ABCC7 p.Lys464Arg
ClinVar: |
c.1392G>T
,
p.Lys464Asn
?
, not provided
|
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), L: D (95%), M: D (95%), N: D (91%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Glycerol reverses the misfolding phenotype of the ... J Biol Chem. 1996 Jan 12;271(2):635-8. Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR
Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation.
J Biol Chem. 1996 Jan 12;271(2):635-8., [PMID:8557666]
Abstract [show]
The common delta F508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) interferes with the biosynthetic folding of nascent CFTR polypeptides, leading to their retention and rapid degradation in an intracellular compartment proximal to the Golgi apparatus. Neither the pathway by which wild-type CFTR folds nor the mechanism by which the Phe508 deletion interferes with this process is well understood. We have investigated the effect of glycerol, a polyhydric alcohol known to stabilize protein conformation, on the folding of CFTR and delta F508 in vivo. Incubation of transient and stable delta F508 transfectants with 10% glycerol induced a significant accumulation of delta F508 protein bearing complex N-linked oligosaccharides, indicative of their transit to a compartment distal to the endoplasmic reticulum (ER). This accumulation was accompanied by an increase in mean whole cell cAMP activated chloride conductance, suggesting that the glycerol-rescued delta F508 polypeptides form functional plasma membrane CFTR channels. These effects were dose- and time-dependent and fully reversible. Glycerol treatment also stabilized immature (core-glycosylated) delta F508 and CFTR molecules that are normally degraded rapidly. These effects of glycerol were not due to a general disruption of ER quality control processes but appeared to correlate with the degree of temperature sensitivity of specific CFTR mutations. These data suggest a model in which glycerol serves to stabilize an otherwise unstable intermediate in CFTR biosynthesis, maintaining it in a conformation that is competent for folding and subsequent release from the ER quality control apparatus.
Comments [show]
None has been submitted yet.
No. Sentence Comment
95 Processing of mutants K464R and K464A was inefficient by comparison with wild type and was enhanced by incubation in the presence of 10% glycerol, even after accounting for the unequal label present in the immature precursor in the presence of glycerol (Fig. 3B).
X
ABCC7 p.Lys464Arg 8557666:95:22
status: NEW122 Interestingly, we observe a strong correlation between the temperature sensitivity of CFTR mutations like ⌬F508, K464R, and K464A (data not shown) and their ability to be remediated by glycerol.
X
ABCC7 p.Lys464Arg 8557666:122:120
status: NEW97 Processing of mutants K464R and K464A was inefficient by comparison with wild type and was enhanced by incubation in the presence of 10% glycerol, even after accounting for the unequal label present in the immature precursor in the presence of glycerol (Fig. 3B).
X
ABCC7 p.Lys464Arg 8557666:97:22
status: NEW124 Interestingly, we observe a strong correlation between the temperature sensitivity of CFTR mutations like DF508, K464R, and K464A (data not shown) and their ability to be remediated by glycerol.
X
ABCC7 p.Lys464Arg 8557666:124:113
status: NEW[hide] CFTR: the nucleotide binding folds regulate the ac... J Gen Physiol. 1996 Jan;107(1):103-19. Wilkinson DJ, Mansoura MK, Watson PY, Smit LS, Collins FS, Dawson DC
CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state.
