ABCC1 p.Pro272Ser
Predicted by SNAP2: | A: N (87%), C: N (78%), D: N (72%), E: N (82%), F: N (72%), G: N (78%), H: N (93%), I: N (78%), K: N (82%), L: N (78%), M: N (72%), N: N (93%), Q: N (87%), R: N (78%), S: N (87%), T: N (82%), V: N (78%), W: N (82%), Y: N (82%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: N, H: N, I: N, K: N, L: N, M: N, N: N, Q: N, R: N, S: N, T: N, V: N, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Genetic variation of the ABC transporter gene ABCC... BMC Genet. 2015 Sep 23;16(1):114. doi: 10.1186/s12863-015-0271-3. Slomka M, Sobalska-Kwapis M, Korycka-Machala M, Bartosz G, Dziadek J, Strapagiel D
Genetic variation of the ABC transporter gene ABCC1 (Multidrug resistance protein 1-MRP1) in the Polish population.
BMC Genet. 2015 Sep 23;16(1):114. doi: 10.1186/s12863-015-0271-3., [PMID:26395522]
Abstract [show]
BACKGROUND: Multidrug resistance-associated protein 1 (MRP1), encoded by the ABCC1 gene, is an ATP-binding cassette transporter mediating efflux of organic anions and xenobiotics; its overexpression leads to multidrug resistance. In this study, 30 exons (from 31 in total) of the ABCC1 gene as well as and their flanking intron sequences were screened for genetic variation, using the High Resolution Melting (HRM) method, for 190 healthy volunteers representing the Polish population. Polymorphism screening is an indispensable step in personalized patient therapy. An additional targeted SNP verification study for ten variants was performed to verify sensitivity of the scanning method. RESULTS: During scanning, 46 polymorphisms, including seven novel ones, were found: one in 3' UTR, 21 in exons (11 of them non-synonymous) and 24 in introns, including one deletion variant. These results revealed some ethnic differences in frequency of several polymorphisms when compared to literature data for other populations. Based on linkage disequilibrium analysis, 4 haplotype blocks were determined for 9 detected polymorphisms and 12 haplotypes were defined. To capture the common haplotypes, haplotype-tagging single nucleotide polymorphisms were identified. CONCLUSIONS: Targeted genotyping results correlated well with scanning results; thus, HRM is a suitable method to study genetic variation in this model. HRM is an efficient and sensitive method for scanning and genotyping polymorphic variants. Ethnic differences were found for frequency of some variants in the Polish population compared to others. Thus, this study may be useful for pharmacogenetics of drugs affected by MRP1-mediated efflux.
Comments [show]
None has been submitted yet.
No. Sentence Comment
136 Variants c.596C > T (p.Ser199Leu) and c.814C > T (p.Pro272Ser) were located in the third intracellular loop (between TM5 and TM6), variant c.1299G > T (p.Arg433Ser) in the fourth intracellular loop, variant c.3196C > T (p.Arg1066Trp) in the seventh intracellular loop (between TM7 and TM8).
X
ABCC1 p.Pro272Ser 26395522:136:52
status: NEW140 Analysis of all the non-synonymous variants detected in this study by the PolyPhen-2 tool (data in Additional file 3) showed for HumDiv-trained model that five of them: c.814C > T (p.Pro272Ser), c.1898G > A (p.Arg633 Gln), c.2168G > A (p.Arg723Gln), c.2876A > G (p.Lys 959Arg), the novel one c.4093G > A (p.Asp1365Asn), probably have benign influence on the functioning of the protein.
