ABCC7 p.Arg516Ala
ClinVar: |
c.1546A>G
,
p.Arg516Gly
?
, not provided
|
CF databases: |
c.1546A>G
,
p.Arg516Gly
(CFTR1)
D
,
|
Predicted by SNAP2: | A: D (66%), C: D (66%), D: D (85%), E: N (53%), F: D (75%), G: D (80%), H: D (59%), I: D (71%), K: N (87%), L: D (75%), M: D (66%), N: D (71%), P: D (85%), Q: D (59%), S: D (66%), T: D (63%), V: D (71%), W: D (80%), Y: D (75%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: N, L: D, M: D, N: D, P: D, Q: N, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Role of CFTR's PDZ1-binding domain, NBF1 and Cl(-)... Biochim Biophys Acta. 2001 Nov 1;1515(1):64-71. Boucherot A, Schreiber R, Kunzelmann K
Role of CFTR's PDZ1-binding domain, NBF1 and Cl(-) conductance in inhibition of epithelial Na(+) channels in Xenopus oocytes.
Biochim Biophys Acta. 2001 Nov 1;1515(1):64-71., [PMID:11597353]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits epithelial Na(+) channels (ENaC). Evidence has accumulated that both Cl(-) transport through CFTR Cl(-) channels and the first nucleotide binding domain (NBF1) of CFTR are crucial for inhibition of ENaC. A PDZ binding domain (PDZ-BD) at the C-terminal end links CFTR to scaffolding and cytoskeletal proteins, which have been suggested to play an important role in activation of CFTR and eventually inhibition of ENaC. We eliminated the PDZ-BD of CFTR and coexpressed Na(+)/H(+)-exchange regulator factors together with CFTR and ENaC. The results do not support a role of PDZ-BD in inhibition of ENaC by CFTR. However, inhibition of ENaC was closely linked to Cl(-) currents generated by CFTR and was observed in the presence of Cl(-), I(-) or Br(-) but not gluconate. Therefore, functional NBF1 and Cl(-) transport are required for inhibition of ENaC in Xenopus oocytes, while the PDZ-BD is not essential.
Comments [show]
None has been submitted yet.
No. Sentence Comment
38 Using similar PCR techniques, the NBF1 mutants of human CFTR vF508, G551D, S466L, K464A, D572N, KH483/484AA, R487Q, R516A, KR598/600GA, KK611/612AA and K615A were in vitro synthesized (Quickchange, Stratagene).
X
ABCC7 p.Arg516Ala 11597353:38:116
status: NEW118 The mutants S466L, KH483/484AA, R516A and KK611/612AA demonstrated a residual Cl3 channel function, which was paralleled by a limited ability to downregulate ENaC.
X
ABCC7 p.Arg516Ala 11597353:118:32
status: NEW