J Gen Physiol. 1996 Jan;107(1):103-19., [PMID:8741733]
Abstract [show]
The functional roles of the two nucleotide binding folds, NBF1 and NBF2, in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) were investigated by measuring the rates of activation and deactivation of CFTR Cl- conductance in Xenopus oocytes. Activation of wild-type CFTR in response to application of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was described by a single exponential. Deactivation after washout of the cocktail consisted of two phases: an initial slow phase, described by a latency, and an exponential decline. Rate analysis of CFTR variants bearing analogous mutations in NBF1 and NBF2 permitted us to characterize amino acid substitutions according to their effects on the accessibility and stability of the active state. Access to the active state was very sensitive to substitutions for the invariant glycine (G551) in NBF1, where mutations to alanine (A), serine (S), or aspartic acid (D) reduced the apparent on rate by more than tenfold. The analogous substitutions in NBF2 (G1349) also reduced the on rate, by twofold to 10-fold, but substantially destabilized the active state as well, as judged by increased deactivation rates. In the putative ATP-binding pocket of either NBF, substitution of alanine, glutamine (Q), or arginine (R) for the invariant lysine (K464 or K1250) reduced the on rate similarly, by two- to fourfold. In contrast, these analogous substitutions produced opposite effects on the deactivation rate. NBF1 mutations destabilized the active state, whereas the analogous substitutions in NBF2 stabilized the active state such that activation was prolonged compared with that seen with wild-type CFTR. Substitution of asparagine (N) for a highly conserved aspartic acid (D572) in the ATP-binding pocket of NBF1 dramatically slowed the on rate and destabilized the active state. In contrast, the analogous substitution in NBF2 (D1370N) did not appreciably affect the on rate and markedly stabilized the active state. These results are consistent with a hypothesis for CFTR activation that invokes the binding and hydrolysis of ATP at NBF1 as a crucial step in activation, while at NBF2, ATP binding enhances access to the active state, but the rate of ATP hydrolysis controls the duration of the active state. The relatively slow time courses for activation and deactivation suggest that slow processes modulate ATP-dependent gating.
Comments [show]
None has been submitted yet.
No. Sentence Comment
281 + kott) (10-3 min-l kon kofr latency *k~m CFTR (mM) n (10-3min-]) mM-1) (10-3min 1) (10-3min-l) n (min) (10 3min i) n wt 0.65 • 0.08 26 664 • 51 118 • 9 558 • 45 76-+ 6 20 6.0 • 0.3 88 • 6 16 K464R 2.6 • 0.1": 4 153 + 20**+ 20 • 3*** 101 • 13''` 52 • 7*: 5 1.3 • 0.2*++ 174 • 14"** 7 K464Q 3.3 • 0.5"* 5 331 • 56*** 40 -+ 7* 199 • 34* 132 • 22*'` 5 1.9 • 0.3"I 142 -+ 19''` 5 K464A 4.6 • 0.7** 6 289 • 49* 30 • 5** 151 • 26*** 139 • 24*: 7 1.1 • 0.1"** 133 • 14"** 8 D572N 9.3 + 0.02*: 6 106 • 7*: 7-+0.5*: 37-+3*** 69 • 5+* 4 0.9 • 0.2*** 245 • 32*: 3 K1250R 0.17 • 0.07*: 5 239 •33*** 46 -+ 6"+* 231 • 32*: 8 • 1": 10 10.4 • 0.8"~ 100 • 7** 6 K1250Q 0.12 • 0.04*** 5 150 • 18''` 29 • 4* 146 -+ 18" 4 + 0.4"I 5 22.3 • 2.4*: 30 •5": 5 K1250A 0.07 + 0.02*: 10 218 • 18" 43 • 4*'` 215 • 18": 3 -+0.3*~* 5 15.6-+ 1.0"** 43 -+5** 5 D1370N 0.16 + 0.04*'` 7 449 - 79*: 87 • 15: 435 +76** 14 - 2*: 5 16.3-4-1.2"" 69-+ 6** 5 The symbols (*) and ('`) indicate significant differences from wild-type CFTR and the analogous mutant, respectively (P < 0.05).
