ABCC7 p.Lys114Asp
Predicted by SNAP2: | A: N (72%), C: D (59%), D: N (57%), E: N (87%), F: D (63%), G: N (61%), H: N (82%), I: N (78%), L: N (72%), M: N (72%), N: N (78%), P: N (61%), Q: N (78%), R: N (87%), S: N (87%), T: N (93%), V: N (72%), W: D (71%), Y: D (53%), |
Predicted by PROVEAN: | A: N, C: N, D: N, E: N, F: N, G: N, H: N, I: N, L: N, M: N, N: N, P: N, Q: N, R: N, S: N, T: N, V: N, W: N, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Three charged amino acids in extracellular loop 1 ... J Gen Physiol. 2014 Aug;144(2):159-79. doi: 10.1085/jgp.201311122. Epub 2014 Jul 14. Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA
Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR.
J Gen Physiol. 2014 Aug;144(2):159-79. doi: 10.1085/jgp.201311122. Epub 2014 Jul 14., [PMID:25024266]
Abstract [show]
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1-6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5'-(beta,gamma-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues.
Comments [show]
None has been submitted yet.
No. Sentence Comment
124 To probe the potential mechanisms by which mutation of these charged residues leads to CF, we first recorded the single-channel behavior of a series of CFTR channel mutants bearing a single mutation at one of the six charged sites (D110R, D112R, K114D, E115R, E116R, or R117A).
X
ABCC7 p.Lys114Asp 25024266:124:246
status: NEW133 The exception was K114D-CFTR, which exhibited mean burst duration significantly shorter than that of WT-CFTR, but much longer than that of D110R-, E116R-, and R117A-CFTR.
X
ABCC7 p.Lys114Asp 25024266:133:18
status: NEW145 (A) Representative single-channel current traces and their all-points histograms for WT-, D110R-, D112R-, K114D-, E115R-, E116R-, and R117A-CFTR from inside-out membrane patches excised from Xenopus oocytes, with symmetrical 150 mM Cl&#e032; solution in the presence of 1 mM MgATP and 50 U/ml PKA.
X
ABCC7 p.Lys114Asp 25024266:145:106
status: NEW149 (B and C) Single-channel amplitudes of the full open state (B) and mean burst durations (C) of WT-, D110R-, D112R-, K114D-, E115R-, E116R-, and R117A-CFTR.
X
ABCC7 p.Lys114Asp 25024266:149:116
status: NEW154 ECL1 mutations shift the reversal potential in macroscopic currents To further verify that these ECL1 amino acids do not strongly or directly affect ion conduction and permeation, we compared the reversal potentials (Vrev) of D110R-, K114D-, E116R-, and R117A-CFTR with WT-CFTR and with the R334A mutant, which has been shown to have a profound effect on Vrev compared with WT-CFTR, consistent with the role of R334 in providing charge in the outer mouth of the open channel.
X
ABCC7 p.Lys114Asp 25024266:154:234
status: NEW157 In contrast, neither D110R- nor K114D-CFTR altered Vrev.
X
ABCC7 p.Lys114Asp 25024266:157:32
status: NEW160 Of the ECL1 mutants we examined, the rectification ratios for D110R-, K114D-, and R117A-CFTR were similar to WT-CFTR (Fig. 6), whereas E116R-CFTR showed significantly reduced outward rectification.
X
ABCC7 p.Lys114Asp 25024266:160:70
status: NEW219 WT-CFTR, K114D-CFTR, and E116R-CFTR currents were generated under a voltage protocol wherein membrane potential was held at 0 mV for 50 ms then ramped from &#e032;100 mV to 100 mV over 300 ms with the TEVC technique.
X
ABCC7 p.Lys114Asp 25024266:219:9
status: NEW224 Tab l e 1 Reversal potentials of WT-CFTR and mutants in ND96 bath solution CFTR n Vrev mV WT 14 &#e032;27.75 &#b1; 0.78 R334A 6 &#e032;12.15 &#b1; 1.64a R117A 6 &#e032;22.51 &#b1; 0.85a E116R 5 &#e032;21.45 &#b1; 1.14a K114D 5 &#e032;24.68 &#b1; 3.22 D110R 5 &#e032;27.64 &#b1; 3.29 R104E 5 &#e032;21.15 &#b1; 1.08a R899C 4 &#e032;25.30 &#b1; 3.94 D891C 6 &#e032;25.81 &#b1; 2.44 K892E 5 &#e032;23.70 &#b1; 3.62 E1124R 5 &#e032;18.32 &#b1; 0.43a E1126R 5 &#e032;20.67 &#b1; 3.16b R117E/E1126R 6 &#e032;23.06 &#b1; 1.37b R104E/E116R 6 &#e032;27.17 &#b1; 1.08 Values are mean &#b1; SEM.
X
ABCC7 p.Lys114Asp 25024266:224:219
status: NEW