and Fig. 3B for a summary).
X
ABCC7 p.Phe494Leu 25042876:44:70
status: NEW49 Mutation Nucleotide change Location in CFTR Patient phenotype CFTR dysfunction L69H T to A at 338 N-terminal Patient 1: Pancreatic insufficient, sweat chloride N 60 mEq/L, S. aureus positive; Patient 2: CBAVD Defective CFTR maturation and channel activity, class-II CF mutation F87I T to A at 391 MSD1 CBAVD No dysfunction S118P T to C at 484 MSD1 CBAVD No dysfunction G126S G to A at 508 MSD1 CBAVD No dysfunction H139Q C to G at 549 MSD1 CBAVD No dysfunction F157C T to G at 602 MSD1 CBAVD No dysfunction F494L T to C at 1612 NBD1 CBAVD No dysfunction E543A A to C at 1760 NBD1 CBAVD No dysfunction S549N G to A at 1778 NBD1 Patient 1: Frequent respiratory infection.
X
ABCC7 p.Phe494Leu 25042876:49:507
status: NEW70 Discussion The present study investigated the potential deleterious functional consequence of novel rare missense mutations 0 2 4 6 8 0.0 0.1 0.2 0.3 WT F87I S118P H139Q F157C NT Time (min) k (min -1 ) 0 2 4 6 8 0.0 0.1 0.2 0.3 G126S S549N Y852F WT F508del L69H Time (min) k (min -1 ) 0 2 4 6 8 0.0 0.1 0.2 0.3 WT F508del F494L D1270E NT E543A Time (min) k (min -1 ) W T F 8 7 I S 1 1 8 P G 1 2 6 S H 1 3 9 Q F 1 5 7 C F 4 9 4 L E 5 4 3 A Y 8 5 2 F D 1 2 7 0 E S 5 4 9 N L 6 9 H F 5 0 8 d e l 0.0 0.5 1.0 1.5 2.0 ns *** *** *** *** ns (k peak - k basal) mutant / (k peak - k basal) WT A B Fig. 3.
X
ABCC7 p.Phe494Leu 25042876:70:322
status: NEW72 Iodide efflux experiments in transfected BHK-21 cells, WT-CFTR, L69H, F87I, S118P, G126S, H139Q, F157C, F494L, E543A, S549N, Y852F and D1270E.
X
ABCC7 p.Phe494Leu 25042876:72:104
status: NEW100 In our study, the eleven CFTR mutants i.e. L69H, F87I, S118P, G126S, H139Q, F157C, F494L, E543A, S549N, Y852F and D1270E produced different results.
X
ABCC7 p.Phe494Leu 25042876:100:83
status: NEW121 The functional characterization of nine other novel mutations associated with CBAVD viz., F87I, S118P, G126S, H139Q, F157C, F494L, E543A, Y852F and D1270E revealed that these mutants did not cause any effect on normal CFTR maturation process and Cl-channel activity.
X
ABCC7 p.Phe494Leu 25042876:121:124
status: NEW129 Patients profile Eleven rare missense mutations i.e. L69H, F87I, S118P, G126S, H139Q, F157C, F494L, E543A, S549N, Y852F, and D1270E were characterized by using single stranded conformation polymorphism and subsequently by DNA sequencing in Indian infertile CBAVD male patients [7,8].
X
ABCC7 p.Phe494Leu 25042876:129:93
status: NEW138 The remaining all nine mutations viz., G126S, Y852F, F87I, S118P, H139Q, F157C, F494L, E543A, and D1270E were identified in Indian infertile males diagnosed with only CBAVD.
X
ABCC7 p.Phe494Leu 25042876:138:80
status: NEW