ABCC7 p.Phe337Leu
Predicted by SNAP2: | A: D (71%), C: D (66%), D: D (91%), E: D (91%), G: D (75%), H: D (75%), I: D (71%), K: D (91%), L: D (53%), M: D (66%), N: D (85%), P: D (91%), Q: D (85%), R: D (85%), S: D (85%), T: D (85%), V: D (75%), W: D (85%), Y: D (71%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: N, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Long-range coupling between the extracellular gate... FASEB J. 2015 Nov 25. pii: fj.15-278382. Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL 4th, Kirk KL
Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.
FASEB J. 2015 Nov 25. pii: fj.15-278382., [PMID:26606940]
Abstract [show]
The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that: 1) all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy and 2) highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.-Wei, S., Roessler, B. C., Icyuz, M., Chauvet, S., Tao, B., Hartman, J. L., IV, Kirk, K. L. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.
Comments [show]
None has been submitted yet.
No. Sentence Comment
70 Primer sequences for cloning and site-directed mutagenesis Ycf1p Forward cloning primer: CAACACAGGCATGTATATTA- AGAGC Reverse cloning primer: TTAAACTTATGGCGTCAGAG- TTGCC F565A: CATTGACTACTGACTTAGTTGCCCCTGCTTTG- ACTCTGTTC F565S: CATTGACTACTGACTTAGTTTCCCCTGCTTTGA- CTCTGTTC F565L: CATTGACTACTGACTTAGTTTTACCTGCTTTG- ACTCTGTTC G756D: AAGACAAACGAGCTTTTTGATCTCCAGATAAG- GAGATCCC D777N: ACAGCTGGCAAAGGATCATTAAGTAAATAAG- TGTCAGCTC Y1281G: GATCAAGCTCCGGCCTACCACGAGTGGAATA- ATTATTAAAC Yor1p Forward cloning primer: CTAATTGTACATCCGGTTTT- AACC Reverse cloning primer: TTGAGTCATTGCCCTTAA- AATGG F468S: AGGCAACCTGGTAATATTTCTGCCTCTTTATC- TTTATTTC F468A: AGGCAACCTGGTAATATTGCTGCCTCTTTATC- TTTATTTC F468L: AGGCAACCTGGTAATATTCTTGCCTCTTTATC- TTTATTTC G713D: GTGGTATTACTTTATCTGGTGATCAAAAGGCA- CGTATCAATTT Y1222G: ATAGGTAAACCAGGTCTACCGGCAAAATCAA- CATTTTCAA CFTR Forward cloning primer: GAAGAAGCAATGGAAAAA- ATGATTG Reverse cloning primer: TCGGTGAATGTTCTGACCT- TGG F337S: TCATCCTCCGGAAAATATCCACCACCATCTCA- TTCTGC F337A: TCATCCTCCGGAAAATAGCCACCACCATCTCA- TTCTGC F337L: TCATCCTCCGGAAAATATTAACCACCATCTCA- TTCTGC F337C: TCATCCTCCGGAAAATATGCACCACCATCTC- ATTCTGC Immunoblot analysis of CFTR protein expression Expression of the CFTR F337 mutants was verified by immunoblotting as described elsewhere (15).
X
ABCC7 p.Phe337Leu 26606940:70:1037
status: NEW148 B) Macroscopic current record for excised patch containing approximately the same number of F337L- CFTR channels showing that this mutation does not increase ATP-free channel activity or subsequent activation by AMP-PNP.
X
ABCC7 p.Phe337Leu 26606940:148:92
status: NEW152 Mean percent ATP-free currents 6 SEMs were as follows: WT (0.5 6 0.2%; n = 5); F337L (0.6 6 0.3%; n = 5); F337C (2.5 6 1.4%; n = 5), F337A (9.6 6 1.4%; n = 5), and F337S (15.8 6 4.5%; n = 10).
X
ABCC7 p.Phe337Leu 26606940:152:79
status: NEW162 The results in Fig. 5 confirm that the extracellular F337S mutation increased Po especially following ATP removal and the subsequent addition of AMP-PNP.
X
ABCC7 p.Phe337Leu 26606940:162:41
status: NEW163 Interestingly, the leucine substitution (F337L), which was a strong GOF mutation in Ycf1p but a weaker GOF mutation in Yor1p, had no detectable GOF effect on CFTR channel activity (Fig. 4B-D).
X
ABCC7 p.Phe337Leu 26606940:163:41
status: NEW308 The F337L mutation did not obviously disrupt CFTR protein maturation or inhibit the control ATP-dependent currents in macropatches (Fig. 4).