X
ABCC1 p.Pro272Ser 26395522:140:183
status: NEW144 Table 2 Summary of ABCC1 variants detected during scanning by HRM Exon scanned by HRM dbSNP ID Variant position NM_004996.3: Intron/amino acid residue NP_004987.2: Observed genotypesa, b (n) HWE exact test P-valuec MAFd R/R R/V V/V 2 rs8187843 c.225 + 26G > A Intron 164 25 0 1 (A) 0.066 4 rs587783373* c.352-79G > A Intron 185 1 0 1 (A) 0.003 4 rs4148337 c.352-66 T > C Intron 15 80 91 0.727 (T) 0.296 5 rs483352860* c.596C > T p.Ser199Leu 186 1 0 1 (T) 0.003 6 rs8187846 c.677 + 17C > T Intron 188 1 0 1 (T) 0.003 7 rs483352864* c.809 + 16C > T Intron 188 1 0 1 (T) 0.003 7 rs45609533 c.809 + 31G > T Intron 183 5 0 1 (T) 0.013 7 rs903880 c.809 + 54C > A Intron 112 65 11 0.684 (A) 0.231 7 rs246232 c.809 + 64C > G Intron 84 90 14 0.174 (G) 0.314 8 rs546943313 c.810-73C > T Intron 187 1 0 1 (T) 0.003 8 rs200194736 c.814C > T p.Pro272Ser 187 1 0 1 (T) 0.003 8 rs2230669 c.816G > A p.Pro272= 172 16 0 1 (A) 0.043 8 rs246221 c.825 T > C p.Val275= 84 92 12 0.059 (C) 0.309 8 rs587783372* c.855G > A p.Pro285= 187 1 0 1 (A) 0.003 9 rs35587 c.1062 T > C p.Asn354= 78 91 16 0.185 (C) 0.332 9 rs35588 c.1218 + 8A > G Intron 82 91 16 0.245 (G) 0.327 9 rs483352877* c.1218 + 9C > T Intron 188 1 0 1 (T) 0.003 10 rs60782127 c.1299G > T p.Arg433Ser 186 2 0 1 (T) 0.005 12 rs17265551 c.1677 + 56C > T Intron 162 27 0 0.604 (T) 0.072 13 rs35604 c.1678-37G > A Intron 2 45 142 0.745 (G) 0.130 13 rs483352863* c.1678-34G > A Intron 188 1 0 1 (A) 0.003 13 rs35605 c.1684 T > C p.Leu562= 2 45 142 0.745 (T) 0.130 13 rs8187858 c.1704C > T p.Tyr568= 157 31 1 1 (T) 0.088 14 rs112282109 c.1898G > A p.Arg633Gln 187 1 0 1 (A) 0.003 16 rs8187863 c.2001C > T p.Ser667= 187 1 0 1 (T) 0.003 16 rs45511401 c.2012G > T p.Gly671Val 161 25 2 0.296 (T) 0.077 17 rs4148356 c.2168G > A p.Arg723Gln 181 9 0 1 (A) 0.024 19 rs45607032 c.2461-39_2461-38delAT Intron 179 9 0 1 (delAT) 0.024 19 rs2074087 c.2461-30C > G Intron 0 44 144 0.083 (C) 0.117 19 rs45492500 c.2461-27G > A Intron 172 14 2 0.056 (A) 0.048 21 rs11075296 c.2871 + 26C > T Intron 0 0 189 1 - 22 rs768191257 c.2876A > G p.Lys959Arg 187 1 0 1 (G) 0.003 22 rs3851716 c.3079 + 10G > A Intron 0 0 188 1 - 22 rs34794353 c.3079 + 24C > T Intron 187 1 0 1 (T) 0.003 22 rs3887893 c.3079 + 62 T > C Intron 67 96 25 0.358 (C) 0.388 23 rs191017838 c.3171G > A p.Leu1057= 187 2 0 1 (A) 0.005 23 rs199773531 c.3196C > T p.Arg1066Trp 188 1 0 1 (T) 0.003 25 rs41278168 c.3591-5C > T Intron 187 1 0 1 (T) 0.003 27 rs200922662 c.3886C > T p.Arg1296Trp 187 1 0 1 (T) 0.003 27 rs201533167 c.3901C > T p.Arg1301Cys 187 1 0 1 (T) 0.003 Linkage disequilibrium analysis Based on full genotype sets of 44 polymorphic variants confirmed by Hardy-Weinberg equilibrium exact test (Table 2), linkage disequilibrium analysis using r2 and |D`| statistics was performed (Additional file 4).
X
ABCC1 p.Pro272Ser 26395522:144:831
status: NEW