X
ABCC7 p.Lys464Arg 8741733:281:234
status: NEW283 + kott) (10-3 min-l kon kofr latency *k~m CFTR (mM) n (10-3 min-]) mM-1) (10-3 min 1) (10-3min-l) n (min) (10 3min i) n wt 0.65 ߦ 0.08 26 664 ߦ 51 118 ߦ 9 558 ߦ 45 76 -+ 6 20 6.0 ߦ 0.3 88 ߦ 6 16 K464R 2.6 ߦ 0.1": 4 153 + 20**+ 20 ߦ 3*** 101 ߦ 13''` 52 ߦ 7*: 5 1.3 ߦ 0.2*++ 174 ߦ 14"** 7 K464Q 3.3 ߦ 0.5"* 5 331 ߦ 56*** 40 -+ 7* 199 ߦ 34* 132 ߦ 22*'` 5 1.9 ߦ 0.3"I 142 -+ 19''` 5 K464A 4.6 ߦ 0.7** 6 289 ߦ 49* 30 ߦ 5** 151 ߦ 26*** 139 ߦ 24*: 7 1.1 ߦ 0.1"** 133 ߦ 14"** 8 D572N 9.3 + 0.02*: 6 106 ߦ 7*: 7 -+0.5*: 37 -+3*** 69 ߦ 5+* 4 0.9 ߦ 0.2*** 245 ߦ 32*: 3 K1250R 0.17 ߦ 0.07*: 5 239 ߦ 33*** 46 -+ 6"+* 231 ߦ 32*: 8 ߦ 1": 10 10.4 ߦ 0.8"~ 100 ߦ 7** 6 K1250Q 0.12 ߦ 0.04*** 5 150 ߦ 18''` 29 ߦ 4* 146 -+ 18" 4 + 0.4"I 5 22.3 ߦ 2.4*: 30 ߦ 5": 5 K1250A 0.07 + 0.02*: 10 218 ߦ 18" 43 ߦ 4*'` 215 ߦ 18": 3 -+0.3*~* 5 15.6 -+ 1.0"** 43 -+5** 5 D1370N 0.16 + 0.04*'` 7 449 - 79*: 87 ߦ 15: 435 + 76** 14 - 2*: 5 16.3 -4-1.2"" 69 -+ 6** 5 The symbols (*) and ('`) indicate significant differences from wild-type CFTR and the analogous mutant, respectively (P < 0.05).
X
ABCC7 p.Lys464Arg 8741733:283:231
status: NEW[hide] Functional roles of the nucleotide-binding folds i... Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9963-7. Smit LS, Wilkinson DJ, Mansoura MK, Collins FS, Dawson DC
Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conductance regulator.
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9963-7., [PMID:7694298]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR), a member of the traffic ATPase superfamily, possesses two putative nucleotide-binding folds (NBFs). The NBFs are sufficiently similar that sequence alignment of highly conserved regions can be used to identify analogous residues in the two domains. To determine whether this structural homology is paralleled in function, we compared the activation of chloride conductance by forskolin and 3-isobutyl-1-methylxanthine in Xenopus oocytes expressing CFTRs bearing mutations in NBF1 or NBF2. Mutation of a conserved glycine in the putative linker domain in either NBF produced virtually identical changes in the sensitivity of chloride conductance to activating conditions, and mutation of this site in both NBFs produced additive effects, suggesting that in the two NBFs this region plays a similar and critical role in the activation process. In contrast, amino acid substitutions in the Walker A and B motifs, thought to form an integral part of the nucleotide-binding pockets, produced strikingly different effects in NBF1 and NBF2. Substitutions for the conserved lysine (Walker A) or aspartate (Walker B) in NBF1 resulted in a marked decrease in sensitivity to activation, whereas the same changes in NBF2 produced an increase in sensitivity. These results are consistent with a model for the activation of CFTR in which both NBF1 and NBF2 are required for normal function but in which either the nature or the exact consequences of nucleotide binding differ for the two domains.
Comments [show]
None has been submitted yet.
No. Sentence Comment
89 Alanine and arginine substitutions at lysine-464 and -1250 were associated with sensitivities similar to those observed with the glutamine substitutions (K464A or K464R, Kil2 = 0.8 mM; K1250A or K1250R, K,12 < 0.02 mM).
X
ABCC7 p.Lys464Arg 7694298:89:12
status: NEWX
ABCC7 p.Lys464Arg 7694298:89:163
status: NEW