X
ABCC7 p.Phe337Leu 26606940:308:4
status: NEW69 Primer sequences for cloning and site-directed mutagenesis Ycf1p Forward cloning primer: CAACACAGGCATGTATATTA- AGAGC Reverse cloning primer: TTAAACTTATGGCGTCAGAG- TTGCC F565A: CATTGACTACTGACTTAGTTGCCCCTGCTTTG- ACTCTGTTC F565S: CATTGACTACTGACTTAGTTTCCCCTGCTTTGA- CTCTGTTC F565L: CATTGACTACTGACTTAGTTTTACCTGCTTTG- ACTCTGTTC G756D: AAGACAAACGAGCTTTTTGATCTCCAGATAAG- GAGATCCC D777N: ACAGCTGGCAAAGGATCATTAAGTAAATAAG- TGTCAGCTC Y1281G: GATCAAGCTCCGGCCTACCACGAGTGGAATA- ATTATTAAAC Yor1p Forward cloning primer: CTAATTGTACATCCGGTTTT- AACC Reverse cloning primer: TTGAGTCATTGCCCTTAA- AATGG F468S: AGGCAACCTGGTAATATTTCTGCCTCTTTATC- TTTATTTC F468A: AGGCAACCTGGTAATATTGCTGCCTCTTTATC- TTTATTTC F468L: AGGCAACCTGGTAATATTCTTGCCTCTTTATC- TTTATTTC G713D: GTGGTATTACTTTATCTGGTGATCAAAAGGCA- CGTATCAATTT Y1222G: ATAGGTAAACCAGGTCTACCGGCAAAATCAA- CATTTTCAA CFTR Forward cloning primer: GAAGAAGCAATGGAAAAA- ATGATTG Reverse cloning primer: TCGGTGAATGTTCTGACCT- TGG F337S: TCATCCTCCGGAAAATATCCACCACCATCTCA- TTCTGC F337A: TCATCCTCCGGAAAATAGCCACCACCATCTCA- TTCTGC F337L: TCATCCTCCGGAAAATATTAACCACCATCTCA- TTCTGC F337C: TCATCCTCCGGAAAATATGCACCACCATCTC- ATTCTGC Immunoblot analysis of CFTR protein expression Expression of the CFTR F337 mutants was verified by immunoblotting as described elsewhere (15).
X
ABCC7 p.Phe337Leu 26606940:69:1037
status: NEW147 B) Macroscopic current record for excised patch containing approximately the same number of F337L- CFTR channels showing that this mutation does not increase ATP-free channel activity or subsequent activation by AMP-PNP.
X
ABCC7 p.Phe337Leu 26606940:147:92
status: NEW151 Mean percent ATP-free currents 6 SEMs were as follows: WT (0.5 6 0.2%; n = 5); F337L (0.6 6 0.3%; n = 5); F337C (2.5 6 1.4%; n = 5), F337A (9.6 6 1.4%; n = 5), and F337S (15.8 6 4.5%; n = 10).
X
ABCC7 p.Phe337Leu 26606940:151:79
status: NEW307 The F337L mutation did not obviously disrupt CFTR protein maturation or inhibit the control ATP-dependent currents in macropatches (Fig. 4).
X
ABCC7 p.Phe337Leu 26606940:307:4
status: NEW[hide] Molecular determinants of anion selectivity in the... Biophys J. 2000 Jun;78(6):2973-82. Linsdell P, Evagelidis A, Hanrahan JW
Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
Biophys J. 2000 Jun;78(6):2973-82., [PMID:10827976]
Abstract [show]
Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, the very existence of a discrete anion selectivity filter has been called into question. Here we show that mutation of a putative pore-lining phenylalanine residue, F337, in the sixth membrane-spanning region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, dramatically alters the relative permeabilities of different anions in the channel. Specifically, mutations that reduce the size of the amino acid side chain present at this position virtually abolish the relationship between anion permeability and hydration energy, a relationship that characterizes the anion selectivity not only of wild-type CFTR, but of most classes of Cl(-) channels. These results suggest that the pore of CFTR may indeed contain a specialized region, analogous to the selectivity filter of cation channels, at which discrimination between different permeant anions takes place. Because F337 is adjacent to another amino acid residue, T338, which also affects anion selectivity in CFTR, we suggest that selectivity is predominantly determined over a physically discrete region of the pore located near these important residues.
Comments [show]
None has been submitted yet.
No. Sentence Comment
70 The mutants F337L, F337Y, and I344A gave only modest alterations in anion permeability (Table 1) that led to only slight changes in the anion selectivity sequence (Table 2).
X
ABCC7 p.Phe337Leu 10827976:70:12
status: NEW77 Both wild-type and F337Y (Fig. 3), as well as F337L, F337W, and I344A (not shown; see Table 2), were able to select for anions that bound water molecules less strongly, consistent with the lyotropic selectivity sequence common to most classes of Clafa; channels (see Introduction).
X
ABCC7 p.Phe337Leu 10827976:77:46
status: NEW116 Although we cannot rule out this possibility, we feel that the fact that mutations at two adjacent TM6 residues, F337 (this study) and T338 (Linsdell et al., 1998), significantly affect TABLE 1 Relative permeability of intracellular ions in wild-type and mutant CFTR Cld1a; channels Wild type F337A F337S F337L F337Y F337W I344A Cl 1.00 afe; 0.01 (10) 1.00 afe; 0.04 (6) 1.00 afe; 0.08 (3) 1.00 afe; 0.02 (5) 1.00 afe; 0.02 (6) 1.00 afe; 0.03 (5) 1.00 afe; 0.01 (9) Br 1.37 afe; 0.07 (8) 0.60 afe; 0.04 (4)** 0.50 afe; 0.04 (4)** 1.22 afe; 0.04 (5) 1.39 afe; 0.04 (3) 1.12 afe; 0.05 (4)* 1.74 afe; 0.01 (3)* I 0.83 afe; 0.03 (6) 0.23 afe; 0.04 (5)** 0.23 afe; 0.02 (4)** 0.39 afe; 0.01 (3)** 0.69 afe; 0.03 (7)* - 0.99 afe; 0.05 (4)* F 0.103 afe; 0.007 (9) 0.35 afe; 0.01 (4)** 0.43 afe; 0.02 (4)** 0.15 afe; 0.02 (3)* 0.095 afe; 0.009 (3) 0.081 afe; 0.009 (3) 0.075 afe; 0.012 (5)* SCN 3.55 afe; 0.26 (7) 0.97 afe; 0.05 (4)** 0.93 afe; 0.10 (5)** 2.85 afe; 0.20 (4) 3.05 afe; 0.29 (4) 4.42 afe; 0.56 (4) 3.27 afe; 0.30 (5) NO3 1.58 afe; 0.04 (10) 1.30 afe; 0.03 (3)* 1.08 afe; 0.02 (4)** 1.38 afe; 0.03 (4)* 1.43 afe; 0.04 (3) 1.62 afe; 0.03 (3) 1.71 afe; 0.06 (4) ClO4 0.25 afe; 0.01 (8) 0.19 afe; 0.00 (3)* 0.17 afe; 0.03 (4)* 0.23 afe; 0.04 (3) 0.15 afe; 0.01 (4)** - 0.24 afe; 0.02 (3) Formate 0.24 afe; 0.01 (9) 0.27 afe; 0.02 (3) 0.33 afe; 0.03 (4)* 0.35 afe; 0.02 (3)* 0.24 afe; 0.01 (3) - 0.28 afe; 0.01 (3) Acetate 0.091 afe; 0.003 (10) 0.073 afe; 0.004 (3)* 0.12 afe; 0.02 (5) - 0.092 afe; 0.014 (4) - 0.076 afe; 0.007 (3) Naaf9; 0.007 afe; 0.010 (24) 0.001 afe; 0.018 (3) 0.001 afe; 0.021 (5) - 0.002 afe; 0.004 (3) - - Relative permeabilities for different anions present in the intracellular solution under biionic conditions were calculated from macroscopic current reversal potentials (e.g., Fig. 2), according to Eq. 1 (see Materials and Methods).
X
ABCC7 p.Phe337Leu 10827976:116:308
status: NEW122 TABLE 2 Anion selectivity sequences for wild-type and mutant CFTR Cld1a; channels Wild-type SCNafa; b0e; NO3 afa; b0e; Brafa; b0e; Clafa; b0e; Iafa; b0e; ClO4 afa; b07; form b0e; Fafa; b0e; ace F337A NO3 afa; b0e; Clafa; c56; SCNafa; b0e; Brafa; b0e; Fafa; b0e; form c56; Iafa; b0e; ClO4 afa; b0e; ace F337S NO3 afa; b0e; Clafa; c56; SCNafa; b0e; Brafa; b0e; Fafa; b0e; form b0e; Iafa; b0e; ClO4 afa; b0e; ace F337L SCNafa; b0e; NO3 afa; b0e; Brafa; b0e; Clafa; b0e; Iafa; b0e; form b0e; ClO4 afa; b0e; Fafa; F337Y SCNafa; b0e; NO3 afa; c56; Brafa; b0e; Clafa; b0e; Iafa; b0e; form b0e; ClO4 afa; b0e; Fafa; b07; ace I344A SCNafa; b0e; Brafa; c56; NO3 afa; b0e; Clafa; b07; Iafa; b0e; form b0e; ClO4 afa; b0e; ace b07; Fafa; Sequences were derived from the relative anion permeabilities given in Table 1. form, formate; ace, acetate.
X
ABCC7 p.Phe337Leu 10827976:122:548
status: NEW158 While the mutants F337L, F337Y, and I344A maintain Eisenman sequence III, both F337A and F337S convert the channel to a relatively strong field strength sequence (Clafa; b0e; Brafa; b0e; Fafa; b0e; Iafa; ; Eisenman sequence V) (Table 2).
X
ABCC7 p.Phe337Leu 10827976:158:18
status: NEW168 Thus in wild-type CFTR (and to a similar extent F337L and F337Y), the bulky side chain at position 337 might impede the approach of permeating anions to a nearby anion-attracting group, ensuring relatively weak, long-distance interactions between the anion and this positive site.
X
ABCC7 p.Phe337Leu 10827976:168:48
status: NEW